1
|
Patil K, Johnston E, Novack J, Wallace G, Lin M, Pai SB. Multifaceted impact of HIV inhibitor dapivirine on triple negative breast cancer cells reveals potential entities as targets for novel therapy. Sci Rep 2024; 14:30103. [PMID: 39627279 PMCID: PMC11615302 DOI: 10.1038/s41598-024-79789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Many breast cancers originate from the cells lining the milk duct and some become invasive. Breast cancer lacking estrogen, progesterone receptors (ER-, PR-) and epidermal growth factor receptor 2 (HER2-) amplification, termed "Triple negative" (TNBC) is reported to frequently affect Black women and younger women. TNBC is an invasive ductal carcinoma with limited treatment options. To this end, we opted to investigate drugs that could be repurposed because they offer advantages in bringing effective treatments faster to the clinic. We chose to study the effect of the drug, dapivirine, a non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV because it could be detected in the breast milk of lactating women when treated for HIV and the drug could potentially target the cancer. Here we show the potent impact of dapivirine on MDA-MB-231 TNBC cells, while NNRTI like nevirapine showed marginal effects. When dapivirine was tested on other breast cell lines, MCF-7 and MCF 10A, the inhibition was at higher concentrations. Molecular studies with dapivirine in TNBC cells, revealed an increase in reactive oxygen species (ROS), apoptotic cells, and activation of caspases. Importantly, protein profiling and STRING analysis revealed deregulation of the key molecule, PCNA and impact on pivotal cell signaling circuits including extracellular matrix (ECM), angiogenesis, cell adhesion, and immunomodulation. Of note, is its potential effect on stem-like cells due to downregulation of the basic transcription factor 3 (BTF3) and proteasome activator complex subunit 3; the latter affecting their dependence on the proteasome pathway. Taken together, dapivirine exhibits the potential to be considered as a repurposed drug for TNBC as monotherapy/combination therapy. Notably, it could also potentially be a treatment for individuals with dual ailments, such as HIV and TNBC, if the clinical outcomes with dapivirine for TNBC become favorable.
Collapse
Affiliation(s)
- Ketki Patil
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Elizabeth Johnston
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Joseph Novack
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Garrett Wallace
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Michelle Lin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - S Balakrishna Pai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Aslebagh R, Whitham D, Channaveerappa D, Lowe J, Pentecost BT, Arcaro KF, Darie CC. Proteomics analysis of human breast milk by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) coupled with mass spectrometry to assess breast cancer risk. Electrophoresis 2023; 44:1097-1113. [PMID: 36971330 PMCID: PMC10522790 DOI: 10.1002/elps.202300040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Breast cancer (BC) is one of the most common cancers and one of the most common causes for cancer-related mortality. Discovery of protein biomarkers associated with cancer is considered important for early diagnosis and prediction of the cancer risk. Protein biomarkers could be investigated by large-scale protein investigation or proteomics, using mass spectrometry (MS)-based techniques. Our group applies MS-based proteomics to study the protein pattern in human breast milk from women with BC and controls and investigates the alterations and dysregulations of breast milk proteins in comparison pairs of BC versus control. These dysregulated proteins might be considered potential future biomarkers of BC. Identification of potential biomarkers in breast milk may benefit young women without BC, but who could collect the milk for future assessment of BC risk. Previously we identified several dysregulated proteins in different sets of human breast milk samples from BC patients and controls using gel-based protein separation coupled with MS. Here, we performed 2D-PAGE coupled with nano-liquid chromatography-tandem MS (nanoLC-MS/MS) in a small-scale study on a set of six human breast milk pairs (three BC samples vs. three controls) and we identified several dysregulated proteins that have potential roles in cancer progression and might be considered potential BC biomarkers in the future.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Danielle Whitham
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Devika Channaveerappa
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - James Lowe
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Brian T. Pentecost
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kathleen F. Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Costel C. Darie
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| |
Collapse
|
3
|
Srivastava S, Patil K, Thompson EW, Nakhai SA, Kim YN, Haynes C, Bryant C, Pai SB. Disruption of Glioblastoma Multiforme Cell Circuits with Cinnamaldehyde Highlights Potential Targets with Implications for Novel Therapeutic Strategies. Cells 2023; 12:cells12091277. [PMID: 37174677 PMCID: PMC10177046 DOI: 10.3390/cells12091277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a major aggressive primary brain tumor with dismal survival outcome and few therapeutic options. Although Temozolomide (TMZ) is a part of the standard therapy, over time, it can cause DNA damage leading to deleterious effects, necessitating the discovery of drugs with minimal side effects. To this end, we investigated the effect of cinnamaldehyde (CA), a highly purified, single ingredient from cinnamon, on the GBM cell lines U87 and U251 and the neuroglioma cell line H4. On observing similar impact on the viability in all the three cell lines, detailed studies were conducted with CA and its isomer/analog, trans-CA (TCA), and methoxy-CA (MCA) on U87 cells. The compounds exhibited equal potency when assessed at the cellular level in inhibiting U87 cells as well as at the molecular level, resulting in an increase in reactive oxygen species (ROS) and an increase in the apoptotic and multicaspase cell populations. To further characterize the key entities, protein profiling was performed with CA. The studies revealed differential regulation of entities that could be key to glioblastoma cell circuits such as downregulation of pyruvate kinase-PKM2, the key enzyme of the glycolytic pathway that is central to the Warburg effect. This allows for monitoring the levels of PKM2 after therapy using recently developed noninvasive technology employing PET [18F] DASA-23. Additionally, the observation of downregulation of phosphomevalonate kinase is significant as the brain tumor initiating cells (BTIC) are maintained by the metabolism occurring via the mevalonate pathway. Results from the current study, if translated in vivo, could provide additional efficacious treatment options for glioblastoma with minimal side effects.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Ketki Patil
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Elizabeth W Thompson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Shadi A Nakhai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Yoo Na Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Casey Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Crystal Bryant
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - S Balakrishna Pai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Aslebagh R, Whitham D, Channaveerappa D, Mutsengi P, Pentecost BT, Arcaro KF, Darie CC. Mass Spectrometry-Based Proteomics of Human Milk to Identify Differentially Expressed Proteins in Women with Breast Cancer versus Controls. Proteomes 2022; 10:36. [PMID: 36412635 PMCID: PMC9680319 DOI: 10.3390/proteomes10040036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
It is thought that accurate risk assessment and early diagnosis of breast cancer (BC) can help reduce cancer-related mortality. Proteomics analysis of breast milk may provide biomarkers of risk and occult disease. Our group works on the analysis of human milk samples from women with BC and controls to investigate alterations in protein patterns of milk that could be related to BC. In the current study, we used mass spectrometry (MS)-based proteomics analysis of 12 milk samples from donors with BC and matched controls. Specifically, we used one-dimensional (1D)-polyacrylamide gel electrophoresis (PAGE) coupled with nanoliquid chromatography tandem MS (nanoLC-MS/MS), followed by bioinformatics analysis. We confirmed the dysregulation of several proteins identified previously in a different set of milk samples. We also identified additional dysregulations in milk proteins shown to play a role in cancer development, such as Lactadherin isoform A, O-linked N-acetylglucosamine (GlcNAc) transferase, galactosyltransferase, recoverin, perilipin-3 isoform 1, histone-lysine methyltransferase, or clathrin heavy chain. Our results expand our current understanding of using milk as a biological fluid for identification of BC-related dysregulated proteins. Overall, our results also indicate that milk has the potential to be used for BC biomarker discovery, early detection and risk assessment in young, reproductively active women.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Danielle Whitham
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Devika Channaveerappa
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Panashe Mutsengi
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Brian T. Pentecost
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003-9298, USA
| | - Kathleen F. Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003-9298, USA
| | - Costel C. Darie
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
5
|
Jusu SM, Obayemi JD, Salifu AA, Nwazojie CC, Uzonwanne V, Odusanya OS, Soboyejo WO. Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer. Sci Rep 2020; 10:14188. [PMID: 32843673 PMCID: PMC7447811 DOI: 10.1038/s41598-020-71129-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is more aggressive and difficult to treat using conventional bulk chemotherapy that is often associated with increased toxicity and side effects. In this study, we encapsulated targeted drugs [A bacteria-synthesized anticancer drug (prodigiosin) and paclitaxel] using single solvent evaporation technique with a blend of FDA-approved poly lactic-co-glycolic acid-polyethylene glycol (PLGA_PEG) polymer microspheres. These drugs were functionalized with Luteinizing Hormone-Releasing hormone (LHRH) ligands whose receptors are shown to overexpressed on surfaces of TNBC. The physicochemical, structural, morphological and thermal properties of the drug-loaded microspheres were then characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Nuclear Magnetic Resonance Spectroscopy (NMR), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Results obtained from in vitro kinetics drug release at human body temperature (37 °C) and hyperthermic temperatures (41 and 44 °C) reveal a non-Fickian sustained drug release that is well-characterized by Korsmeyer-Peppas model with thermodynamically non-spontaneous release of drug. Clearly, the in vitro and in vivo drug release from conjugated drug-loaded microspheres (PLGA-PEG_PGS-LHRH, PLGA-PEG_PTX-LHRH) is shown to result in greater reductions of cell/tissue viability in the treatment of TNBC. The in vivo animal studies also showed that all the drug-loaded PLGA-PEG microspheres for the localized and targeted treatment of TNBC did not caused any noticeable toxicity and thus significantly extended the survival of the treated mice post tumor resection. The implications of this work are discussed for developing targeted drug systems to treat and prevent local recurred triple negative breast tumors after surgical resection.
Collapse
Affiliation(s)
- S M Jusu
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - J D Obayemi
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), 60 Prescott Street, Worcester, MA, 01605, USA
| | - A A Salifu
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), 60 Prescott Street, Worcester, MA, 01605, USA
| | - C C Nwazojie
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - V Uzonwanne
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - O S Odusanya
- Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Abuja, Nigeria
| | - W O Soboyejo
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), 60 Prescott Street, Worcester, MA, 01605, USA.
- Department of Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
6
|
Combinatorial Electrophoresis and Mass Spectrometry-Based Proteomics in Breast Milk for Breast Cancer Biomarker Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:451-467. [PMID: 31347064 DOI: 10.1007/978-3-030-15950-4_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Innovations in approaches for early detection and individual risk assessment of different cancers, including breast cancer (BC), are needed to reduce cancer morbidity and associated mortality. The assessment of potential cancer biomarkers in accessible bodily fluids provides a novel approach to identify the risk and/or onset of cancer. Biomarkers are biomolecules, such as proteins, that are indicative of an abnormality or a disease. Human milk is vastly underutilized biospecimen that offers the opportunity to investigate potential protein BC-biomarkers in young, reproductively active women. As a first step, we have examined the entire protein pattern in human milk samples from breastfeeding mothers with cancer, who were diagnosed either before or after milk donation, and from women without cancer, using mass spectrometry (MS)-based proteomics.
Collapse
|
7
|
Ani CJ, Obayemi JD, Uzonwanne VO, Danyuo Y, Odusanya OS, Hu J, Malatesta K, Soboyejo WO. A shear assay study of single normal/breast cancer cell deformation and detachment from poly-di-methyl-siloxane (PDMS) surfaces. J Mech Behav Biomed Mater 2018; 91:76-90. [PMID: 30544025 DOI: 10.1016/j.jmbbm.2018.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/25/2018] [Accepted: 11/12/2018] [Indexed: 02/01/2023]
Abstract
This paper presents the results of a combined experimental and analytical/computational study of viscoelastic cell deformation and detachment from poly-di-methyl-siloxane (PDMS) surfaces. Fluid mechanics and fracture mechanics concepts are used to model the detachment of biological cells observed under shear assay conditions. The analytical and computational models are used to compute crack driving forces, which are then related to crack extension during the detachment of normal breast cells and breast cancer cells from PDMS surfaces that are relevant to biomedical implants. The interactions between cells and the extracellular matrix, or the extracellular matrix and the PDMS substrate, are then characterized using force microscopy measurements of the pull-off forces that are used to determine the adhesion energies. Finally, fluorescence microscopy staining of the cytosketelal structures (actin, micro-tubulin and cyto-keratin), transmembrane proteins (vimentin) and the ECM structures (Arginin Glycine Aspartate - RGD) is used to show that the detachment of cells during the shear assay experiments occurs via interfacial cracking between (between the ECM and the cell membranes) with a high incidence of crack bridging by transmembrane vinculin structures that undergo pull-out until they detach from the actin cytoskeletal structure. The implications of the results are discussed for the design of interfaces that are relevant to implantable biomedical devices and normal/cancer tissue.
Collapse
Affiliation(s)
- C J Ani
- Department of Theoretical and Applied Physics, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory, Nigeria; Department of Physics, Salem University, Km 16, PMB 1060, Lokoja, Kogi State, Nigeria
| | - J D Obayemi
- Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA
| | - V O Uzonwanne
- Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA
| | - Y Danyuo
- Department of Mechanical Engineering, Ashesi University, Berekuso, Ghana; Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory, Nigeria
| | - O S Odusanya
- Advanced Biotechnology Laboratory, Sheda Science and Technology Complex, Abuja, Nigeria
| | - J Hu
- Princeton Institute for the Science and Technology of Materials (PRISM), and The Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - K Malatesta
- Princeton Institute for the Science and Technology of Materials (PRISM), and The Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - W O Soboyejo
- Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA; Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory, Nigeria; Advanced Biotechnology Laboratory, Sheda Science and Technology Complex, Abuja, Nigeria.
| |
Collapse
|
8
|
Aslebagh R, Channaveerappa D, Arcaro KF, Darie CC. Proteomics analysis of human breast milk to assess breast cancer risk. Electrophoresis 2018; 39:653-665. [PMID: 29193311 DOI: 10.1002/elps.201700123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
Detection of breast cancer (BC) in young women is challenging because mammography, the most common tool for detecting BC, is not effective on the dense breast tissue characteristic of young women. In addition to the limited means for detecting their BC, young women face a transient increased risk of pregnancy-associated BC. As a consequence, reproductively active women could benefit significantly from a tool that provides them with accurate risk assessment and early detection of BC. One potential method for detection of BC is biochemical monitoring of proteins and other molecules in bodily fluids such as serum, nipple aspirate, ductal lavage, tear, urine, saliva and breast milk. Of all these fluids, only breast milk provides access to a large volume of breast tissue, in the form of exfoliated epithelial cells, and to the local breast environment, in the form of molecules in the milk. Thus, analysis of breast milk is a non-invasive method with significant potential for assessing BC risk. Here we analyzed human breast milk by mass spectrometry (MS)-based proteomics to build a biomarker signature for early detection of BC. Ten milk samples from eight women provided five paired-groups (cancer versus control) for analysis of dysregulatedproteins: two within woman comparisons (milk from a diseased breast versus a healthy breast of the same woman) and three across women comparisons (milk from a woman with cancer versus a woman without cancer). Despite a wide range in the time between milk donation and cancer diagnosis (cancer diagnosis occurred from 1 month before to 24 months after milk donation), the levels of some proteins differed significantly between cancer and control in several of the five comparison groups. These pilot data are supportive of the idea that molecular analysis of breast milk will identify proteins informative for early detection and accurate assessment of BC risk, and warrant further research. Data are available via ProteomeXchange with identifier PXD007066.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Devika Channaveerappa
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Kathleen F Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
9
|
Repetto O, De Re V, De Paoli A, Belluco C, Alessandrini L, Canzonieri V, Cannizzaro R. Identification of protein clusters predictive of tumor response in rectal cancer patients receiving neoadjuvant chemo-radiotherapy. Oncotarget 2018; 8:28328-28341. [PMID: 28423701 PMCID: PMC5438653 DOI: 10.18632/oncotarget.16053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022] Open
Abstract
Preoperative neoadjuvant chemoradiotherapy (nCRT) is the gold standard in locally advanced rectal cancer, only 10–30% of patients achieving benefits. Currently, there is a need of a reliable selection of markers for the identification of poor or non-responders prior to therapy. In this work, we compared protein profiles before therapy of patients differing in their responses to nCRT to find novel predictive markers of response to therapy. Patients were grouped into 3 groups according to their tumor regression grading (TRG) after surgery: 'TRG 1–2′, good responders, 'TRG 3′ and 'TRG 4′, poor responders. Paired surgical specimens of rectal cancer and healthy (histologically confirmed) rectal tissues from 15 patients were analysed before nCRT by two dimensional difference in gel electrophoresis followed by mass spectrometry. Thirty spots were found as differentially expressed (p < 0.05). Among them, 3 spots (spots 471, 683 and 684) showed an increased amount of protein in poor responders compared with good responders, and they were more tumor associated compared with healthy tissues. Proteins of these spots were identified as fibrinogen ß chain fragment D, actin isoforms, B9 and B5 serpins, cathepsin D isoforms and peroxiredoxin-4. In an independent validation set of 20 rectal carcinomas we validated the increased fibrinogen ß chain abundance before nCRT in poor responders by immunoblotting. In conclusion, we propose a risk-stratification tool in predicting the response to nCRT treatment in rectal cancer based on the quantity of these proteins.
Collapse
Affiliation(s)
- Ombretta Repetto
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, Aviano, Italy
| | - Valli De Re
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, Aviano, Italy
| | - Antonino De Paoli
- Radiation Oncology, IRCCS CRO National Cancer Institute, Aviano, Italy
| | - Claudio Belluco
- Surgical Oncology, IRCCS CRO National Cancer Institute, Aviano, Italy
| | | | | | - Renato Cannizzaro
- Renato Cannizzaro, Gastroenterology, IRCCS CRO National Cancer Institute, Aviano, Italy
| |
Collapse
|