1
|
Peña-Enríquez R, Bermejo B, Pollán M, Díaz-Chacón A, Jerez Gilarranz Y, Ponce Lorenzo JJ, Fernández Aramburo A, Cantos Sánchez de Ibargüen B, Santaballa Bertrán A, Galve-Calvo E, Jiménez-Arranz Á, Fernández Y, Pérez ME, De La Cruz S, Anton-Torres A, Moreno F, Vidal-Losada MJ, López-Ceballos MH, Blancas I, Echarri MJ, Rincón R, Caballero R, Guerrero-Zotano Á, Guil-Luna S, de la Haba-Rodríguez J. Molecular characterization of pregnancy-associated breast cancer and insights on timing from GEICAM-EMBARCAM study. NPJ Breast Cancer 2025; 11:12. [PMID: 39922815 PMCID: PMC11807221 DOI: 10.1038/s41523-025-00718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/02/2025] [Indexed: 02/10/2025] Open
Abstract
Pregnancy-associated breast cancer (PABC), diagnosed during or shortly after pregnancy, is a challenging entity with an aggressive biology and poor prognosis. This study analyzed the clinicopathological characteristics and gene expression profile of 33 PABC and 26 non-PABC patients using the nCounter BC360 Panel (NanoString). Notably, PABC showed a higher prevalence of basal-like tumors than non-PABC (48.48% vs 15.38%, p = 0.012) and displayed 73 differentially expressed genes (e.g., DEPDC1, CCNA2, PSAT1, CDKN3, and FAM83D), enriched in DNA repair and cell proliferation pathways. Through the PPI network, we also identified a cluster of cell-cycle regulation genes like MYC, FOXM1, or PTEN. Interestingly, differences emerged when comparing patients diagnosed during gestation (PABC-GS) and the postpartum period (PABC-PP), with PABC-PP showing increased expression of immune-related genes, including PD-1, and greater immune cell infiltration (Tregs, macrophages, neutrophils, B-cells). These findings suggest an enhanced proliferative capacity and impaired DNA repair in PABC, and underscore the role of immune infiltration in postpartum cases; providing insights into its aggressive nature and potential targets.
Collapse
Affiliation(s)
- Regina Peña-Enríquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | - Begoña Bermejo
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Hospital Clínico Universitario de Valencia, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Marina Pollán
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, ISCIII, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP-ISCIII), Madrid, Spain
| | - Alejandra Díaz-Chacón
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | - Yolanda Jerez Gilarranz
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERONC, Madrid, Spain
| | - José J Ponce Lorenzo
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Oncology Department, Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Antonio Fernández Aramburo
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Hospital General Universitario de Albacete, Albacete, Spain
| | - Blanca Cantos Sánchez de Ibargüen
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Department of Medical Oncology, Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Ana Santaballa Bertrán
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Medical Oncology Department, La Fe Health Research Institute (IIS La Fe), La Fe University, Valencia, Spain
| | - Elena Galve-Calvo
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Medical Oncology Service, Hospital Universitario Basurto (OSI Bilbao-Basurto), Bilbao, Spain
| | - Álvaro Jiménez-Arranz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | - Yolanda Fernández
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Medical Oncology, Hospital Central de Asturias, Oviedo, Spain
| | - María Eva Pérez
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Medical Oncology Department, Hospital Universitario A Coruña (HUAC), A Coruña, Spain
| | - Susana De La Cruz
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Antonio Anton-Torres
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Instituto Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Fernando Moreno
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - María Jesús Vidal-Losada
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Isabel Blancas
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Hospital Universitario Clínico San Cecilio, Granada, Spain
- Department of Medicine, University of Granada, Granada, Spain
- Instituto de Investigacion Biosanitaria de Granada (ibs.Granada), Granada, Spain
| | - María José Echarri
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Hospital Universitario Severo Ochoa, Leganes, Spain
| | - Raúl Rincón
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
| | | | - Ángel Guerrero-Zotano
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain
- Instituto Valenciano de Oncología (IVO), Valencia, Spain
| | - Silvia Guil-Luna
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.
- Oncology Biomedical Research National Network (CIBERONC-ISCIII), Madrid, Spain.
- Department of Anatomy and Comparative Pathology and Toxicology, University of Cordoba, Córdoba, España.
| | - Juan de la Haba-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain.
- Oncology Biomedical Research National Network (CIBERONC-ISCIII), Madrid, Spain.
| |
Collapse
|
2
|
Yu S, Zhao Y, Liu Q, Wang J, Fu J, Li R, Yuan Y, Yan X, Su J. Spermidine synthase promotes liver cancer progression in a paracrine manner by altering the macrophage immunometabolic state. Bioorg Chem 2025; 155:108135. [PMID: 39793221 DOI: 10.1016/j.bioorg.2025.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/03/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
PURPOSE Understanding the molecular mechanisms of adaptive regulation in the tumor microenvironment is crucial for precision therapy in hepatocellular carcinoma (HCC). We hypothesized that cargo proteins carried by extracellular vesicles (EVs) released in a hypoxic microenvironment might promote HCC progression by remodeling tumor-associated macrophages (TAMs). METHODS EV protein analysis by label-free proteomics mass spectrometry of HCC cell lines of different tumor grades was performed. The promotional effect if spermidine synthase(SRM) on M2 polarized TAMs was further investigated using various biological approaches. RESULTS SRM expression was positively correlated with liver cancer progression in HCC cell lines, liver cancer samples, and nude mouse models. In a mouse model, SRM expression was positively correlated with TAM infiltration and liver cancer progression. Pan-cancer dataset analysis confirmed that SRM overexpression in HCC tumors is correlated with poor patient prognosis. However, a hypoxic microenvironment is an internal driving factor for exosomal SRM that participates in microenvironmental modifications. Moreover, we defined a hitherto unknown pattern of microenvironmental crosstalk involving SRM in EVs, whereby macrophages complete the phenotypic fate of M2 tumor-associated macrophages through SRM uptake. CONCLUSION SRM regulation within the immune microenvironment is metabolically driven. By upregulating spermidine, which serves as a substrate for eIF5A hypusination, excessive oxidative phosphorylation (OXPHOS) assembly is achieved. This, in turn, leads to the expression of immunosuppressive marker molecules and ultimately promotes liver cancer progression. SRM, which is enriched in the EVs of HCC cells under hypoxic conditions, acts as a potent regulator linking polyamine and energy metabolism in TAMs, thereby promoting liver cancer progression.
Collapse
Affiliation(s)
- Sihang Yu
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Qingqing Liu
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Jian Wang
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Jiaying Fu
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Runyuan Li
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Yuan Yuan
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China
| | - Jing Su
- Key Laboratory of Pathobiology Ministry of Education Department of Pathophysiology College of Basic Medical Sciences Jilin University Changchun China.
| |
Collapse
|
3
|
Huang L, Yang J, Zhu J, Wang H, Dong L, Guo Y, Chen Y, Zhang F, Xu DJ, Ou L, Xu JR, Guan L, Doan QD, Fan AY, Zhong W, Ko J, Liang C, Herlyn M, Guo W, Xu X, Liu S. Programmed Death Ligand-1 in Melanoma and Extracellular Vesicles Promotes Local and Regional Immune Suppression through M2-like Macrophage Polarization. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:306-320. [PMID: 39481645 PMCID: PMC11773617 DOI: 10.1016/j.ajpath.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
Tumor-associated macrophages (TAMs) play dual roles (both pro- and antitumor) in tumor progression. TAMs induce programmed death ligand-1 (PD-L1) expression in cancer cells. However, the regulatory effects of PD-L1 in melanoma cells on TAM phenotypical switching remain underexplored. Herein, CD163 and MRC1 levels were significantly elevated in metastatic melanomas compared with those in primary melanomas, correlating with CD274 expression and predicted patient clinical outcomes. To study the mechanisms regulating M2-like polarization, PD-L1 was knocked out in both YUMM1.7 and B16-F10 melanoma cells. Knocking out PD-L1 (PD-L1KO) in melanoma resulted in a decelerated in vivo growth rate, accompanied by a significantly increased M1/M2 ratio, more dendritic cells, and enhanced activation of CD8+ T cells compared with wild-type (WT) melanoma cells. These alterations were associated with decreased expression of M2-associated chemokines (CCL2, CCL3, and CXCL2) and cytokines (IL6, IL10, and TGFB1). Mice harboring PD-L1KO melanomas exhibited elevated levels of CD8+ T cells in both the tumor-draining lymph nodes and the bloodstream compared with mice with PD-L1WT melanomas. Treatment with extracellular vesicles (EVs) derived from PD-L1KO melanoma resulted in a reduced tumor growth rate and fewer M2-like macrophages in the tumors compared with EVs from PD-L1WT melanomas. Therefore, these data suggest that PD-L1 in melanoma and melanoma-derived EVs induces M2-like polarization, contributing to local and regional immune suppression.
Collapse
Affiliation(s)
- Lili Huang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jingbo Yang
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jinjin Zhu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Huaishan Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Liyun Dong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yeye Guo
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yeqing Chen
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Feng Zhang
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David J Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lingling Ou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jaiden R Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lei Guan
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Quoc D Doan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Y Fan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wenqun Zhong
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jina Ko
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Wei Guo
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
4
|
Wang X, Yang K, Yang B, Wang R, Zhu Y, Pan T. ANKRD22 participates in the proinflammatory activities of macrophages in the colon cancer tumor microenvironment. Cancer Immunol Immunother 2025; 74:86. [PMID: 39891675 PMCID: PMC11787111 DOI: 10.1007/s00262-024-03930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/21/2024] [Indexed: 02/03/2025]
Abstract
Tumor-associated macrophages (TAMs) are among the most common types of immune cells in the colon cancer microenvironment. Reprogramming M2-type TAMs with immunosuppressive functions into M1-type TAMs with proinflammatory functions is a novel strategy for reshaping the tumor microenvironment (TME) and enhancing the efficacy of immunotherapy in colon cancer. However, the key molecules and mechanisms underlying TAM polarization require further clarification. Our previous study suggested that ANKRD22 may play a role in regulating the functional state transition of macrophages. However, the expression levels of ANKRD22 in colon TAMs and its specific effects on tumor proliferation remain unclear. In the present study, we observed elevated ANKRD22 expression in M1-type TAMs. The expression level of ANKRD22 was positively correlated with the survival period of patients with colon cancer and with the infiltration abundance of M1-type TAMs, and ANKRD22 expression was negatively correlated with the infiltration abundance of M2-type TAMs. A significant decrease in ANKRD22 expression in macrophages cocultured with colon cancer cell culture supernatant as well as in macrophages directly derived from colorectal cancer tissues was observed. Single-cell RNA sequencing, spatial transcriptomic studies, and subcutaneous xenograft experiments in mice revealed that Ankrd22 silencing altered the subtype distribution of macrophages, attenuated their proinflammatory activity, and enhanced their protumor activity. Additionally, we identified a small-molecule ANKRD22 upregulator that could aid in the development of novel therapeutics targeting TAM remodeling.
Collapse
Affiliation(s)
- Xiaoying Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Keqing Yang
- Internal Medicine, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, People's Republic of China
| | - Bin Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Rui Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.
| | - Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Panahizadeh R, Panahi P, Asghariazar V, Makaremi S, Noorkhajavi G, Safarzadeh E. A literature review of recent advances in gastric cancer treatment: exploring the cross-talk between targeted therapies. Cancer Cell Int 2025; 25:23. [PMID: 39856676 PMCID: PMC11762578 DOI: 10.1186/s12935-025-03655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) ranks fourth in global mortality rates and fifth in prevalence, making it one of the most common cancers worldwide. Recent clinical studies have highlighted the potential of immunotherapies as a promising approach to treating GC. This study aims to shed light on the most impactful therapeutic strategies in the context of GC immunotherapy, highlighting both established and emerging approaches. MAIN BODY This review examines over 160 clinical studies conducted globally, focusing on the effectiveness of various immunotherapy modalities, including cancer vaccines, adoptive cell therapy, immune checkpoint inhibitors (ICIs), and monoclonal antibodies (mAbs). A comprehensive search of peer-reviewed literature was performed using databases such as Web of Science, PubMed, and Scopus. The selection criteria included peer-reviewed articles published primarily within the last 10 years, with a focus on studies that provided insights into targeted therapies and their mechanisms of action, clinical efficacy, and safety profiles. The findings indicate that these immunotherapy strategies can enhance treatment outcomes for GC, aligning with current treatment guidelines. ICIs like pembrolizumab and nivolumab have shown significant survival benefits in specific GC subgroups. Cancer vaccines and CAR-T cell therapies demonstrate potential, while mAbs targeting HER2 and VEGFR pathways enhance outcomes in combination regimens. We discuss the latest advancements and challenges in targeted therapy and immunotherapy for GC. Given the evolving nature of this field, this research emphasizes significant evidence-based therapies and those currently under evaluation rather than providing an exhaustive overview. Challenges include resistance mechanisms, immunosuppressive tumor environments, and inconsistent results from combination therapies. Biomarker-driven approaches and further research into emerging modalities like CAR-T cells and cancer vaccines are critical for optimizing treatments. CONCLUSIONS Immunotherapy is reshaping GC management by improving survival and quality of life. Ongoing research and clinical evaluations are crucial for refining personalized and effective therapies.
Collapse
Affiliation(s)
- Reza Panahizadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Padideh Panahi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shima Makaremi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ghasem Noorkhajavi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 85991-56189, Iran.
| |
Collapse
|
6
|
Schaub J, Tang SC. Beyond checkpoint inhibitors: the three generations of immunotherapy. Clin Exp Med 2025; 25:43. [PMID: 39888507 PMCID: PMC11785663 DOI: 10.1007/s10238-024-01546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025]
Abstract
Anti-tumor immunotherapy was rediscovered and rejuvenated in the last two decades with the discovery of CTLA-4, PD-1 and PD-L1 and the roles in inhibiting immune function and tumor evasion of anti-tumor immune response. Following the approval of the first checkpoint inhibitor ipilimumab against CTLA-4 in melanoma in 2011, there has been a rapid development of tumor immunotherapy. Furthermore, additional positive and negative molecules among the T-cell regulatory systems have been identified that that function to fine tune the stimulatory or inhibitory immune cells and modulate their functions (checkpoint modulators). Many strategies are being explored to target macrophages, NK-cells, cytotoxic T-cells, fibroblasts, endothelial cells, cytokines and molecules involved in tumor tolerance and microbiome. Similar to agents that target checkpoint modulators, these newer targets have the potential to synergize with other classes of immunotherapeutic agents and importantly may overcome the resistance to other immunotherapies. In order to better understand the mechanism of action of all major classes of immunotherapy, design clinical trials taking advantage of different types of immunotherapeutic agents and use them rationally in clinical practice either in combination or in sequence, we propose the group all immunotherapies into three generations: with CTLA-4, PD-1 and PD-L1 inhibitors as the first generation, agents that target the checkpoint modulators as the second generation, while those that target TME as the third generation. This review discusses all three generations of immunotherapy in oncology, their mechanism of actions, major clinical trial results and indication, strategies for future clinical trial designs and rational clinical applications.
Collapse
Affiliation(s)
- John Schaub
- Woodlands Medical Specialists, 4724 N Davis Hwy, Pensacola, FL, 32503, USA
| | - Shou-Ching Tang
- LSU-LCMC Cancer Center, LSU School of Medicine, 1700 Tulane Avenue, Room 510, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Hakala S, Hämäläinen A, Sandelin S, Giannareas N, Närvä E. Detection of Cancer Stem Cells from Patient Samples. Cells 2025; 14:148. [PMID: 39851576 PMCID: PMC11764358 DOI: 10.3390/cells14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
The existence of cancer stem cells (CSCs) in various tumors has become increasingly clear in addition to their prominent role in therapy resistance, metastasis, and recurrence. For early diagnosis, disease progression monitoring, and targeting, there is a high demand for clinical-grade methods for quantitative measurement of CSCs from patient samples. Despite years of active research, standard measurement of CSCs has not yet reached clinical settings, especially in the case of solid tumors. This is because detecting this plastic heterogeneous population of cells is not straightforward. This review summarizes various techniques, highlighting their benefits and limitations in detecting CSCs from patient samples. In addition, methods designed to detect CSCs based on secreted and niche-associated signaling factors are reviewed. Spatial and single-cell methods for analyzing patient tumor tissues and noninvasive techniques such as liquid biopsy and in vivo imaging are discussed. Additionally, methods recently established in laboratories, preclinical studies, and clinical assays are covered. Finally, we discuss the characteristics of an ideal method as we look toward the future.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Närvä
- Institute of Biomedicine and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (S.H.); (A.H.); (S.S.); (N.G.)
| |
Collapse
|
8
|
Chen ZG, Xie YT, Yang C, Xiao T, Chen SY, Wu JH, Guo QN, Gao L. M2 macrophages secrete CCL20 to regulate iron metabolism and promote daunorubicin resistance in AML cells. Life Sci 2025; 361:123297. [PMID: 39645162 DOI: 10.1016/j.lfs.2024.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Chemotherapy resistance is a significant clinical challenge in the treatment of leukemia. M2 macrophages have been identified as key contributors to the development of chemotherapy resistance in cancer, yet the precise mechanisms by which macrophages regulate this resistance remain elusive. Our study has identified CCL20 as a pivotal factor in the promotion of chemoresistance in AML cells by M2 macrophages. The chemotherapeutic agent daunorubicin induces a marked increase in ROS and lipid peroxidation levels within AML cells. This is accompanied by the inhibition of the SLC7A11/GCL/GPX4 signaling axis, elevated levels of intracellular free iron, disrupted iron metabolism, and consequent mitochondrial damage, ultimately leading to ferroptosis. Notably, CCL20 enhances the ability of AML cells to maintain iron homeostasis by upregulating SLC7A11 protein activity, mitigating mitochondrial damage, and inhibiting ferroptosis, thereby contributing to chemotherapy resistance. Furthermore, in vivo experiments demonstrated that blocking CCL20 effectively restores the sensitivity of AML cells to daunorubicin chemotherapy. Collectively, these findings underscore the complex interplay between M2 macrophages, CCL20 signaling, and chemotherapy resistance in AML, highlighting potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- Zhi-Gang Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Yu-Tong Xie
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Chao Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Tong Xiao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Si-Yu Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Jun-Hong Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Qiao-Nan Guo
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037.
| |
Collapse
|
9
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Ju M, Tong W, Bi J, Zeng X, Qi A, Sun M, Wen J, Zhao L, Wei M. Hydrogen Sulfide Promotes TAM-M1 Polarization through Activating IRE-1α Pathway via GRP78 S-Sulfhydrylation to against Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413607. [PMID: 39755930 DOI: 10.1002/advs.202413607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Indexed: 01/06/2025]
Abstract
Hydrogen sulfide (H2S)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC). Therefore, the aim is to investigate whether protein S-sulfhydration can regulate TAM reprogramming and its underlying mechanism in BC. The results showed that in BC, the CTH-H2S axis is positively correlated with the presence of an anti-tumor phenotype in TAMs. NaHS, as an H2S donor, repolarized TAMs into M1 macrophages to block the tumor-promoting activities of TAMs both in vitro and in vivo. Mechanistically, H2S-mediated S-sulfhydration of the protein chaperone glucose-regulated-protein 78 (GRP78) induced endoplasmic reticulum transmembrane protein kinase-1α (IRE-1α) dissociation from GRP78, which enhanced the phosphatase activity of IRE-1α itself in BC-TAMs, while the Cys420 site mutation of GRP78 interfered with these effects. Collectively, GRP78 S-sulfhydrylation mediated by H2S at the Cys420 residue decreased the tumor burden and inhibited lung metastasis of BC through reprograming TAMs via activating the IRE-1α pathway, indicating that targeting GRP78 S-sulfhydration represents a promising intervention for TAM-M1 repolarization in BC.
Collapse
Affiliation(s)
- Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang, 110122, China
| | - Weiwei Tong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang, 110122, China
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110122, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang, 110122, China
| | - Xianxin Zeng
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang, 110122, China
| | - Aoshuang Qi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang, 110122, China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang, 110122, China
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110122, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang, 110122, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang, 110122, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| |
Collapse
|
11
|
Liu J, Lu J, Wu L, Zhang T, Wu J, Li L, Tai Z, Chen Z, Zhu Q. Targeting tumor-associated macrophages: Novel insights into immunotherapy of skin cancer. J Adv Res 2025; 67:231-252. [PMID: 38242529 PMCID: PMC11725115 DOI: 10.1016/j.jare.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The incidence of skin cancer is currently increasing, and conventional treatment options inadequately address the demands of disease management. Fortunately, the recent rapid advancement of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has ushered in a new era for numerous cancer patients. However, the efficacy of immunotherapy remains suboptimal due to the impact of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs), a major component of the TME, play crucial roles in tumor invasion, metastasis, angiogenesis, and immune evasion, significantly impacting tumor development. Consequently, TAMs have gained considerable attention in recent years, and their roles have been extensively studied in various tumors. However, the specific roles of TAMs and their regulatory mechanisms in skin cancer remain unclear. AIM OF REVIEW This paper aims to elucidate the origin and classification of TAMs, investigate the interactions between TAMs and various immune cells, comprehensively understand the precise mechanisms by which TAMs contribute to the pathogenesis of different types of skin cancer, and finally discuss current strategies for targeting TAMs in the treatment of skin cancer. KEY SCIENTIFIC CONCEPTS OF OVERVIEW With a specific emphasis on the interrelationship between TAMs and skin cancer, this paper posits that therapeutic modalities centered on TAMs hold promise in augmenting and harmonizing with prevailing clinical interventions for skin cancer, thereby charting a novel trajectory for advancing the landscape of immunotherapeutic approaches for skin cancer.
Collapse
Affiliation(s)
- Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Ling Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Junchao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| |
Collapse
|
12
|
Ezaki A, Yano H, Pan C, Fujiwara Y, Anami T, Ibe Y, Ozaki Y, Nishizawa H, Motoshima T, Yatsuda J, Watanabe H, Maruyama T, Takeo T, Kamba T, Komohara Y. Immunohistochemical Analysis of a1-Acid Glycoprotein and Tumor Associated Macrophages in Clear Cell Renal Cell Carcinoma. Cancer Genomics Proteomics 2025; 22:103-111. [PMID: 39730181 PMCID: PMC11696322 DOI: 10.21873/cgp.20491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND/AIM α1-Acid glycoprotein (AGP), also known as orosomucoid, is an acute-phase protein that has been found increased in plasma of cancer patients. This study investigates the role of AGP expression in clear cell renal cell carcinoma (ccRCC) and its association with clinical outcomes. MATERIALS AND METHODS We investigated the correlation between AGP levels and the prognosis of ccRCC through an analysis of The Cancer Genome Atlas (TCGA) database. To examine AGP expression and its clinicopathological associations, immunostaining was performed on paraffin-embedded tissue samples of 92 ccRCC cases. RESULTS AGP expression was found to be higher in RCC cell lines compared to normal renal epithelial cells. Analysis of the TCGA dataset showed that patients with AGP gene expression had significantly worse overall survival. However, AGP expression was not correlated with age, sex, or cancer stage. A mouse monoclonal antibody against AGP was generated. This antibody reacted with human and mouse hepatocytes, but not in AGP-deficient mice. From 92 examined ccRCC cases, AGP protein expression was detected in 89 cases, with only 3 being negative. AGP expression levels did not correlate with clinicopathological factors, such as age, tumor size, or nuclear grade. CD14, a receptor of AGP, was found to be expressed in Iba1-positive monocytes and tumor-associated macrophages (TAMs) but not in other cell types like lymphocytes or cancer cells. No significant correlation was found between AGP expression and the number of Iba1-positive cells in ccRCC tissues. Iba1-positive cells were correlated with Fuhrman grade, and patients with ≥30% Iba1-positive cells were, on average, significantly younger and had more aggressive tumor. CONCLUSION AGP expression is linked to poorer survival in ccRCC, but its association with immune cell infiltration (via Iba1-positive cells) is unclear.
Collapse
Affiliation(s)
- Ayano Ezaki
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiki Anami
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Ibe
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Youjiro Ozaki
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidekazu Nishizawa
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takanobu Motoshima
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Yatsuda
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Watanabe
- Department of Clinical Pharmacy and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan;
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
13
|
Mukherjee AK, Dutta S, Singh A, Sharma S, Roy SS, Sengupta A, Chatterjee M, Vinayagamurthy S, Bagri S, Khanna D, Verma M, Soni D, Budharaja A, Bhisade SK, Anand V, Perwez A, George N, Faruq M, Gupta I, Sabarinathan R, Chowdhury S. Telomere length sensitive regulation of interleukin receptor 1 type 1 (IL1R1) by the shelterin protein TRF2 modulates immune signalling in the tumour microenvironment. eLife 2024; 13:RP95106. [PMID: 39728924 PMCID: PMC11677240 DOI: 10.7554/elife.95106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.
Collapse
Affiliation(s)
- Ananda Kishore Mukherjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Subhajit Dutta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ankita Singh
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Shalu Sharma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Shuvra Shekhar Roy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Megha Chatterjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Soujanya Vinayagamurthy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Divya Khanna
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Meenakshi Verma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Dristhi Soni
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | | | - Vivek Anand
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Ahmad Perwez
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Nija George
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Mohammed Faruq
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | | | - Radhakrishnan Sabarinathan
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Trivedi School of Biosciences, Ashoka UniversitySonepatIndia
| |
Collapse
|
14
|
Nurhayati R, Rizka A, Rumende CM, Sutandyo N, Hanafi A, Wahyudi ER, Shatri H, Lubis AM, Yunir E, Firdaus M, Prayitno YH, Taqiyya NN. Functional status, lymphocyte-to-monocyte ratio, and platelet-to-lymphocyte ratio as prognostic factors of one-year survival rate in elderly patients with advanced-stage non-small cell lung cancer. Cancer Treat Res Commun 2024; 42:100859. [PMID: 39729931 DOI: 10.1016/j.ctarc.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND AND AIM Non-small cell lung cancer (NSCLC) is the most common lung cancer found in elderly patients. Aging and chronic inflammation are related to its pathogenesis. Functional status, lymphocyte-to-monocyte ratio and platelet-to-lymphocyte ratio describe a chronic inflammation and correlate to the survival of older adults with advanced-stage (IIIB-IV) NSCLC. This study aims to determine functional status, lymphocyte-to-monocyte ratio and platelet-to-lymphocyte ratio as prognostic factors to 1-year survival in elderly patients with NSCLC stage IIIB-IV. METHODS Survival analysis with a cohort retrospective study is conducted on elderly patients with NSCLC stage IIIB-IV in Dharmais National Cancer Center Hospital between January 2020 and June 2022. Medical records were collected, comprising complete blood count prior to chemotherapy or radiotherapy, assessment of functional status through the Barthel Index for Activities of Daily Living (ADL), and 1-year survival post-diagnosis. Factors potentially influencing outcomes included diabetes mellitus, anemia, chronic obstructive pulmonary disease, and chronic kidney disease. Statistical analyses were performed using SPSS 20.0, employing the log-rank method for bivariate analysis and Cox regression for multivariate analysis. RESULTS In a cohort of 108 patients, the majority were aged 60-69 years (74.1 %), male (66.7 %), diagnosed at stage IV (80.5 %), and with adenocarcinoma subtype (75.0 %). Significant correlations were observed between the lymphocyte-to-monocyte ratio and platelet-to-lymphocyte ratio with the 1-year survival rate in elderly patients with stage IIIB-IV NSCLC (p = 0.015 and p = 0.001, respectively). Functional status did not show a significant correlation with 1-year survival overall (p = 0.540), but significant correlations were noted in patients receiving chemotherapy (p = 0.044) and radiotherapy (p = 0.009). CONCLUSION The lymphocyte-to-monocyte ratio and platelet-to-lymphocyte ratio provide significant prognostic insights regarding 1-year survival in elderly patients diagnosed with stage IIIB-IV non-small cell lung cancer (NSCLC). In contrast, the functional status of these patients does not demonstrate a significant correlation with one-year survival.
Collapse
Affiliation(s)
- Ratna Nurhayati
- Dharmais National Cancer Center Hospital, Jakarta, Indonesia; Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Aulia Rizka
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Cipto Mangunkusumo National Central Public Hospital, Jakarta, Indonesia.
| | - Cleopas Martin Rumende
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Cipto Mangunkusumo National Central Public Hospital, Jakarta, Indonesia.
| | - Noorwati Sutandyo
- Dharmais National Cancer Center Hospital, Jakarta, Indonesia; Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Arif Hanafi
- Dharmais National Cancer Center Hospital, Jakarta, Indonesia.
| | - Edy Rizal Wahyudi
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Cipto Mangunkusumo National Central Public Hospital, Jakarta, Indonesia.
| | - Hamzah Shatri
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Cipto Mangunkusumo National Central Public Hospital, Jakarta, Indonesia.
| | - Anna Mira Lubis
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Cipto Mangunkusumo National Central Public Hospital, Jakarta, Indonesia.
| | - Em Yunir
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Cipto Mangunkusumo National Central Public Hospital, Jakarta, Indonesia.
| | - Muhammad Firdaus
- Ministry of Health of the Republic of Indonesia, Jakarta, Indonesia.
| | | | | |
Collapse
|
15
|
Song Z, Chen H, Wang X, Zhang Z, Li H, Zhao H, Liu Y, Han Q, Zhang J. Napabucasin-loaded PLGA nanoparticles trigger anti-HCC immune responses by metabolic reprogramming of tumor-associated macrophages. J Transl Med 2024; 22:1125. [PMID: 39707412 DOI: 10.1186/s12967-024-05917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND JAK/STAT3 is one of the critical signaling pathways involved in the occurrence and development of hepatocellular carcinoma (HCC). BBI608 (Napabucasin), as a novel small molecule inhibitor of STAT3, has shown previously excellent anti-HCC effects in vitro and in mouse models. However, low bioavailability, high cytotoxicity and other shortcomings limit its clinical application. In this study, PLGA was selected to prepare Napabucasin PLGA nanoparticles (NPs) by solvent evaporation method, overcoming these limitations and improving the passive targeting effect that nanoparticle mediated. Base on this, we systematically evaluated the anti-HCC effect of Napabucasin-PLGA NPs and explored the underlying mechanisms. METHODS Napabucasin-PLGA NPs were prepared by solvent evaporation method. CCK-8 assay, Annexin V/PI double staining, RT-qPCR, colony formation assay, and Western blotting were performed to evaluate the anti-HCC effect of Napabucasin-PLGA NPs in vitro. Proliferation assay and migration assay were used to detect the effects of Napabucasin-PLGA NPs-treated HCC-TAMs on tumor biological characteristics of HCC cells. Flow cytometry was used to detect anti-HCC immune responses induced by Napabucasin-PLGA NPs in vivo. RESULTS Our results demonstrated that Napabucasin-PLGA NPs could improve the bioavailability of Napabucasin and enhance Napabucasin-mediated the anti-HCC effects in vitro and in vivo with no significant drug toxicity. In addition to the direct inhibitory effects on the tumor biological characteristics of HCC cells, Napabucasin-PLGA NPs could promote the polarization of macrophages from tumor-promoting M2-type to anti-tumor M1-type, improving the tumor immune microenvironment and augmenting T cell-mediated anti-tumor responses. The underlining mechanisms showed Napabucasin-PLGA NPs suppressed the STAT3/FAO signaling axis in HCC-induced tumor-associated macrophages (TAMs). CONCLUSIONS These findings demonstrated Napabucasin-PLGA NPs is a potential therapeutic candidate for HCC, and provided a new theoretical and experimental basis for further development and clinical application of Napabucasin.
Collapse
Affiliation(s)
- Zhenwei Song
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hongfei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xueyao Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
16
|
Tang S, Tang R, Chen G, Zhang D, Lin K, Yang H, Fu J, Guo Y, Lin F, Dong X, Huang T, Kong J, Yin X, Ge A, Lin Q, Wu M, Liu X, Zeng Y, Cai Z. Personalized neoantigen hydrogel vaccine combined with PD-1 and CTLA-4 double blockade elicits antitumor response in liver metastases by activating intratumoral CD8 +CD69 + T cells. J Immunother Cancer 2024; 12:e009543. [PMID: 39694701 DOI: 10.1136/jitc-2024-009543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Liver metastasis is highly aggressive and immune tolerant, and lacks effective treatment strategies. This study aimed to develop a neoantigen hydrogel vaccine (NPT-gels) with high clinical feasibility and further investigate its efficacy and antitumor molecular mechanisms in combination with immune checkpoint inhibitors (ICIs) for the treatment of liver metastases. METHODS The effects of liver metastasis on survival and intratumor T-cell subpopulation infiltration in patients with advanced tumors were investigated using the Surveillance, Epidemiology, and End Results Program (SEER) database and immunofluorescence staining, respectively. NPT-gels were prepared using hyaluronic acid, screened neoantigen peptides, and dual clinical adjuvants [Poly(I:C) and thymosin α-1]. Then, the efficacy and corresponding antitumor molecular mechanisms of NPT-gels combined with programmed death receptor 1 and cytotoxic T-lymphocyte-associated protein 4 double blockade (PCDB) for the treatment of liver metastases were investigated using various preclinical liver metastasis models. RESULTS Liver metastases are associated with poorer 5-year overall survival, characterized by low infiltration of cytotoxic CD8+ T cells and high infiltration of regulatory T cells (Tregs). NPT-gels overcame the challenges faced by conventional neoantigen peptide vaccines by sustaining a durable, high-intensity immune response with a single injection and significantly improving the infiltration of neoantigen-specific T-cell subpopulations in different mice subcutaneous tumor models. Importantly, NPT-gels further combined with PCDB could enhance neoantigen-specific T-cell infiltration and effectively unlock the immunosuppressive microenvironment of liver metastases, showing superior antitumor efficacy and inducing long-term immune memory in various preclinical liver metastasis models without obvious toxicity. Mechanistically, the combined strategy can inhibit Tregs, induce the production and infiltration of neoantigen-specific CD8+CD69+ T cells to enhance the immune response, and potentially elicit antigen-presenting effects in Naïve B_Ighd+ cells and M1-type macrophages. CONCLUSIONS This study demonstrated that NPT-gels combined with PCDB could exert a durable and powerful antitumor immunity by enhancing the recruitment and activation of CD8+CD69+ T cells, which supports the rationale and clinical translation of this combination strategy and provides important evidence for further improving the immunotherapy efficacy of liver metastases in the future.
Collapse
Affiliation(s)
- Shichuan Tang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The First Clinical Medical College of Fujian Medical University, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Ruijing Tang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Kongying Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Huan Yang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Jun Fu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Yutong Guo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Fangzhou Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Xiuqing Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Tingfeng Huang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The First Clinical Medical College of Fujian Medical University, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Jie Kong
- Department of Hepatobiliary, Heze Municipal Hospital, Heze, Shandong, P. R. China
| | - Xiaowei Yin
- Department of Pathology, Shanxian Central Hospital, Heze, Shandong, P. R. China
| | - Aimin Ge
- Department of Pathology, Heze Municipal Hospital, Heze, Shandong, P. R. China
| | - Qizhu Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The First Clinical Medical College of Fujian Medical University, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| |
Collapse
|
17
|
Shen H, Zuo F. Prognostic role of systemic inflammation response index (SIRI) in patients with pancreatic cancer: a meta-analysis. Front Oncol 2024; 14:1465279. [PMID: 39723376 PMCID: PMC11668680 DOI: 10.3389/fonc.2024.1465279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Background The significance of the systemic inflammation response index (SIRI) in predicting the prognosis of patients with pancreatic cancer (PC) has been extensively explored; however, findings remain controversial. As such, this meta-analysis was performed to more precisely determine the utility of the SIRI in predicting PC prognosis. Methods A comprehensive literature search of the PubMed, Web of Science, Embase, and Cochrane Library databases for relevant studies, published up to June 25, 2024, was performed. The primary and secondary endpoints were overall survival (OS) and progression-free survival (PFS), respectively. The prognostic utility of the SIRI in predicting PC prognosis was estimated by calculating pooled hazard ratios (HRs) and corresponding 95% confidence intervals (CIs). Results Seven studies comprising 1160 patients were included in the present meta-analysis. Pooled findings revealed that elevated SIRI was as a prominent prognostic marker of OS (HR 2.40 [95% CI 1.88-3.05]; p<0.001) and PFS (HR 1.95 [95% CI 1.19-3.21]; p=0.008) in patients diagnosed with PC. According to subgroup analysis, the SIRI remained an outstanding prognostic marker for OS, irrespective of region, sample size, study center, study design, TNM stage, cancer type, cut-off value, treatment, or survival analysis type (all p<0.05). Moreover, based on subgroup analysis, the SIRI demonstrated significant utility in predicting PFS, irrespective of region and threshold value (p<0.05). Conclusion Results of the present meta-analysis revealed that an increased SIRI significantly predicted OS and PFS in patients diagnosed with PC. Considering its cost-effectiveness and availability, the SIRI may be a promising biomarker for predicting prognosis in patients with PC.
Collapse
Affiliation(s)
- Huifen Shen
- Department of Neurology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Fei Zuo
- Department of Gastroenterology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
18
|
Xu Q, Chen X, Ma Z, Zhong H, Feng G, Gu S. Exosomal ETV4 Derived From M2 Macrophages Induces Growth, Glycolysis and Stemness in Hepatocellular Carcinoma by UpRegulating SULT2B1 Expression. Liver Int 2024. [PMID: 39639836 DOI: 10.1111/liv.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND M2 macrophage-derived exosomes have been identified to modulate hepatocellular carcinoma (HCC) progression. E-twenty-six (ETS) variant transcription factor 4 (ETV4) shows protumoral effects in HCC. Here, we aimed to probe whether ETV4 performed oncogenic effects on HCC by macrophage-derived exosomes and its associated mechanism. METHODS Exosomes were isolated from macrophages and co-cultured with HCC cells. qRT-PCR and western blotting were utilised for the detection of mRNA and protein. Cell survival was evaluated using EdU assay and flow cytometry. Glycolysis was determined by measuring the glucose uptake, lactate production, and ATP levels. Cell stemness was assessed by sphere formation and flow cytometry. The interaction between ETV4 and SULT2B1 (sulfotransferase family 2B member 1) was determined by a dual-luciferase reporter and chromatin immunoprecipitation assays. In vivo assay was performed by establishing mouse xenograft models. RESULTS ETV4 was highly expressed in the exosomes of M2 macrophages and could be internalised by HCC cells. ETV4 derived from M2 macrophage exosomes promoted HCC cell proliferation, glycolysis and stemness in vitro, and enhanced HCC growth in nude mice. Mechanistically, ETV4 interacted with SULT2B1 and promoted it transcription. SULT2B1 silencing suppressed HCC cell proliferation, glycolysis and stemness. In addition, exosomal ETV4 derived from M2 macrophage performed its effects by modulating SULT2B1. CONCLUSION ETV4 derived from M2 macrophage exosomes promoted HCC cell proliferation, glycolysis and stemness by interacting with SULT2B1, suggesting a novel insight into developing exosome-based therapy for HCC.
Collapse
Affiliation(s)
- Qiaodong Xu
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Xinyue Chen
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Zhiyan Ma
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Haibin Zhong
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Gengren Feng
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Songgang Gu
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| |
Collapse
|
19
|
Zhao H, Xu J, Zhong Y, He S, Hao Z, Zhang B, Liu Z, Zhou X. Mammary hydroxylated oestrogen activates the NLRP3 inflammasome in tumor-associated macrophages to promote breast cancer progression and metastasis. Int Immunopharmacol 2024; 142:113034. [PMID: 39226826 DOI: 10.1016/j.intimp.2024.113034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Breast cancer remains one of the primary causes of cancer-related death. An imbalance of oestrogen homeostasis and an inflammatory tumor microenvironment (TME) are vital risk factors for the progression and metastasis of breast cancer. Here, we showed that oestrogen homeostasis was disrupted both in breast cancer patients and in a transgenic MMTV-PyMT mouse model of breast cancer, and significant levels of hydroxylated oestrogen accumulated in the mammary tissues of these patients and mice. We also observed that tumor-associated macrophages (TAMs) were the main population of immune cells present in the breast TME. TAM-dependent tumor metastasis could be triggered by hydroxylated oestrogen via NLRP3 inflammasome activation and IL-1β production. Mechanistically, TAM-derived inflammatory cytokines induced the expression of matrix metalloproteinases (MMPs) in breast tumor cells, leading to breast tumor invasion and metastasis. Conceptually, our study reveals a previously unknown role of hydroxylated oestrogen in the reprogramming of the TME via NLRP3 inflammasome activation in TAMs, which ultimately facilitates breast cancer cells proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Han Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China; The Second Affiliated Hospital of Nanjing University of Chinese Medicine, 210017 Nanjing, China
| | - Jiahao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Ya'nan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Shiqing He
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Zhixiang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, 221009 Xuzhou, China
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China.
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
20
|
Zhang C, Ma HM, Wu S, Shen JM, Zhang N, Xu YL, Li CX, He P, Ge MK, Chu XL, Zhang YX, Zheng JK, Chen GQ, Shen SM. Secreted PTEN binds PLXDC2 on macrophages to drive antitumor immunity and tumor suppression. Dev Cell 2024; 59:3072-3088.e8. [PMID: 39197453 DOI: 10.1016/j.devcel.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
Loss of phosphatase and tensin homolog (PTEN) has been linked to an immunosuppressive tumor microenvironment, but its underlying mechanisms remain largely enigmatic. Here, we report that PTEN can be secreted by the transmembrane emp24 domain-containing protein 10 (TMED10)-channeled protein secretion pathway. Inhibiting PTEN secretion from tumor cells contributes to immunosuppression and impairs the tumor-suppressive role of PTEN, while intratumoral injection of PTEN protein promotes antitumor immunity and suppresses tumor growth in mice. Mechanistically, extracellular PTEN binds to the plexin domain-containing protein 2 (PLXDC2) on macrophages, triggering subsequent activation of JAK2-STAT1 signaling, which switches tumor-associated macrophages (TAMs) from the immunosuppressive to inflammatory phenotype, leading to enhanced activation of CD8+ T and natural killer cells. Importantly, PTEN treatment also enhances the therapeutic efficacy of anti-PD-1 treatment in mice and reverses the immune-suppressive phenotype of patient-derived primary TAMs. These data identify a cytokine-like role of PTEN in immune activation and tumor suppression and demonstrate the therapeutic potential for extracellular administration of PTEN in cancer immunotherapy.
Collapse
Affiliation(s)
- Cheng Zhang
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan 571199, China
| | - Hong-Ming Ma
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Shuai Wu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Jia-Ming Shen
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Na Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Yi-Lu Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Cheng-Xiao Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Ping He
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Meng-Kai Ge
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Xi-Li Chu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Yu-Xue Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Jun-Ke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan 571199, China.
| | - Shao-Ming Shen
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China.
| |
Collapse
|
21
|
Zhang S, Cheng T. Prognostic and clinicopathological value of systemic inflammation response index (SIRI) in patients with breast cancer: a meta-analysis. Ann Med 2024; 56:2337729. [PMID: 38569199 PMCID: PMC10993763 DOI: 10.1080/07853890.2024.2337729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Many studies have explored the value of the systemic inflammation response index (SIRI) in predicting the prognosis of patients with breast cancer (BC); however, their findings remain controversial. Consequently, we performed the present meta-analysis to accurately identify the role of SIRI in predicting BC prognosis. METHODS PubMed, Embase, Cochrane Library, and Web of Science databases were comprehensively searched between their inception and February 10, 2024. The significance of SIRI in predicting overall survival (OS) and disease-free survival (DFS) in BC patients was analyzed by calculating pooled hazard ratios (HRs) and corresponding 95% confidence intervals (CIs). RESULTS Eight articles involving 2,997 patients with BC were enrolled in the present study. According to our combined analysis, a higher SIRI was markedly associated with dismal OS (HR = 2.43, 95%CI = 1.42-4.15, p < 0.001) but not poor DFS (HR = 2.59, 95%CI = 0.81-8.24, p = 0.107) in patients with BC. Moreover, based on the pooled results, a high SIRI was significantly related to T3-T4 stage (OR = 1.73, 95%CI = 1.40-2.14, p < 0.001), N1-N3 stage (OR = 1.61, 95%CI = 1.37-1.91, p < 0.001), TNM stage III (OR = 1.63, 95%CI = 1.34-1.98, p < 0.001), and poor differentiation (OR = 1.25, 95%CI = 1.02-1.52, p = 0.028). CONCLUSION According to our results, a high SIRI significantly predicted poor OS in patients with BC. Furthermore, elevated SIRI was also remarkably related to increased tumor size and later BC tumor stage. The SIRI can serve as a novel prognostic biomarker for patients with BC.
Collapse
Affiliation(s)
- Sunhuan Zhang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| | - Tongtong Cheng
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| |
Collapse
|
22
|
Liu H, Ouyang Z, Li S. Advances of M1 macrophages-derived extracellular vesicles in tumor therapy. Biomed Pharmacother 2024; 181:117735. [PMID: 39644871 DOI: 10.1016/j.biopha.2024.117735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024] Open
Abstract
Extracellular vesicles derived from classically activated M1 macrophages (M1 EVs) have shown great potential in both tumor treatment and drug delivery. M1 EVs inherit specific biological messengers from their parent cells and possess the capability to activate immune cells residing in close or distant tumor tissues for antitumor therapy. Moreover, M1 EVs are commonly used as an attractive drug delivery system due to their tumor-targeting ability, biocompatibility, and non-toxic. They can effectively encapsulate various therapeutic cargoes through specific methods such as electroporation, co-incubation, sonication, extrusion, transfection, or click chemistry reaction. In this review, we provide a comprehensive summary of the advancements in M1 EVs for tumor therapy, discussing their application prospects and existing problems.
Collapse
Affiliation(s)
- Houli Liu
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China.
| | - Zhaorong Ouyang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| | - Siyu Li
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| |
Collapse
|
23
|
Liao D, Yang S, Zhao L, Ren W, Liu S, Yu H, Chen Y, Yu T, Zeng T, Zhou L, Zhang Y. ICAT-Mediated Crosstalk Between Cervical Cancer Cells and Macrophages Promotes M2-Like Macrophage Polarization to Reinforce Tumor Malignant Behaviors. Mol Carcinog 2024; 63:2425-2440. [PMID: 39279723 DOI: 10.1002/mc.23820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024]
Abstract
Inhibitor of β-catenin and T-cell factor (ICAT) is a classical inhibitor of the Wnt signaling pathway. Nonetheless, our previous work found that ICAT is overexpressed in cervical cancer (CC), resulting in the augmentation of migration and invasion capabilities of CC cells. It remains unclear what molecular mechanism underlies this phenomenon. The interaction between cancer cells and the tumor microenvironment (TME) promotes the outgrowth and metastasis of tumors. Tumor-associated macrophages (TAMs) are a major constituent of the TME and have a significant impact on the advancement of CC. Consequently, our inquiry pertains to the potential of ICAT to facilitate tumor development through its modulation of the cervical TME. In this study, we first verified that ICAT regulated the secretion of cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) in CC cells, leading to M2-like macrophage polarization and enhancement of the migration and invasion of CC cells. Furthermore, the system of co-culturing human umbilical vein endothelial cells (HUVECs) with macrophages revealed that depending on the CC cells' overexpression or inhibition of ICAT, the vascular tube formation by HUVECs can be either increased or decreased. Overall, our study indicates that ICAT stimulates M2-like polarization of TAMs via upregulating IL-10 and TGF-β, which results in increased neovascularization, tumor metastasis, and immunosuppression in CC. In upcoming times, inhibiting crosstalk between CC cells and TAMs may be a possible strategy for CC therapy.
Collapse
Affiliation(s)
- Deyu Liao
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shiyu Yang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ling Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Ren
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiyan Liu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Huomei Yu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuanxiang Chen
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Tao Yu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Tao Zeng
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lan Zhou
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Gu X, Han X, Shen Y, Shi Y. Prognostic value of systemic inflammation response index in cancer patients treated with PD-1/PD-L1 immune checkpoint inhibitors: a meta-analysis. Ann Med 2024; 56:2413415. [PMID: 39383059 PMCID: PMC11465384 DOI: 10.1080/07853890.2024.2413415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND The prognostic significance of the systemic inflammatory response index (SIRI) in patients with cancer receiving programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) immune checkpoint inhibitors (ICIs) has been widely investigated; however, the results have been conflicting. As such, the present meta-analysis aimed to analyze the precise significance of the SIRI in predicting prognosis in patients with cancer undergoing ICI therapy. METHODS A comprehensive literature search of the Web of Science, PubMed, Embase, and Cochrane Library databases for relevant studies, published from inception to April 25, 2024, was performed. The SIRI was analyzed for its prognostic utility in patients undergoing ICI therapy by calculating combined hazard ratios (HRs) and corresponding 95% confidence intervals (CIs). RESULTS Six studies comprising 1133 patients were included in the analysis. Pooled data revealed that a higher SIRI was significantly associated with poor overall survival (OS) (HR 1.96 [95% CI 1.55-2.47]; p < 0.001) and progression-free survival (PFS) (HR 1.41 [95% CI 1.19-1.67]; p < 0.001) for patients who underwent PD-1/PD-L1 ICI treatment. Subgroup analysis revealed that SIRI was markedly associated with dismal OS and PFS, independent of sample size, cut-off value, and survival analysis (p < 0.05). The findings were verified to be robust against publication bias and sensitivity analyses. CONCLUSION In summary, an elevated SIRI was significantly associated with OS and PFS in patients with cancer undergoing PD-1/PD-L1 ICI treatment. SIRI may a candidate indicator for predicting the prognosis of patients undergoing ICI therapy.
Collapse
Affiliation(s)
- Xiaobin Gu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaodan Han
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanli Shen
- Department of Pulmonary Medicine, Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Yonggang Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Pham TN, Coupey J, Rousseau M, Thariat J, Valable S. Revealing the effect of X-ray or proton brain irradiation on systemic inflammation and leukocyte subpopulation interplay in rodents. J Leukoc Biol 2024; 116:1530-1543. [PMID: 38952292 DOI: 10.1093/jleuko/qiae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024] Open
Abstract
The absolute lymphocyte count (ALC), lymphocyte-to-monocyte ratio (LMR), and neutrophil-to-lymphocyte ratio (NLR) offer convenient means to assess systemic inflammation post-cancer treatment, which influences treatment outcomes. Understanding these biomarker variations and leukocyte subpopulation interplay is crucial for optimizing radiotherapy. Herein, leukocyte subpopulations (T-CD4+, T-CD8+, B cells, NK cells, neutrophils, monocytes) during and after brain irradiation (using X-rays or protons) in tumor-free mice were used to compute ALC, LMR, and NLR, on which radiation parameter influence was assessed by principal component analysis (PCA). NLR kinetics was further examined using modeling. Leukocyte subpopulation interplays and their response to radiation parameters were examined using PCA and correlation analysis. Under X-rays, ALC and LMR decreased, with ALC recovered to baseline after irradiation, but not LMR. Both X-rays and protons increased the NLR during irradiation, recovering in protons but not X-rays. Both irradiation volume and dose rate had a pronounced effect on the NLR. Leukocyte subpopulation interplay was observed under X-rays and protons, normalizing in the proton group by day 28. Lymphopenia was observed in all lymphocyte subpopulations under X-ray irradiation but not protons. The recovery patterns varied among the subpopulations. Neutrophil counts increased during irradiation, with the recovery of protons, but not X-rays, by day 28. Interplays between NK cells and myeloid subpopulations were evident under X-rays but not protons. Importantly, no interplay was detected between myeloid cells and T/B cells, indicating that LMR and NLR variations were primarily due to independent responses to brain irradiation. A tumor-free experimental mouse model was used to study the effects of brain radiotherapy on systemic immunity. When administering fractionated irradiation with a total dose of 20 Gy using a vertical beam to either the whole brain or hemi-brain, proton irradiation had fewer adverse impacts on the immune system compared to X-rays in tumor-free rodents.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, Normandy, France
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France-Normandie Université, 14000 Caen, Normandy, France
| | - Julie Coupey
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, Normandy, France
| | - Marc Rousseau
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France-Normandie Université, 14000 Caen, Normandy, France
| | - Juliette Thariat
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France-Normandie Université, 14000 Caen, Normandy, France
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, Normandy, France
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, Normandy, France
| |
Collapse
|
26
|
Tomar MS, Mohit, Kumar A, Shrivastava A. Circadian immunometabolism: A future insight for targeted therapy in cancer. Sleep Med Rev 2024; 80:102031. [PMID: 39603026 DOI: 10.1016/j.smrv.2024.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Circadian rhythms send messages to regulate the sleep-wake cycle in living beings, which, regulate various biological activities. It is well known that altered sleep-wake cycles affect host metabolism and significantly deregulate the host immunity. The dysregulation of circadian-related genes is critical for various malignancies. One of the hallmarks of cancer is altered metabolism, the effects of which spill into surrounding microenvironments. Here, we review the emerging literature linking the circadian immunometabolic axis to cancer. Small metabolites are the products of various metabolic pathways, that are usually perturbed in cancer. Genes that regulate circadian rhythms also regulate host metabolism and control metabolite content in the tumor microenvironment. Immune cell infiltration into the tumor site is critical to perform anticancer functions, and altered metabolite content affects their trafficking to the tumor site. A compromised immune response in the tumor microenvironment aids cancer cell proliferation and immune evasion, resulting in metastases. The role of circadian rhythms in these processes is largely overlooked and demands renewed attention in the search for targets against cancer growth and spread. The precision medicine approach requires targeting the circadian immune metabolism in cancer.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Mohit
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India; Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India.
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
27
|
Mayasin YP, Osinnikova MN, Kharisova CB, Kitaeva KV, Filin IY, Gorodilova AV, Kutovoi GI, Solovyeva VV, Golubev AI, Rizvanov AA. Extracellular Matrix as a Target in Melanoma Therapy: From Hypothesis to Clinical Trials. Cells 2024; 13:1917. [PMID: 39594665 PMCID: PMC11592585 DOI: 10.3390/cells13221917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is a malignant, highly metastatic neoplasm showing increasing morbidity and mortality. Tumor invasion and angiogenesis are based on remodeling of the extracellular matrix (ECM). Selective inhibition of functional components of cell-ECM interaction, such as hyaluronic acid (HA), matrix metalloproteinases (MMPs), and integrins, may inhibit tumor progression and enhance the efficacy of combination treatment with immune checkpoint inhibitors (ICIs), chemotherapy, or immunotherapy. In this review, we combine the results of different approaches targeting extracellular matrix elements in melanoma in preclinical and clinical studies. The identified limitations of many approaches, including side effects, low selectivity, and toxicity, indicate the need for further studies to optimize therapy. Nevertheless, significant progress in expanding our understanding of tumor biology and the development of targeted therapies holds great promise for the early approaches developed several decades ago to inhibit metastasis through ECM targeting.
Collapse
Affiliation(s)
- Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Grigorii I. Kutovoi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anatolii I. Golubev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
28
|
Li S, Hao L, Hu X. Biological Roles and Clinical Therapeutic Applications of Tumor-Associated Macrophages in Colorectal Liver Metastasis. J Inflamm Res 2024; 17:8429-8443. [PMID: 39529996 PMCID: PMC11552512 DOI: 10.2147/jir.s493656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Colorectal cancer (CRC) commonly metastasizes to the liver, and this poses a significant clinical challenge. Tumor-associated macrophages (TAMs), key players within the TME, play a significant role in promoting CRC metastasis by secreting various chemokines, growth factors, and cytokines. This review not only aims to enhance our knowledge of TAMs' functions in CRC progression and metastasis but also examines innovative therapeutic strategies to address the clinical problem of colorectal liver metastasis (CLM). By targeting TAMs, we may be able to develop more effective treatments and offer hope to patients suffering from this devastating disease.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
29
|
Shu H, Ren ZJ, Li H, Zhang Y, Yin C, Nie F. Ultrasound-mediated nanobubbles loaded with STAT6 siRNA inhibit TGF-β1-EMT axis in LUSC cells via overcoming the polarization of M2-TAMs. Eur J Pharm Sci 2024; 202:106894. [PMID: 39245357 DOI: 10.1016/j.ejps.2024.106894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
M2-like tumor-associated macrophages (M2-TAMs) are closely correlated with metastasis and poor clinical outcomes in lung squamous cell carcinoma (LUSC). Previous studies have demonstrated that STAT6 is an important signaling molecule involved in the polarization of M2-TAMs, EMT is the main way for TAMs to promote tumor progression. However, little attention has been paid to the effect of STAT6 inhibition on LUSC, and it is difficult to achieve an ideal gene silencing effect in immune cells using traditional gene transfection methods. Here, we investigated the optimal concentration of 12-myristic 13-acetate (PMA), lipopolysaccharide (LPS) for the induction of THP-1 into M1-TAMs and M2-TAMs. The expression of pSTAT6 and STAT6 was confirmed in three types of macrophages, and it was demonstrated that pSTAT6 can be used as a specific target of M2-TAMs derived from THP-1. Ultrasound-mediated nanobubble destruction (UMND) is a non-invasive and safe gene delivery technology. We also synthesized PLGA-PEI nanobubbles (NBs) to load and deliver STAT6 small interfering RNA (siRNA) into M2-TAMs via UMND. The results show that the NBs could effectively load with siRNA and had good biocompatibility. We found that UMND enhanced the transfection efficiency of siRNA, as well as the silencing effect of pSTAT6 and the inhibition of M2-TAMs. Simultaneously, when STAT6 siRNA entered M2-TAMs by UMND, proliferation, migration, invasion and EMT in LUSC cells could be inhibited via the transforming growth factor-β1 (TGF-β1) pathway. Therefore, our results confirm that UMND is an ideal siRNA delivery strategy, revealing its potential to inhibit M2-TAMs polarization and ultimately treat LUSC.
Collapse
Affiliation(s)
- Hong Shu
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhi-Jian Ren
- Digestive Surgery, Xi 'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Hui Li
- Department of respiratory medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yao Zhang
- Emergency department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ci Yin
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fang Nie
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
30
|
Shimizu S, Matsunaga T, Saito H, Osaki T, Fukuda K, Fukumoto Y, Takahashi S, Taniguchi K, Iwamoto A, Kuroda H, Katano K, Takahashi T, Sakano Y, Shishido Y, Miyatani K, Sakamoto T, Fujiwara Y. Impact of Lymphocyte/Monocyte Ratio on Outcomes in Patients with Remnant Gastric Cancer After Gastrectomy. Yonago Acta Med 2024; 67:314-320. [PMID: 39583766 PMCID: PMC11584237 DOI: 10.33160/yam.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024]
Abstract
Background The inflammatory response plays a crucial role in tumor development. Inflammatory markers are recognized prognostic factors in many types of cancer, including gastric cancer. However, the correlation between inflammatory markers and prognosis in remnant gastric cancer (RGC) remains unclear. The aim of this study was to evaluate the importance of inflammatory markers as a prognostic factor in patients who underwent gastrectomy for RGC. Methods This multicenter retrospective study involved 107 patients with RGC who underwent curative gastrectomy at 10 institutions in Japan between January 2000 and December 2016. Both overall survival (OS) and relapse-free survival (RFS) were analyzed. Results Receiver operating characteristic analyses indicated that the lymphocyte/monocyte ratio (LMR) had a higher area under the curve compared with other potential prognostic factors. Patients were categorized into high- and low LMR groups by the optimal LMR cutoff value. Preoperative LMR was significantly correlated with reconstruction way after the primary surgery (p=0.032) and lymphatic invasion (p=0.046). OS and RFS were significantly worse in the low- vs high LMR groups. Low LMR, T3 or deeper tumor invasion, and low body mass index were independent prognostic factors for OS and RFS. Conclusion Preoperative low LMR is associated with poor OS and RFS in patients who undergo gastrectomy for RGC.
Collapse
Affiliation(s)
- Shota Shimizu
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Tomoyuki Matsunaga
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Hiroaki Saito
- Department of Surgery, Japanese Red Cross Tottori Hospital, Tottori 680-8517, Japan
| | - Tomohiro Osaki
- Department of Surgery, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Kenji Fukuda
- Department of Surgery, Sanin Rosai Hospital, Yonago 683-8605, Japan
| | - Yoji Fukumoto
- Division of Gastroenterology, Matsue City Hospital, Matsue 690-8509, Japan
| | - Sadamu Takahashi
- National Hospital Organization, Hamada Medical Center, Hamada 697-8511, Japan
| | - Kenjiro Taniguchi
- Department of Surgery, Yonago Medical Center of National Hospital Organization, Yonago 683-0006, Japan
| | - Akemi Iwamoto
- Division of Digestive Surgery, Tottori Prefectural Kousei Hospital, Kurayoshi 682-0804, Japan
| | - Hirohiko Kuroda
- Department of Surgery, Japanese Red Cross Masuda Hospital, Masuda 698-8501, Japan
| | - Kuniyuki Katano
- Department of Surgery, Nanbu Town National Health Insurance Saihaku Hospital, Nanbu 683-0323, Japan
| | - Tomohiro Takahashi
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yu Sakano
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yuji Shishido
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Kozo Miyatani
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Teruhisa Sakamoto
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yoshiyuki Fujiwara
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
31
|
Fernando V, Zheng X, Sharma V, Sweef O, Choi ES, Furuta S. Reprogramming of breast tumor-associated macrophages with modulation of arginine metabolism. Life Sci Alliance 2024; 7:e202302339. [PMID: 39191486 PMCID: PMC11350068 DOI: 10.26508/lsa.202302339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
HER2+ breast tumors have abundant immune-suppressive cells, including M2-type tumor-associated macrophages (TAMs). Although TAMs consist of the immune-stimulatory M1 type and immune-suppressive M2 type, the M1/M2-TAM ratio is reduced in immune-suppressive tumors, contributing to their immunotherapy refractoriness. M1- versus M2-TAM formation depends on differential arginine metabolism, where M1-TAMs convert arginine to nitric oxide (NO) and M2-TAMs convert arginine to polyamines (PAs). We hypothesize that such distinct arginine metabolism in M1- versus M2-TAMs is attributed to different availability of BH4 (NO synthase cofactor) and that its replenishment would reprogram M2-TAMs to M1-TAMs. Recently, we reported that sepiapterin (SEP), the endogenous BH4 precursor, elevates the expression of M1-TAM markers within HER2+ tumors. Here, we show that SEP restores BH4 levels in M2-like macrophages, which then redirects arginine metabolism to NO synthesis and converts M2 type to M1 type. The reprogrammed macrophages exhibit full-fledged capabilities of antigen presentation and induction of effector T cells to trigger immunogenic cell death of HER2+ cancer cells. This study substantiates the utility of SEP in the metabolic shift of the HER2+ breast tumor microenvironment as a novel immunotherapeutic strategy.
Collapse
Affiliation(s)
- Veani Fernando
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
- Division of Rheumatology, University of Colorado, Anschutz Medical Campus Barbara Davis Center, Aurora, CO, USA
| | - Xunzhen Zheng
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Vandana Sharma
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Osama Sweef
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Eun-Seok Choi
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Saori Furuta
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
32
|
Xu J, Lin Y, Yang J, Xing Y, Xing X. Pretreatment systemic immune-inflammation index and lymphocyte-to-monocyte ratio as prognostic factors in oral cavity cancer: A meta-analysis. Medicine (Baltimore) 2024; 103:e40182. [PMID: 39496022 PMCID: PMC11537607 DOI: 10.1097/md.0000000000040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The predictive implications of the pretreatment systemic immune-inflammation index (SII) and lymphocyte-to-monocyte ratio (LMR) in oral cavity cancer have been investigated extensively, however, the findings are conflicting. METHODS To assess the predictive importance of SII and LMR in patients with oral cavity cancer, a comprehensive Meta-analysis of the literature was conducted using the databases from PubMed, Embase, and the Cochrane Library. To determine the link between SII and LMR and overall survival (OS) and disease-free survival (DFS), hazard ratio (HR) and 95% confidence interval (CI) were retrieved. RESULTS The analysis comprised a total of 18 papers, covering 19 trials (SII = 5, LMR = 12, SII + prognostic nutritional index (PNI) = 2). According to pooled data, increased SII predicted poor OS (HR: 1.61, 95% CI: 1.38-1.87, P < .001) and DFS (HR: 1.90, 95% CI: 1.11-3.27, P = .02) while high LMR was linked with improved OS (HR: 0.64, 95% CI: 0.54-0.77, P < .001) and DFS (HR: 0.69, 95% CI: 0.61-0.79, P < .001). In addition, subgroup analysis indicated that high SII and low LMR negatively correlated with OS regardless of country, cutoff value, sample size, or types of Cox regression analysis. CONCLUSIONS High SII and low LMR may predict worse survival in patients with oral cavity cancer. SII and LMR may therefore represent effective indicators of prognosis in oral cavity cancer.
Collapse
Affiliation(s)
- Jianghan Xu
- Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yanjun Lin
- Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jingbo Yang
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yifeng Xing
- Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaojie Xing
- Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
33
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
34
|
Wang H, Li Q, Tang Q, Shi G, Wu G, Mao X, Wu C, Zhang L, Liu J, Li J, Li B. Role and therapeutic potential of E3s in the tumor microenvironment of hepatocellular carcinoma. Front Immunol 2024; 15:1483721. [PMID: 39544935 PMCID: PMC11560419 DOI: 10.3389/fimmu.2024.1483721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a high-incidence, poor-prognosis malignancy worldwide, requiring new strategies for treatment. Ubiquitination, especially ubiquitination through E3 ubiquitin ligases, plays an indispensable role in the development and progression of HCC. E3 ubiquitin ligases are crucial enzymes in ubiquitination, controlling the degradation of specific substrate proteins and influencing various cellular functions, such as tumor cell proliferation, apoptosis, migration, and immune evasion. In this review, we systematically summarize the mechanisms of E3 ubiquitin ligases in HCC, with a focus on the significance of RING, HECT, and RBR types in HCC progression. The review also looks at the potential for targeting E3 ligases to modulate the tumor microenvironment (TME) and increase immunotherapy efficacy. Future studies will optimize HCC treatment by formulating specific inhibitors or approaches that will be based on gene therapy targeting E3 ligases in order to overcome resistance issues with present treatments and create optimism in the journey of treatment for HCC patients.
Collapse
Affiliation(s)
- Hailin Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiang Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qinqin Tang
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Gang Shi
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guo Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xingbo Mao
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Changkang Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lixin Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
35
|
Li Y, Li M, Zheng J, Ma Z, Yu T, Zhu Y, Li P, Nie F. Ultrasound-Responsive Nanocarriers Delivering siRNA and Fe 3O 4 Nanoparticles Reprogram Macrophages and Inhibit M2 Polarization for Enhanced NSCLC Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56634-56652. [PMID: 39378273 DOI: 10.1021/acsami.4c10036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Lung cancer has emerged as the second most common type of malignant tumor worldwide, and it has the highest mortality rate. The overall 5-year survival rate stands at less than 20%, which is primarily related to the limited therapeutic options and the complexity of the tumor immune microenvironment. In the tumor microenvironment, M1 macrophages are known for their tumor-killing capabilities. Although they are less numerous, they play an important role in tumor immunity. Therefore, increasing M1 macrophages' presence is considered a strategy to enhance targeted phagocytosis and antitumor efficacy in nonsmall cell lung cancer (NSCLC). This study introduces the development of folic acid (FA)-conjugated liposomal nanobubbles for precise delivery of PFH, STAT3 siRNA, and Fe3O4 to the tumor microenvironment. These encapsulated PFH liposomal nanobubbles exhibit significant visualization potential and underwent phase transition when exposed to low-intensity focused ultrasound (LIFU). The release of Fe3O4 activates the IRF5 signaling pathway, converting M2-like macrophages to M1. In addition, STAT3 siRNA effectively interrupts the JAK-STAT3 pathway, inhibiting the polarization of M2-like macrophages in tumor-associated macrophages (TAMs). This dual-action therapy facilitates T-cell activation and proliferation, thereby enhancing the immune response against NSCLC.
Collapse
Affiliation(s)
- Yuanyuan Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Ming Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Jun Zheng
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Zhen Ma
- Peking University Third Hospital, Beijing 100191, China
| | - Tingting Yu
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Yangyang Zhu
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Pan Li
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Fang Nie
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China
| |
Collapse
|
36
|
D’Angelo SP, Lebbé C, Nghiem P, Brohl AS, Mrowiec T, Leslie T, Georges S, Güzel G, Shah P. Biomarker Analyses Investigating Disease Biology and Associations with Outcomes in the JAVELIN Merkel 200 Trial of Avelumab in Metastatic Merkel Cell Carcinoma. Clin Cancer Res 2024; 30:4352-4362. [PMID: 39047170 PMCID: PMC11443199 DOI: 10.1158/1078-0432.ccr-23-0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE Avelumab (anti-PD-L1) became the first approved treatment for metastatic Merkel cell carcinoma (mMCC) based on results from the phase II JAVELIN Merkel 200 trial. In this study, we report exploratory biomarker analyses from the trial. PATIENTS AND METHODS Patients with mMCC (n = 88) with or without prior first-line chemotherapy received avelumab 10 mg/kg every 2 weeks. We conducted analyses on somatic mutations, mutational signatures, and tumor mutational burden using paired whole-exome sequencing. Additionally, we examined gene and gene set expression, immune content from RNA sequencing profiles, as well as tumor PD-L1 and CD8 statuses from IHC and CD8 status from digital pathology. RESULTS Tumors positive for Merkel cell polyomavirus (MCPyV) were characterized by an absence of driver mutations and a low tumor mutational burden, consistent with previous studies. A novel MCPyV-specific host gene expression signature was identified. MCPyV+ tumors had increased levels of immunosuppressive M2 macrophages in the tumor microenvironment, which seemed to correlate with PD-L1 expression; high CD8+ T-cell density in these tumors did not predict response to avelumab. Conversely, in patients with MCPyV- tumors, higher CD8+ T-cell density seemed to be associated with response to avelumab. Mutations in several genes were associated with treatment outcomes. Compared with tumors sampled before chemotherapy, tumors sampled after chemotherapy had downregulated gene signatures for immune responses, including reduced expression of IFNγ-related pathways. Levels of activated dendritic cells in responding patients were higher in patients assessed after versus before chemotherapy. CONCLUSIONS Exploratory analyses provide insights into mMCC biology and potential associations with response to avelumab. Chemotherapy seems to negatively modulate the immune microenvironment.
Collapse
MESH Headings
- Humans
- Carcinoma, Merkel Cell/drug therapy
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Biomarkers, Tumor/genetics
- Female
- Male
- Aged
- Middle Aged
- Mutation
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Skin Neoplasms/drug therapy
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Tumor Microenvironment/immunology
- Tumor Microenvironment/drug effects
- Aged, 80 and over
- Merkel cell polyomavirus
- Exome Sequencing
- Treatment Outcome
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
Collapse
Affiliation(s)
- Sandra P. D’Angelo
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York.
| | - Céleste Lebbé
- INSERM U976, Université Paris Cite, Dermato-Oncology and CIC AP-HP, Hôpital Saint Louis, Cancer Institute APHP, Nord-Université, Paris, France.
| | - Paul Nghiem
- University of Washington Medical Center at South Lake Union, Seattle, Washington.
| | | | - Thomas Mrowiec
- The healthcare business of Merck KGaA, Darmstadt, Germany.
| | | | | | - Gülseren Güzel
- The healthcare business of Merck KGaA, Darmstadt, Germany.
| | | |
Collapse
|
37
|
Zhu CX, Yan K, Chen L, Huang RR, Bian ZH, Wei HR, Gu XM, Zhao YY, Liu MC, Suo CX, Li ZK, Yang ZY, Lu MQ, Hua XF, Li L, Zhao ZB, Sun LC, Zhang HF, Gao P, Lian ZX. Targeting OXCT1-mediated ketone metabolism reprograms macrophages to promote antitumor immunity via CD8 + T cells in hepatocellular carcinoma. J Hepatol 2024; 81:690-703. [PMID: 38759889 DOI: 10.1016/j.jhep.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND & AIMS The liver is the main organ of ketogenesis, while ketones are mainly metabolized in peripheral tissues via the critical enzyme 3-oxoacid CoA-transferase 1 (OXCT1). We previously found that ketolysis is reactivated in hepatocellular carcinoma (HCC) cells through OXCT1 expression to promote tumor progression; however, whether OXCT1 regulates antitumor immunity remains unclear. METHODS To investigate the expression pattern of OXCT1 in HCC in vivo, we conducted multiplex immunohistochemistry experiments on human HCC specimens. To explore the role of OXCT1 in mouse HCC tumor-associated macrophages (TAMs), we generated LysMcreOXCT1f/f (OXCT1 conditional knockout in macrophages) mice. RESULTS Here, we found that inhibiting OXCT1 expression in tumor-associated macrophages reduced CD8+ T-cell exhaustion through the succinate-H3K4me3-Arg1 axis. Initially, we found that OXCT1 was highly expressed in liver macrophages under steady state and that OXCT expression was further increased in TAMs. OXCT1 deficiency in macrophages suppressed tumor growth by reprogramming TAMs toward an antitumor phenotype, reducing CD8+ T-cell exhaustion and increasing CD8+ T-cell cytotoxicity. Mechanistically, high OXCT1 expression induced the accumulation of succinate, a byproduct of ketolysis, in TAMs, which promoted Arg1 transcription by increasing the H3K4me3 level in the Arg1 promoter. In addition, pimozide, an inhibitor of OXCT1, suppressed Arg1 expression as well as TAM polarization toward the protumor phenotype, leading to decreased CD8+ T-cell exhaustion and slower tumor growth. Finally, high expression of OXCT1 in macrophages was positively associated with poor survival in patients with HCC. CONCLUSIONS In conclusion, our results demonstrate that OXCT1 epigenetically suppresses antitumor immunity, suggesting that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer. IMPACT AND IMPLICATIONS The intricate metabolism of liver macrophages plays a critical role in shaping hepatocellular carcinoma progression and immune modulation. Targeting macrophage metabolism to counteract immune suppression presents a promising avenue for hepatocellular carcinoma treatment. Herein, we found that the ketogenesis gene OXCT1 was highly expressed in tumor-associated macrophages (TAMs) and promoted tumor growth by reprogramming TAMs toward a protumor phenotype. Pharmacological targeting or genetic downregulation of OXCT1 in TAMs enhances antitumor immunity and slows tumor growth. Our results suggest that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer.
Collapse
Affiliation(s)
- Chu-Xu Zhu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Rong-Rong Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhen-Hua Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Hao-Ran Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Mei Gu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yang-Yang Zhao
- School of Medicine, South China University of Technology, Guangzhou, China; Biomedical Engineering Cockrell School of Engineering, University of Texas at Austin, Austin, United States
| | - Meng-Chu Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Cai-Xia Suo
- Department of Colorectal Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhi-Kun Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhi-Yi Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Min-Qiang Lu
- Department of Hepatobiliary Surgery, Guangzhou First People's Hospital, Guangzhou, China
| | - Xue-Feng Hua
- Department of Hepatobiliary Surgery, Guangzhou First People's Hospital, Guangzhou, China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhi-Bin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lin-Chong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hua-Feng Zhang
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ping Gao
- School of Medicine, South China University of Technology, Guangzhou, China; Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Zhe-Xiong Lian
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
38
|
Cai T, Dai J, Lin Y, Bai Z, Li J, Meng W. N-acetyltransferase 10 affects the proliferation of intrahepatic cholangiocarcinoma and M2-type polarization of macrophages by regulating C-C motif chemokine ligand 2. J Transl Med 2024; 22:875. [PMID: 39350174 PMCID: PMC11440763 DOI: 10.1186/s12967-024-05664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND N-acetyltransferase 10 (NAT10) plays a crucial role in the occurrence and development of various tumors. However, the current regulatory mechanism of NAT10 in tumors is limited to its presence in tumor cells. Here, we aimed to reveal the role of NAT10 in intrahepatic cholangiocarcinoma (ICC) and investigate its effect on macrophage polarization in the tumor microenvironment (TME). METHODS The correlation between NAT10 and ICC clinicopathology was analyzed using tissue microarray (TMA), while the effect of NAT10 on ICC proliferation was verified in vitro and in vivo. Additionally, the downstream target of NAT10, C-C motif chemokine ligand 2 (CCL2), was identified by Oxford Nanopore Technologies full-length transcriptome sequencing, RNA immunoprecipitation-quantitative polymerase chain reaction, and coimmunoprecipitation experiments. It was confirmed by co-culture that ICC cells could polarize macrophages towards M2 type through the influence of NAT10 on CCL2 protein expression level. Through RNA-sequencing, molecular docking, and surface plasmon resonance (SPR) assays, it was confirmed that berberine (BBR) can specifically bind CCL2 to inhibit ICC development. RESULTS High expression level of NAT10 was associated with poor clinicopathological manifestations of ICC. In vitro, the knockdown of NAT10 inhibited the proliferative activity of ICC cells and tumor growth in vivo, while its overexpression promoted ICC proliferation. Mechanically, by binding to CCL2 messenger RNA, NAT10 increased CCL2 protein expression level in ICC and their extracellular matrix, thereby promoting the proliferation of ICC cells and M2-type polarization of macrophages. BBR can target CCL2, inhibit ICC proliferation, and reduce M2-type polarization of macrophages. CONCLUSIONS NAT10 promotes ICC proliferation and M2-type polarization of macrophages by up-regulating CCL2, whereas BBR inhibits ICC proliferation and M2-type polarization of macrophages by inhibiting CCL2.
Collapse
Affiliation(s)
- Teng Cai
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yanyan Lin
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zhongtian Bai
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China.
| | - Wenbo Meng
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.
| |
Collapse
|
39
|
Badiola I. What we need in colorectal cancer research, and why? ADVANCES IN GENETICS 2024; 112:1-29. [PMID: 39396835 DOI: 10.1016/bs.adgen.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Cancer is a complex disease that includes tumour and healthy cells surrounding and infiltrating the tumour. During cancer development, tumour cells release many extracellular signals in an autocrine and paracrine way, producing deep phenotypic changes in the surrounding cells, becoming protumoral actors. The entire entity composed of tumour cells and the recruited elements is known as the tumour microenvironment. Immune cells, fibroblasts and endothelial cells, mainly with the extracellular matrix, are the most common elements in different cancer types and coexist in a complex balance of protumoral and antitumoral factors. In this context, the spatial disposition of the tumour microenvironment elements is crucial to knowing the role of each one in the disease development, and the multiplex spatial technology is the way to map the tumours. The combination of spatial study with transcriptomic, proteomic, and epigenomic studies is the most modern tool in the hands of cancer researchers, and it has opened a new era in the study of cancer biology.
Collapse
Affiliation(s)
- Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
40
|
Liu YG, Jiang ST, Zhang JW, Zheng H, Zhang L, Zhao HT, Sang XT, Xu YY, Lu X. Role of extracellular vesicle-associated proteins in the progression, diagnosis, and treatment of hepatocellular carcinoma. Cell Biosci 2024; 14:113. [PMID: 39227992 PMCID: PMC11373138 DOI: 10.1186/s13578-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, characterized by difficulties in early diagnosis, prone to distant metastasis, and high recurrence rates following surgery. Extracellular vesicles (EVs) are a class of cell-derived particles, including exosomes, characterized by a phospholipid bilayer. They serve as effective carriers for intercellular communication cargo, including proteins and nucleic acids, and are widely involved in tumor progression. They are being explored as potential tumor biomarkers and novel therapeutic avenues. We provide a brief overview of the biogenesis and characteristics of EVs to better understand their classification standards. The focus of this review is on the research progress of EV-associated proteins in the field of HCC. EV-associated proteins are involved in tumor growth and regulation in HCC, participate in intercellular communication within the tumor microenvironment (TME), and are implicated in events including angiogenesis and epithelial-mesenchymal transition (EMT) during tumor metastasis. In addition, EV-associated proteins show promising diagnostic efficacy for HCC. For the treatment of HCC, they also demonstrate significant potential including enhancing the efficacy of tumor vaccines, and as targeting cargo anchors. Facing current challenges, we propose the future directions of research in this field. Above all, research on EV-associated proteins offers the potential to enhance our comprehension of HCC and offer novel insights for developing new treatment strategies.
Collapse
Affiliation(s)
- Yao-Ge Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shi-Tao Jiang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jun-Wei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Han Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yi-Yao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
41
|
Yin M, Liu Z, Zhou Y, Li W, Yan J, Cao D, Yin L. Two-pronged anti-cancer nanovaccines enpowered by exogenous/endogenous tumor-associated antigens. J Control Release 2024; 373:358-369. [PMID: 39009083 DOI: 10.1016/j.jconrel.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Cancer vaccines based on single-source (exogenous or endogenous) tumor-associated antigens (TAAs) are often challenged by the insufficient T cell response and the immunosuppressive tumor microenvironment (TME). Herein, a dual TAAs-boosted nanovaccine based on cancer cell (4T1) membrane-cloaked, CO-immobilized Prussian blue nanoparticles (4T1-PB-CO NPs) is developed and coupled with anti-interleukin (IL)-10 therapy to maximize the efficacy of antitumor immunotherapy. 4T1 cell membrane not only endows NPs with tumor targeting ability, but also serves as exogenous TAAs to trigger CD4+ T cell response and M1-phenotype polarization of tumor-associated macrophages. Under near-infrared light irradiation, 4T1-PB-CO NPs release CO to induce immunogenic cell death (ICD) of tumor cells, thus generating endogenous TAAs to activate CD8+ T cell response. Meanwhile, ICD triggers release of damage-associated molecular patterns, which can promote DC maturation to amplify the antitumor T cell response. When combined with anti-IL-10 that reverses the immunosuppressive TME, 4T1-PB-CO NPs efficiently suppress the primary tumors and produce an abscopal effect to inhibit distant tumors in a breast tumor-bearing mouse model. Such a two-pronged cancer vaccine represents a promising paradigm for robust antitumor immunotherapy.
Collapse
Affiliation(s)
- Mengyuan Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Zhongmin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Wei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jing Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Desheng Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
42
|
Zhang XC, Zhou YW, Wei GX, Luo YQ, Qiu M. Locoregional therapies combined with immune checkpoint inhibitors for liver metastases. Cancer Cell Int 2024; 24:302. [PMID: 39217341 PMCID: PMC11365172 DOI: 10.1186/s12935-024-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have achieved remarkable success in clinical research and practice. Notably, liver metastasis is not sensitive to ICIs. Liver locoregional therapies can cause irreversible damage to tumor cells and release tumor antigens, thereby providing a rationale for immunotherapy treatments in liver metastasis. The combination therapy of ICIs with locoregional therapies is a promising option for patients with liver metastasis. Preclinical studies have demonstrated that combining ICIs with locoregional therapies produces a significantly synergistic anti-tumor effect. However, the current evidence for the efficacy of ICIs combined with locoregional therapies remains insufficient. Therefore, we review the literature on the mechanisms of locoregional therapies in treating liver metastasis and the clinical research progress of their combination with ICIs.
Collapse
Affiliation(s)
- Xing-Chen Zhang
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
| | - Yu-Wen Zhou
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
| | - Gui-Xia Wei
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi-Qiao Luo
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
43
|
WANG ZHENGYI, ZHOU LIANG, WU XIAOYING. Influencing factors and solution strategies of chimeric antigen receptor T-cell therapy (CAR-T) cell immunotherapy. Oncol Res 2024; 32:1479-1516. [PMID: 39220130 PMCID: PMC11361912 DOI: 10.32604/or.2024.048564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T-cesll therapy (CAR-T) has achieved groundbreaking advancements in clinical application, ushering in a new era for innovative cancer treatment. However, the challenges associated with implementing this novel targeted cell therapy are increasingly significant. Particularly in the clinical management of solid tumors, obstacles such as the immunosuppressive effects of the tumor microenvironment, limited local tumor infiltration capability of CAR-T cells, heterogeneity of tumor targeting antigens, uncertainties surrounding CAR-T quality, control, and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy. These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach. In this paper, we comprehensively analyze recent preclinical and clinical reports on CAR-T therapy while summarizing crucial factors influencing its efficacy. Furthermore, we aim to identify existing solution strategies and explore their current research status. Through this review article, our objective is to broaden perspectives for further exploration into CAR-T therapy strategies and their clinical applications.
Collapse
Affiliation(s)
- ZHENGYI WANG
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - LIANG ZHOU
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - XIAOYING WU
- Ministry of Education and Training, Chengdu Second People’s Hospital, Chengdu, China
| |
Collapse
|
44
|
Zhang W, Wang M, Ji C, Liu X, Gu B, Dong T. Macrophage polarization in the tumor microenvironment: Emerging roles and therapeutic potentials. Biomed Pharmacother 2024; 177:116930. [PMID: 38878638 DOI: 10.1016/j.biopha.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is a combination of tumor cells and indigenous host stroma, which consists of tumor-infiltrating immune cells, endothelial cells, fibroblasts, pericytes, and non-cellular elements. Tumor-associated macrophages (TAMs) represent the major tumor-infiltrating immune cell type and are generally polarized into two functionally contradictory subtypes, namely classical activated M1 macrophages and alternatively activated M2 macrophages. Macrophage polarization refers to how macrophages are activated at a given time and space. The interplay between the TME and macrophage polarization can influence tumor initiation and progression, making TAM a potential target for cancer therapy. Here, we review the latest investigations on factors orchestrating macrophage polarization in the TME, how macrophage polarization affects tumor progression, and the perspectives in modulating macrophage polarization for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenru Zhang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Mengmeng Wang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, China
| | - Bowen Gu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Ting Dong
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
45
|
Zhao C, Pan Y, Liu L, Zhang J, Wu X, Liu Y, Zhao XZ, Rao L. Hybrid Cellular Nanovesicles Block PD-L1 Signal and Repolarize M2 Macrophages for Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311702. [PMID: 38456371 DOI: 10.1002/smll.202311702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 03/09/2024]
Abstract
The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor-associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage-derived nanovesicles (M1-NVs) and PD1-overexpressed tumor cell-derived nanovesicles (PD1-NVs) to improve cancer immunotherapy. The M1-NVs promote the transformation of M2-like TAMs to M1-like phenotype and further increase the release of pro-inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1-NVs block PD1/PD-L1 pathway, which boosts cancer immunotherapy when combined with M1-NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD-L1 blockade for cancer immunotherapy.
Collapse
Affiliation(s)
- Chenchen Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jing Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xianjia Wu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yu Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
46
|
Ren J, Jin Z, Huang Y. Exosomal miR-106a-5p derived from intermittently hypoxic non-small-cell lung cancer increases tumor malignancy. Physiol Rep 2024; 12:e16157. [PMID: 39085755 PMCID: PMC11291016 DOI: 10.14814/phy2.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA), which is related to tumorigenesis and progression. We explored the possible mechanisms by which OSA may promote the development of non-small cell lung cancer (NSCLC). In this study, NSCLC cells with and without miR-106a-5p inhibition were exposed to IH or room air (RA), and subsequently, exosomes were extracted and identified. Macrophages were incubated with these exosomes to detect the expression of the STAT3 signaling pathway and M2-type macrophage markers, as well as the effect of the macrophages on the malignancy of NSCLC cells. A nude mouse tumorigenesis model was constructed to detect the effects of exosomal miR-106a-5p on M2 macrophage polarization and NSCLC cell malignancy. Our results showed that IH exosomes promoted the polarization of M2 macrophages, thereby promoting the proliferation, invasion, and metastasis of NSCLC cells. Further, Based on microarray analysis of RA and IH exosomes, we discovered that miR-106a-5p, transferred to the macrophages through exosomes, participated in this mechanism by promoting M2 macrophage polarization via down-regulating PTEN and activating the STAT3 signaling pathway in vitro and in vivo. For patients with NSCLC and OSA, exosomal miR-106a-5p levels showed a positive relation to AHI. Exosomal miR-106a-5p represents a potential therapeutic target among patients with concomitant cancer and NSCLC.
Collapse
Affiliation(s)
- Jie Ren
- Department of Respiratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zhuan Jin
- Department of Respiratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yongjie Huang
- Department of Respiratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
47
|
Roberts M, Finn J, Lass M, Oviedo-Bermudez E, Kurt RA. Efficacy of IFN-γ, sCD40L, and Poly(I:C) Treated Bone Marrow-Derived Macrophages in Murine Mammary Carcinoma. Immunol Invest 2024; 53:857-871. [PMID: 38813886 DOI: 10.1080/08820139.2024.2354264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Here, we explored methods to generate anti-tumor bone marrow-derived macrophages (BMDM) and how delivery of the BMDM at early tumor sites could impact disease progression. METHODS BMDM treated with IFN-γ, sCD40L, poly(I:C), and a combination of the three were assessed. RESULTS Treatment with sCD40L had no significant impact on the BMDM. Treating BMDM with IFN-γ impacted IL-1β, MHC Class II, and CD80 expression. While poly(I:C) treatment had a greater impact on the BMDM than IFN-γ when assessed by the in vitro assays, the BMDM treated with poly (I:C) had mixed results in vivo where they decreased growth of the EMT6 tumor, did not impact growth of the 168 tumor, and enhanced growth of the 4T1 tumor. The combination of poly(I:C), IFN-γ, and sCD40L had the greatest impact on the BMDM in vitro and in vivo. Treatment with all three agonists resulted in increased IL-1β, TNF-α, and IL-12 expression, decreased expression of arginase and mrc, increased phagocytic activity, nitrite production, and MHC Class II and CD80 expression, and significantly impacted growth of the EMT6 and 168 murine mammary carcinoma models. DISCUSSION Collectively, these data show that treating BMDM with poly(I:C), IFN-γ, and sCD40L generates BMDM with more consistent anti-tumor activity than BMDM generated with the individual agonists.
Collapse
Affiliation(s)
- Meghan Roberts
- Department of Biology, Lafayette College, Easton, Pennsylvania, USA
| | - Joshua Finn
- Department of Biology, Lafayette College, Easton, Pennsylvania, USA
| | - Melissa Lass
- Department of Biology, Lafayette College, Easton, Pennsylvania, USA
| | | | - Robert A Kurt
- Department of Biology, Lafayette College, Easton, Pennsylvania, USA
| |
Collapse
|
48
|
Cheng W, Kang K, Zhao A, Wu Y. Dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in lung cancer. J Hematol Oncol 2024; 17:54. [PMID: 39068460 PMCID: PMC11283714 DOI: 10.1186/s13045-024-01581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer immunotherapies, represented by immune checkpoint inhibitors (ICIs), have reshaped the treatment paradigm for both advanced non-small cell lung cancer and small cell lung cancer. Programmed death receptor-1/programmed death receptor ligand-1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are some of the most common and promising targets in ICIs. Compared to ICI monotherapy, which occasionally demonstrates treatment resistance and limited efficacy, the dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 operates at different stages of T cell activation with synergistically enhancing immune responses against cancer cells. This emerging dual therapy heralds a new direction for cancer immunotherapy, which, however, may increase the risk of drug-related adverse reactions while improving efficacy. Previous clinical trials have explored combination therapy strategy of anti-PD-1/PD-L1 and anti-CTLA-4 agents in lung cancer, yet its efficacy remains to be unclear with the inevitable incidence of immune-related adverse events. The recent advent of bispecific antibodies has made this sort of dual targeting more feasible, aiming to alleviate toxicity without compromising efficacy. Thus, this review highlights the role of dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in treating lung cancer, and further elucidates its pre-clinical mechanisms and current advancements in clinical trials. Besides, we also provide novel insights into the potential combinations of dual blockade therapies with other strategies to optimize the future treatment mode for lung cancer.
Collapse
Affiliation(s)
- Weishi Cheng
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
49
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
50
|
Liu Y, Yang J, Guo Z, Li Q, Zhang L, Zhao L, Zhou X. Immunomodulatory Effect of Cordyceps militaris Polysaccharide on RAW 264.7 Macrophages by Regulating MAPK Signaling Pathways. Molecules 2024; 29:3408. [PMID: 39064986 PMCID: PMC11279930 DOI: 10.3390/molecules29143408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Polysaccharide is one of the principal bioactive components found in medicinal mushrooms and has been proven to enhance host immunity. However, the possible mechanism of immunomodulatory activity of Cordyceps militaris polysaccharide is not fully understood. Hot water extraction and alcohol precipitation, DEAE-Sephadex A-25 chromatography, and Sephadex G-100 chromatography were used to isolate polysaccharide from C. militaris. A high-molecular-weight polysaccharide isolated from C. militaris was designated as HCMP, which had an Mw of 6.18 × 105 Da and was composed of arabinose, galactose, glucose, mannose, and xylose in a mole ratio of 2.00:8.01:72.54:15.98:1.02. The polysaccharide content of HCMP was 91.2% ± 0.16. The test in vitro showed that HCMP activated mouse macrophage RAW 264.7 cells by enhancing phagocytosis and NO production, and by regulating mRNA expressions of inflammation-related molecules in RAW 264.7 cells. Western blotting revealed that HCMP induced the phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, using inhibitors of MAPKs decreased the mRNA levels of inflammation-related molecules induced by HCMP. These data evidenced that the immunomodulatory effect of HCMP on RAW 264.7 macrophages was mediated via the MAPK signaling pathway. These findings suggested that HCMP could be developed as a potent immunomodulatory agent for use in functional foods and dietary supplements.
Collapse
Affiliation(s)
- Yan Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhijian Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Lida Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingxia Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuanwei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|