1
|
Zitta K, Hummitzsch L, Lichte F, Fändrich F, Steinfath M, Eimer C, Kapahnke S, Buerger M, Hess K, Rusch M, Rusch R, Berndt R, Albrecht M. Effects of temporal IFNγ exposure on macrophage phenotype and secretory profile: exploring GMP-Compliant production of a novel subtype of regulatory macrophages (Mreg IFNγ0) for potential cell therapeutic applications. J Transl Med 2024; 22:534. [PMID: 38835045 PMCID: PMC11151567 DOI: 10.1186/s12967-024-05336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Macrophages are involved in tissue homeostasis, angiogenesis and immunomodulation. Proangiogenic and anti-inflammatory macrophages (regulatory macrophages, Mreg) can be differentiated in-vitro from CD14+ monocytes by using a defined cell culture medium and a stimulus of IFNγ. AIM OF THE STUDY To scrutinize the potential impact of temporal IFNγ exposure on macrophage differentiation as such exposure may lead to the emergence of a distinct and novel macrophage subtype. METHODS Differentiation of human CD14+ monocytes to Mreg was performed using a GMP compliant protocol and administration of IFNγ on day 6. Monocytes from the same donor were in parallel differentiated to MregIFNγ0 using the identical protocol but with administration of IFNγ on day 0. Cell characterization was performed using brightfield microscopy, automated and metabolic cell analysis, transmission electron microscopy, flow cytometry, qPCR and secretome profiling. RESULTS Mreg and MregIFNγ0 showed no differences in cell size and volume. However, phenotypically MregIFNγ0 exhibited fewer intracellular vesicles/vacuoles but larger pseudopodia-like extensions. MregIFNγ0 revealed reduced expression of IDO and PD-L1 (P < 0.01 for both). They were positive for CD80, CD14, CD16 and CD38 (P < 0.0001vs. Mreg for all), while the majority of MregIFNγ0 did not express CD206, CD56, and CD103 on their cell surface (P < 0.01 vs. Mreg for all). In terms of their secretomes, MregIFNγ0 differed significantly from Mreg. MregIFNγ0 media exhibited reduced levels of ENA-78, Osteopontin and Serpin E1, while the amounts of MIG (CXCL9) and IP10 were increased. CONCLUSION Exposing CD14+ monocytes to an alternatively timed IFNγ stimulation results in a novel macrophage subtype which possess additional M1-like features (MregIFNγ0). MregIFNγ0 may therefore have the potential to serve as cellular therapeutics for clinical applications beyond those covered by M2-like Mreg, including immunomodulation and tumor treatment.
Collapse
Affiliation(s)
- Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein (UKSH), Kiel, Germany.
| | - Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Frank Lichte
- Department of Anatomy, University of Kiel, Kiel, Germany
| | - Fred Fändrich
- Clinic for Applied Cell Therapy, UKSH, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Christine Eimer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | | | - Matthias Buerger
- Clinic for Vascular and Endovascular Surgery, UKSH, Kiel, Germany
| | | | - Melanie Rusch
- Clinic for Vascular and Endovascular Surgery, UKSH, Kiel, Germany
| | - Rene Rusch
- Clinic for Vascular and Endovascular Surgery, UKSH, Kiel, Germany
| | - Rouven Berndt
- Clinic for Vascular and Endovascular Surgery, UKSH, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| |
Collapse
|
2
|
Radiovaccination Strategy for Cancer Treatment Integrating Photodynamic Therapy-Generated Vaccines with Radiotherapy. Int J Mol Sci 2022; 23:ijms232012263. [PMID: 36293116 PMCID: PMC9602685 DOI: 10.3390/ijms232012263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 03/21/2023] Open
Abstract
Therapeutic cancer vaccines have become firmly established as a reliable and proficient form of tumor immunotherapy. They represent a promising approach for substantial advancements in the successful treatment of malignant diseases. One attractive vaccine strategy is using, as the vaccine material, the whole tumor cells treated ex vivo by rapid tumor ablation therapies that instigate stress signaling responses culminating in immunogenic cell death (ICD). One such treatment is photodynamic therapy (PDT). The underlying mechanisms and critical elements responsible for the potency of these vaccines are discussed in this review. Radiotherapy has emerged as a suitable component for the combined therapy protocols with the vaccines. Arguments and prospects for optimizing tumor control using a radiovaccination strategy involving X-ray irradiation plus PDT vaccines are presented, together with the findings supporting its validity.
Collapse
|
3
|
Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14010120. [PMID: 35057015 PMCID: PMC8780767 DOI: 10.3390/pharmaceutics14010120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT), in which a light source is used in combination with a photosensitizer to induce local cell death, has shown great promise in therapeutically targeting primary tumors with negligible toxicity and minimal invasiveness. However, numerous studies have shown that noninvasive PDT alone is not sufficient to completely ablate tumors in deep tissues, due to its inherent shortcomings. Therefore, depending on the characteristics and type of tumor, PDT can be combined with surgery, radiotherapy, immunomodulators, chemotherapy, and/or targeted therapy, preferably in a patient-tailored manner. Nanoparticles are attractive delivery vehicles that can overcome the shortcomings of traditional photosensitizers, as well as enable the codelivery of multiple therapeutic drugs in a spatiotemporally controlled manner. Nanotechnology-based combination strategies have provided inspiration to improve the anticancer effects of PDT. Here, we briefly introduce the mechanism of PDT and summarize the photosensitizers that have been tested preclinically for various cancer types and clinically approved for cancer treatment. Moreover, we discuss the current challenges facing the combination of PDT and multiple cancer treatment options, and we highlight the opportunities of nanoparticle-based PDT in cancer therapies.
Collapse
|
4
|
Korbelik M, Szulc ZM, Bielawska A, Separovic D. Controlling Immunoregulatory Cell Activity for Effective Photodynamic Therapy of Cancer. Methods Mol Biol 2022; 2451:569-577. [PMID: 35505033 DOI: 10.1007/978-1-0716-2099-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, it has become clear that a prerequisite requirement for most cancer therapies is controlling the negative impact of the activity of immunosuppressory cell populations. It is therefore of a considerable interest to develop treatments for containing the operation of major myeloid and lymphoid immunoregulatory cell populations. We have reported that acid ceramidase inhibitor LCL521 effectively overrides the activity of immunoregulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) engaged in the context of tumor response to photodynamic therapy (PDT). The present communication dissects and describes in detail the procedure for the use of LCL521 as an adjuvant to PDT for improved cure rates of treated tumors based on restricting the activity of immunoregulatory cell populations.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer Research Centre, British Columbia Cancer Agency, Vancouver, BC, Canada.
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
5
|
Nkune NW, Simelane NWN, Montaseri H, Abrahamse H. Photodynamic Therapy-Mediated Immune Responses in Three-Dimensional Tumor Models. Int J Mol Sci 2021; 22:12618. [PMID: 34884424 PMCID: PMC8657498 DOI: 10.3390/ijms222312618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive phototherapeutic approach for cancer therapy that can eliminate local tumor cells and produce systemic antitumor immune responses. In recent years, significant efforts have been made in developing strategies to further investigate the immune mechanisms triggered by PDT. The majority of in vitro experimental models still rely on the two-dimensional (2D) cell cultures that do not mimic a three-dimensional (3D) cellular environment in the human body, such as cellular heterogeneity, nutrient gradient, growth mechanisms, and the interaction between cells as well as the extracellular matrix (ECM) and therapeutic resistance to anticancer treatments. In addition, in vivo animal studies are highly expensive and time consuming, which may also show physiological discrepancies between animals and humans. In this sense, there is growing interest in the utilization of 3D tumor models, since they precisely mimic different features of solid tumors. This review summarizes the characteristics and techniques for 3D tumor model generation. Furthermore, we provide an overview of innate and adaptive immune responses induced by PDT in several in vitro and in vivo tumor models. Future perspectives are highlighted for further enhancing PDT immune responses as well as ideal experimental models for antitumor immune response studies.
Collapse
Affiliation(s)
| | | | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (N.W.N.); (N.W.N.S.); (H.M.)
| |
Collapse
|
6
|
Korbelik M. Optimization of Whole Tumor Cell Vaccines by Interaction with Phagocytic Receptors. Vaccines (Basel) 2021; 9:vaccines9080904. [PMID: 34452029 PMCID: PMC8402491 DOI: 10.3390/vaccines9080904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
The principal event in the function of whole-cell cancer vaccines is the ingestion of vaccine-delivered tumor antigen-containing material, which is performed by the patient's antigen-presenting cells (APCs) through the employment of their phagocytic receptors. The goal of the present study was to identify the phagocytic receptors critical for the therapeutic efficacy of whole-cell cancer vaccines. The model of photodynamic therapy (PDT)-generated vaccines based on mouse SCCVII tumors was utilized, with in vitro expanded SCCVII cells treated by PDT serving as the vaccine material used for treating mice bearing established SCCVII tumors. The therapeutic impact, monitored as delayed progression of vaccinated tumors, was almost completely eliminated when antibodies specifically blocking the activity of LOX-1 scavenger receptor were administered to mice 30 min before vaccination. Similar, but much less pronounced, impacts were found with antibodies neutralizing the activity of CR3/CR4 receptors recognizing complement-opsonized vaccine cells, and with those blocking activating Fcγ receptors that recognized IgG antibody-based opsonins. A strikingly contrary action, a greatly enhanced tumor control by the vaccine, was found by blocking immune inhibitory receptor, FcγRIIB. The reported findings establish, therefore, an attractive strategy that can be effectively exploited for potent therapeutic enhancement of PDT-generated (and probably other) whole-cell tumor vaccines.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
7
|
Antitumor immune responses induced by photodynamic and sonodynamic therapy: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
8
|
Falk-Mahapatra R, Gollnick SO. Photodynamic Therapy and Immunity: An Update. Photochem Photobiol 2020; 96:550-559. [PMID: 32128821 DOI: 10.1111/php.13253] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
Dr. Thomas Dougherty and his Oncology Foundation of Buffalo were the first to support my (S.O.G.) research into the effects of photodynamic therapy (PDT) on the host immune system. The small grant I was awarded in 2002 launched my career as an independent researcher; at the time, there were few studies on the importance of the immune response on the efficacy of PDT and no studies demonstrating the ability of PDT to enhance antitumor immunity. Over the last decades, the interest in PDT as an enhancer of antitumor immunity and our understanding of the mechanisms by which PDT enhances antitumor immunity have dramatically increased. In this review article, we look back on the studies that laid the foundation for our understanding and provide an update on current advances and therapies that take advantage of PDT enhancement of immunity.
Collapse
Affiliation(s)
| | - Sandra O Gollnick
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY.,Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
9
|
Preclinical and Clinical Evidence of Immune Responses Triggered in Oncologic Photodynamic Therapy: Clinical Recommendations. J Clin Med 2020; 9:jcm9020333. [PMID: 31991650 PMCID: PMC7074240 DOI: 10.3390/jcm9020333] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is an anticancer strategy utilizing light-mediated activation of a photosensitizer (PS) which has accumulated in tumor and/or surrounding vasculature. Upon activation, the PS mediates tumor destruction through the generation of reactive oxygen species and tumor-associated vasculature damage, generally resulting in high tumor cure rates. In addition, a PDT-induced immune response against the tumor has been documented in several studies. However, some contradictory results have been reported as well. With the aim of improving the understanding and awareness of the immunological events triggered by PDT, this review focuses on the immunological effects post-PDT, described in preclinical and clinical studies. The reviewed preclinical evidence indicates that PDT is able to elicit a local inflammatory response in the treated site, which can develop into systemic antitumor immunity, providing long-term tumor growth control. Nevertheless, this aspect of PDT has barely been explored in clinical studies. It is clear that further understanding of these events can impact the design of more potent PDT treatments. Based on the available preclinical knowledge, recommendations are given to guide future clinical research to gain valuable information on the immune response induced by PDT. Such insights directly obtained from cancer patients can only improve the success of PDT treatment, either alone or in combination with immunomodulatory approaches.
Collapse
|
10
|
Payandeh Z, Khalili S, Somi MH, Mard-Soltani M, Baghbanzadeh A, Hajiasgharzadeh K, Samadi N, Baradaran B. PD-1/PD-L1-dependent immune response in colorectal cancer. J Cell Physiol 2020; 235:5461-5475. [PMID: 31960962 DOI: 10.1002/jcp.29494] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is still considered as the third most frequent cancer in the world. Microsatellite instability (MSI), inflammation, and microRNAs have been demonstrated as the main contributing factors in CRC. Subtype 1 CRC is defined by NK cells infiltration, induction of Th1 lymphocyte and cytotoxic T cell responses as well as upregulation of immune checkpoint proteins including programmed cell death-1 (PD-1). Based on the diverse features of CRC, such as the stage and localization of the tumor, several treatment approaches are available. However, the efficiency of these treatments may be decreased due to the development of diverse resistance mechanisms. It has been proven that monoclonal antibodies (mAbs) can increase the effectiveness of CRC treatments. Nowadays, several mAbs including nivolumab and pembrolizumab have been approved for the treatment of CRC. Immune checkpoint receptors including PD-1 can be inhibited by these antibodies. Combination therapy gives an opportunity for advanced treatment for CRC patients. In this review, an update has been provided on the molecular mechanisms involved in MSI colorectal cancer immune microenvironment by focusing on PD-ligand 1 (PD-L1) and treatment of patients with advanced immunotherapy, which were examined in the different clinical trial phases. Considering induced expression of PD-L1 by conventional chemotherapeutics, we have summarized the role of PD-L1 in CRC, the chemotherapy effects on the PD-1/PD-L1 axis and novel combined approaches to enhance immunotherapy of CRC by focusing on PD-L1.
Collapse
Affiliation(s)
- Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nasser Samadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical, Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
N-dihydrogalactochitosan as immune and direct antitumor agent amplifying the effects of photodynamic therapy and photodynamic therapy-generated vaccines. Int Immunopharmacol 2019; 75:105764. [PMID: 31352327 DOI: 10.1016/j.intimp.2019.105764] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/07/2019] [Accepted: 07/14/2019] [Indexed: 12/30/2022]
Abstract
It is becoming apparent that to obtain robust and prolonged antitumor responses in cancer immunotherapy, appropriate adjunct agents promoting both tumor antigen delivery and immune rejection enhancement are critically required. The semisynthetic biopolymer N-dihydrogalactochitosan (GC) is emerging as a promising such candidate. In the present study, the effects of GC were investigated when combined with cancer vaccines generated by photodynamic therapy (PDT) using mouse tumor model SCCVII (squamous cell carcinoma). The adjunct GC treatment was found to enhance therapeutic benefit obtained with PDT vaccine, while reducing the numbers of myeloid-derived suppressor cells. Another important property of GC is promoting directly the death of SCCVII cells sustaining injury from PDT mediated by various photosensitizers. This effect is extended to cells treated by cryoablation therapy (CAT) performed by exposure to -80 °C. A capacity of GC for preferential binding to PDT treated cells was demonstrated using fluorescence microscopy. In vitro testing with specific caspase-1 inhibitor revealed a pro-survival role of this enzyme in membrane lipid repair mechanisms following combined PDT plus GC treatment. In conclusion, GC represents a uniquely promising adjunct for various PDT protocols, photothermal and similar rapid tumor-ablating therapies.
Collapse
|
12
|
Davis RW, Snyder E, Miller J, Carter S, Houser C, Klampatsa A, Albelda SM, Cengel KA, Busch TM. Luminol Chemiluminescence Reports Photodynamic Therapy-Generated Neutrophil Activity In Vivo and Serves as a Biomarker of Therapeutic Efficacy. Photochem Photobiol 2018; 95:430-438. [PMID: 30357853 DOI: 10.1111/php.13040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 01/26/2023]
Abstract
Inflammatory cells, most especially neutrophils, can be a necessary component of the antitumor activity occurring after administration of photodynamic therapy. Generation of neutrophil responses has been suggested to be particularly important in instances when the delivered photodynamic therapy (PDT) dose is insufficient. In these cases, the release of neutrophil granules and engagement of antitumor immunity may play an important role in eliminating residual disease. Herein, we utilize in vivo imaging of luminol chemiluminescence to noninvasively monitor neutrophil activation after PDT administration. Studies were performed in the AB12 murine model of mesothelioma, treated with Photofrin-PDT. Luminol-generated chemiluminescence increased transiently 1 h after PDT, followed by a subsequent decrease at 4 h after PDT. The production of luminol signal was not associated with the influx of Ly6G+ cells, but was related to oxidative burst, as an indicator of neutrophil function. Most importantly, greater levels of luminol chemiluminescence 1 h after PDT were prognostic of a complete response at 90 days after PDT. Taken together, this research supports an important role for early activity by Ly6G+ cells in the generation of long-term PDT responses in mesothelioma, and it points to luminol chemiluminescence as a potentially useful approach for preclinical monitoring of neutrophil activation by PDT.
Collapse
Affiliation(s)
- Richard W Davis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emma Snyder
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shirron Carter
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Cassandra Houser
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Astero Klampatsa
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Hou X, Tao Y, Pang Y, Li X, Jiang G, Liu Y. Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treatment. Int J Cancer 2018; 143:3050-3060. [PMID: 29981170 DOI: 10.1002/ijc.31717] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/29/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoyang Hou
- Department of Dermatology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Yingkai Tao
- Department of Dermatology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Yanyu Pang
- Department of Dermatology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Xinxin Li
- Department of Dermatology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Guan Jiang
- Department of Dermatology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Yanqun Liu
- Department of Dermatology; Affiliated Hospital of Xuzhou Medical University; Xuzhou China
- Department of Dermatology; The First Affiliated Hospital with Nanjing Medical University; Nanjing China
| |
Collapse
|
14
|
Ao C, Zeng K. The role of regulatory T cells in pathogenesis and therapy of human papillomavirus-related diseases, especially in cancer. INFECTION GENETICS AND EVOLUTION 2018; 65:406-413. [PMID: 30172014 DOI: 10.1016/j.meegid.2018.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted agent in the world. It can cause condyloma acuminatum, anogenital malignancies, and head and neck cancers. The host immune responses to HPV involve multiple cell types that have regulatory functions, and HPV-mediated changes to regulatory T cells (Tregs) in both the local lesion tissues and the circulatory system of patients have received considerable attention. The role of Tregs in HPV infections ranges from suppression of effector T cell (Teff) responses to protection of tissues from immune-mediated injury in different anatomic subsites. In this review, we explore the influence of Tregs in the immunopathology of HPV-related diseases and therapies targeting Tregs as novel approaches against HPV.
Collapse
Affiliation(s)
- Chunping Ao
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Gang W, Wang JJ, Guan R, Yan S, Shi F, Zhang JY, Li ZM, Gao J, Fu XL. Strategy to targeting the immune resistance and novel therapy in colorectal cancer. Cancer Med 2018; 7:1578-1603. [PMID: 29658188 PMCID: PMC5943429 DOI: 10.1002/cam4.1386] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Assessing the CRC subtypes that can predict the outcome of colorectal cancer (CRC) in patients with immunogenicity seems to be a promising strategy to develop new drugs that target the antitumoral immune response. In particular, the disinhibition of the antitumoral T‐cell response by immune checkpoint blockade has shown remarkable therapeutic promise for patients with mismatch repair (MMR) deficient CRC. In this review, the authors provide the update of the molecular features and immunogenicity of CRC, discuss the role of possible predictive biomarkers, illustrate the modern immunotherapeutic approaches, and introduce the most relevant ongoing preclinical study and clinical trials such as the use of the combination therapy with immunotherapy. Furthermore, this work is further to understand the complex interactions between the immune surveillance and develop resistance in tumor cells. As expected, if the promise of these developments is fulfilled, it could develop the effective therapeutic strategies and novel combinations to overcome immune resistance and enhance effector responses, which guide clinicians toward a more “personalized” treatment for advanced CRC patients.
Collapse
Affiliation(s)
- Wang Gang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Rui Guan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Sun Yan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Jia-Yan Zhang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Zi-Meng Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| |
Collapse
|