1
|
Guan J, Chuang TP, Vikström A, Palmer RH, Hallberg B. ALK F1174S mutation impairs ALK kinase activity in EML4-ALK variant 1 and sensitizes EML4-ALK variant 3 to crizotinib. Front Oncol 2024; 13:1281510. [PMID: 38264745 PMCID: PMC10803553 DOI: 10.3389/fonc.2023.1281510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Objective To assess the influence of F1174S mutation on kinase activity and drug sensitivity of the echinoderm microtubule-associated protein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) fusion (EML4-ALK) variants 1 and 3. Methods We constructed mammalian expression plasmids of both wildtype and F1174 mutant EML4-ALK variants 1 and 3, and then characterized them with cell models by performing immunoblotting, neurite outgrowth assay, focus formation assay as well as protein stability assay. Drug sensitivity to ALK tyrosine kinase inhibitors was also compared between wildtype and F1174 mutant EML4-ALK fusions. In addition, we characterized the effect of different F1174 kinase domain mutations in the context of EML4-ALK fusions. Results In contrast to the oncogenic ALK-F1174S mutation that has been reported to be activating in the context of full-length ALK in neuroblastoma, EML4-ALK (F1174S) variant 1 exhibits impaired kinase activity leading to loss of oncogenicity. Furthermore, unlike the previously reported F1174C/L/V mutations, mutation of F1174 to S sensitizes EML4-ALK variants 3a and 3b to crizotinib. Conclusion These findings highlight the complexity of drug selection when treating patients harboring resistance mutations and suggest that the F1174S mutation in EML4-ALK variant 1 is likely not a potent oncogenic driver. Additional oncogenic driver or other resistance mechanisms should be considered in the case of EML4-ALK variant 1 with F1174S mutation.
Collapse
Affiliation(s)
- Jikui Guan
- Institute of Pediatric Medicine, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tzu-Po Chuang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Vikström
- Department of Pulmonary Medicine, Linköping University Hospital, Linköping, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Cheon SY, Kwon S. Molecular Anatomy of the EML4-ALK Fusion Protein for the Development of Novel Anticancer Drugs. Int J Mol Sci 2023; 24:ijms24065821. [PMID: 36982897 PMCID: PMC10054655 DOI: 10.3390/ijms24065821] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The EML4 (echinoderm microtubule-associated protein-like 4)-ALK (anaplastic lymphoma kinase) fusion gene in non-small-cell lung cancer (NSCLC) was first identified in 2007. As the EML4-ALK fusion protein promotes carcinogenesis in lung cells, much attention has been paid to it, leading to the development of therapies for patients with NSCLC. These therapies include ALK tyrosine kinase inhibitors and heat shock protein 90 inhibitors. However, detailed information on the entire structure and function of the EML4-ALK protein remains deficient, and there are many obstacles to overcome in the development of novel anticancer agents. In this review, we describe the respective partial structures of EML4 and ALK that are known to date. In addition to their structures, noteworthy structural features and launched inhibitors of the EML4-ALK protein are summarized. Furthermore, based on the structural features and inhibitor-binding modes, we discuss strategies for the development of novel inhibitors targeting the EML4-ALK protein.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Biotechnology, Konkuk University, Chungju 27478, Republic of Korea
- Research Institute for Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Sunghark Kwon
- Department of Biotechnology, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
3
|
ALK fusion NSCLC oncogenes promote survival and inhibit NK cell responses via SERPINB4 expression. Proc Natl Acad Sci U S A 2023; 120:e2216479120. [PMID: 36791109 PMCID: PMC9974509 DOI: 10.1073/pnas.2216479120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) fusion variants in Non-Small Cell Lung Cancer (NSCLC) consist of numerous dimerizing fusion partners. Retrospective investigations suggest that treatment benefit in response to ALK tyrosine kinase inhibitors (TKIs) differs dependent on the fusion variant present in the patient tumor. Therefore, understanding the oncogenic signaling networks driven by different ALK fusion variants is important. To do this, we developed controlled inducible cell models expressing either Echinoderm Microtubule Associated Protein Like 4 (EML4)-ALK-V1, EML4-ALK-V3, Kinesin Family Member 5B (KIF5B)-ALK, or TRK-fused gene (TFG)-ALK and investigated their transcriptomic and proteomic responses to ALK activity modulation together with patient-derived ALK-positive NSCLC cell lines. This allowed identification of both common and isoform-specific responses downstream of these four ALK fusions. An inflammatory signature that included upregulation of the Serpin B4 serine protease inhibitor was observed in both ALK fusion inducible and patient-derived cells. We show that Signal transducer and activator of transcription 3 (STAT3), Nuclear Factor Kappa B (NF-κB) and Activator protein 1 (AP1) are major transcriptional regulators of SERPINB4 downstream of ALK fusions. Upregulation of SERPINB4 promotes survival and inhibits natural killer cell-mediated cytotoxicity, which has potential for therapeutic impact targeting the immune response together with ALK TKIs in NSCLC.
Collapse
|
4
|
Pfeifer K, Wolfstetter G, Anthonydhason V, Masudi T, Arefin B, Bemark M, Mendoza-Garcia P, Palmer RH. Patient-associated mutations in Drosophila Alk perturb neuronal differentiation and promote survival. Dis Model Mech 2022; 15:dmm049591. [PMID: 35972154 PMCID: PMC9403751 DOI: 10.1242/dmm.049591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Activating anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK) mutations occur in pediatric neuroblastoma and are associated with poor prognosis. To study ALK-activating mutations in a genetically controllable system, we employed CRIPSR/Cas9, incorporating orthologs of the human oncogenic mutations ALKF1174L and ALKY1278S in the Drosophila Alk locus. AlkF1251L and AlkY1355S mutant Drosophila exhibited enhanced Alk signaling phenotypes, but unexpectedly depended on the Jelly belly (Jeb) ligand for activation. Both AlkF1251L and AlkY1355S mutant larval brains displayed hyperplasia, represented by increased numbers of Alk-positive neurons. Despite this hyperplasic phenotype, no brain tumors were observed in mutant animals. We showed that hyperplasia in Alk mutants was not caused by significantly increased rates of proliferation, but rather by decreased levels of apoptosis in the larval brain. Using single-cell RNA sequencing, we identified perturbations during temporal fate specification in AlkY1355S mutant mushroom body lineages. These findings shed light on the role of Alk in neurodevelopmental processes and highlight the potential of Alk-activating mutations to perturb specification and promote survival in neuronal lineages. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kathrin Pfeifer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Georg Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Vimala Anthonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
5
|
Salifu EY, Rashid IA, Soliman MES. Impact of compound mutations I1171N + F1174I and I1171N + L1198H on the structure of ALK in NSCLC pathogenesis: atomistic insights. J Biomol Struct Dyn 2022:1-9. [PMID: 35514136 DOI: 10.1080/07391102.2022.2072390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Anaplastic lymphoma kinase (ALK) fusion genes are found in 3%-5% of non-small cell lung cancers (NSCLCs). NSCLC is the most common type of lung cancer, accounting for 84% of all lung cancer diagnoses. Available treatment options for ALK-positive NSCLCs involve the use of ALK tyrosine kinase inhibitors (ALK-TKIs) which have shown to be effective with a high response rate. Nonetheless, the emergence of multiple compound mutations such as I1171N + F1174I or I1171N + L1198H has been reported to cause resistance to all approved ALK-TKIs. However, the underlying molecular mechanisms surrounding the impact of these compound mutants remain poorly understood. Hence, we performed molecular dynamics simulations to characterize the structural effects and functional implications of these compound mutations. Findings revealed a destabilizing effect on ALK by mutants as compared to the wild-type ALK structure. Also, further insights revealed a lower root-mean-squared fluctuation, radius of gyration, and solvent-accessible surface area values of I1171N + F1174I and I1171N + L1198H ALK compound mutations suggesting that the mutants have a more compact structure and a smaller surface area than the wild-type protein. The mutants also distorted the activation loop residues (Tyr1278, Tyr1282, and Tyr1283) in the ALK structure, which further identify them as possible disruptors of phosphorylation. In contrast to wild conformation, the mutant conformations exhibited a reduced node degree in their residue interaction networks. Collectively, our findings provide deeper insights into the deleterious effects of I1171N + F1174I and I1171N + L1198H ALK compound mutations, which may contribute to NSCLC pathogenesis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elliasu Y Salifu
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Issahaku A Rashid
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Szydzik J, Lind DE, Arefin B, Kurhe Y, Umapathy G, Siaw JT, Claeys A, Gabre JL, Van den Eynden J, Hallberg B, Palmer RH. ATR inhibition enables complete tumour regression in ALK-driven NB mouse models. Nat Commun 2021; 12:6813. [PMID: 34819497 PMCID: PMC8613282 DOI: 10.1038/s41467-021-27057-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 11/03/2021] [Indexed: 01/23/2023] Open
Abstract
High-risk neuroblastoma (NB) often involves MYCN amplification as well as mutations in ALK. Currently, high-risk NB presents significant clinical challenges, and additional therapeutic options are needed. Oncogenes like MYCN and ALK result in increased replication stress in cancer cells, offering therapeutically exploitable options. We have pursued phosphoproteomic analyses highlighting ATR activity in ALK-driven NB cells, identifying the BAY1895344 ATR inhibitor as a potent inhibitor of NB cell growth and proliferation. Using RNA-Seq, proteomics and phosphoproteomics we characterize NB cell and tumour responses to ATR inhibition, identifying key components of the DNA damage response as ATR targets in NB cells. ATR inhibition also produces robust responses in mouse models. Remarkably, a 2-week combined ATR/ALK inhibition protocol leads to complete tumor regression in two independent genetically modified mouse NB models. These results suggest that NB patients, particularly in high-risk groups with oncogene-induced replication stress, may benefit from ATR inhibition as therapeutic intervention. Effective therapeutic options are still needed in neuroblastoma treatment. Here, the authors, through a comprehensive proteomics analysis, identify ATR as a potential therapeutic target of neuroblastoma and demonstrate the efficacy of the ATR inhibitor BAY1895344 in combination with the ALK tyrosine kinase inhibitor lorlatinib.
Collapse
Affiliation(s)
- Joanna Szydzik
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Joachim Tetteh Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Arne Claeys
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium
| | - Jonatan L Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.,Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
7
|
Defining Pathological Activities of ALK in Neuroblastoma, a Neural Crest-Derived Cancer. Int J Mol Sci 2021; 22:ijms222111718. [PMID: 34769149 PMCID: PMC8584162 DOI: 10.3390/ijms222111718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is a common extracranial solid tumour of childhood, responsible for 15% of cancer-related deaths in children. Prognoses vary from spontaneous remission to aggressive disease with extensive metastases, where treatment is challenging. Tumours are thought to arise from sympathoadrenal progenitor cells, which derive from an embryonic cell population called neural crest cells that give rise to diverse cell types, such as facial bone and cartilage, pigmented cells, and neurons. Tumours are found associated with mature derivatives of neural crest, such as the adrenal medulla or paraspinal ganglia. Sympathoadrenal progenitor cells express anaplastic lymphoma kinase (ALK), which encodes a tyrosine kinase receptor that is the most frequently mutated gene in neuroblastoma. Activating mutations in the kinase domain are common in both sporadic and familial cases. The oncogenic role of ALK has been extensively studied, but little is known about its physiological role. Recent studies have implicated ALK in neural crest migration and sympathetic neurogenesis. However, very few downstream targets of ALK have been identified. Here, we describe pathological activation of ALK in the neural crest, which promotes proliferation and migration, while preventing differentiation, thus inducing the onset of neuroblastoma. Understanding the effects of ALK activity on neural crest cells will help find new targets for neuroblastoma treatment.
Collapse
|
8
|
Computational studies of anaplastic lymphoma kinase mutations reveal common mechanisms of oncogenic activation. Proc Natl Acad Sci U S A 2021; 118:2019132118. [PMID: 33674381 PMCID: PMC7958353 DOI: 10.1073/pnas.2019132118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
High-risk tumors are genomically heterogeneous, harboring gene amplifications and mutations. The activation status of mutated proteins in cancer can profoundly impact disease progression, patient response, and drug sensitivity. Yet, outside of a few hotspot mutations, functional studies of clinically observed mutations are not commonly pursued. We report a combined experimental profiling and computational analysis of the effects of clinically observed and “test” mutations in the kinase domain of anaplastic lymphoma kinase (ALK), a known oncogenic driver in pediatric neuroblastoma. We find that the activation status of the mutated protein is a good indicator of the transforming ability in NIH 3T3 cells. We also report biophysical as well as data-driven models with predictive power to profile these mutant kinases in silico. Kinases play important roles in diverse cellular processes, including signaling, differentiation, proliferation, and metabolism. They are frequently mutated in cancer and are the targets of a large number of specific inhibitors. Surveys of cancer genome atlases reveal that kinase domains, which consist of 300 amino acids, can harbor numerous (150 to 200) single-point mutations across different patients in the same disease. This preponderance of mutations—some activating, some silent—in a known target protein make clinical decisions for enrolling patients in drug trials challenging since the relevance of the target and its drug sensitivity often depend on the mutational status in a given patient. We show through computational studies using molecular dynamics (MD) as well as enhanced sampling simulations that the experimentally determined activation status of a mutated kinase can be predicted effectively by identifying a hydrogen bonding fingerprint in the activation loop and the αC-helix regions, despite the fact that mutations in cancer patients occur throughout the kinase domain. In our study, we find that the predictive power of MD is superior to a purely data-driven machine learning model involving biochemical features that we implemented, even though MD utilized far fewer features (in fact, just one) in an unsupervised setting. Moreover, the MD results provide key insights into convergent mechanisms of activation, primarily involving differential stabilization of a hydrogen bond network that engages residues of the activation loop and αC-helix in the active-like conformation (in >70% of the mutations studied, regardless of the location of the mutation).
Collapse
|
9
|
Anaplastic Lymphoma Kinase Overexpression Is Associated with Aggressive Phenotypic Characteristics of Ovarian High-Grade Serous Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1837-1850. [PMID: 34214505 DOI: 10.1016/j.ajpath.2021.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Deregulated full-length anaplastic lymphoma kinase (ALK) overexpression has been found in some primary solid tumors, but little is known about its role in ovarian high-grade serous carcinoma (HGSC). Herein, we focused on the functional roles of ALK in HGSC. Cytoplasmic ALK immunoreactivity without chromosomal rearrangement and gene mutations was significantly higher in HGSC compared with non-HGSC type ovarian carcinomas, and was significantly associated with several unfavorable clinicopathologic factors and poor prognosis. HGSC cell lines stably overexpressing ALK exhibited increased cell proliferation, enhanced cancer stem cell features, and accelerated cell mobility, whereas these phenotypes were abrogated in ALK-knockdown cells. Expression of the nervous system-associated gene, ELAVL3, and the corresponding protein (commonly known as HuC) was significantly increased in cells overexpressing ALK. There was increased expression of Sox2 and Sox3 (genes associated with the neural progenitor population) in ALK-overexpressing but not ALK-knockdown cells. Furthermore, overexpression of Sox2 or Sox3 enhanced both ALK and ELAVL3 promoter activities, suggesting the existence of ALK/Sox/HuC signaling loops. Finally, ALK overexpression was due to increased expression of neuroendocrine markers, including synaptophysin, CD56, and BCL2, in HGSC tissues. These findings suggest that overexpression of full-length ALK may influence the biological behavior of HGSC through cooperation with ELAVL3 and Sox factors, leading to establishment and maintenance of the aggressive phenotypic characteristics of HGSC.
Collapse
|
10
|
Identification of the Wallenda JNKKK as an Alk suppressor reveals increased competitiveness of Alk-expressing cells. Sci Rep 2020; 10:14954. [PMID: 32917927 PMCID: PMC7486895 DOI: 10.1038/s41598-020-70890-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
Anaplastic lymphoma kinase (Alk) is a receptor tyrosine kinase of the insulin receptor super-family that functions as oncogenic driver in a range of human cancers such as neuroblastoma. In order to investigate mechanisms underlying Alk oncogenic signaling, we conducted a genetic suppressor screen in Drosophila melanogaster. Our screen identified multiple loci important for Alk signaling, including members of Ras/Raf/ERK-, Pi3K-, and STAT-pathways as well as tailless (tll) and foxo whose orthologues NR2E1/TLX and FOXO3 are transcription factors implicated in human neuroblastoma. Many of the identified suppressors were also able to modulate signaling output from activated oncogenic variants of human ALK, suggesting that our screen identified targets likely relevant in a wide range of contexts. Interestingly, two misexpression alleles of wallenda (wnd, encoding a leucine zipper bearing kinase similar to human DLK and LZK) were among the strongest suppressors. We show that Alk expression leads to a growth advantage and induces cell death in surrounding cells. Our results suggest that Alk activity conveys a competitive advantage to cells, which can be reversed by over-expression of the JNK kinase kinase Wnd.
Collapse
|
11
|
Vasseur A, Cabel L, Geiss R, Schleiermacher G, Pierron G, Kamal M, Jehanno N, Bataillon G, Guinebretiere JM, Bozec L. Efficacy of Lorlatinib in Primary Crizotinib-Resistant Adult Neuroblastoma Harboring ALK Y1278S Mutation. JCO Precis Oncol 2019; 3:1-5. [DOI: 10.1200/po.18.00396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
12
|
Van den Eynden J, Umapathy G, Ashouri A, Cervantes-Madrid D, Szydzik J, Ruuth K, Koster J, Larsson E, Guan J, Palmer RH, Hallberg B. Phosphoproteome and gene expression profiling of ALK inhibition in neuroblastoma cell lines reveals conserved oncogenic pathways. Sci Signal 2018; 11:11/557/eaar5680. [PMID: 30459281 DOI: 10.1126/scisignal.aar5680] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that is a clinical target of major interest in cancer. Mutations and rearrangements in ALK trigger the activation of the encoded receptor and its downstream signaling pathways. ALK mutations have been identified in both familial and sporadic neuroblastoma cases as well as in 30 to 40% of relapses, which makes ALK a bona fide target in neuroblastoma therapy. Tyrosine kinase inhibitors (TKIs) that target ALK are currently in clinical use for the treatment of patients with ALK-positive non-small cell lung cancer. However, monotherapy with the ALK inhibitor crizotinib has been less encouraging in neuroblastoma patients with ALK alterations, raising the question of whether combinatorial therapy would be more effective. In this study, we established both phosphoproteomic and gene expression profiles of ALK activity in neuroblastoma cells exposed to first- and third-generation ALK TKIs, to identify the underlying molecular mechanisms and identify relevant biomarkers, signaling networks, and new therapeutic targets. This analysis has unveiled various important leads for novel combinatorial treatment strategies for patients with neuroblastoma and an increased understanding of ALK signaling involved in this disease.
Collapse
Affiliation(s)
- Jimmy Van den Eynden
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.,Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000 Ghent, Belgium
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Arghavan Ashouri
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | | | - Joanna Szydzik
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Kristina Ruuth
- Institution for Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.,Children's Hospital affiliated with Zhengzhou University, 450018 Zhengzhou, China
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
13
|
Guan J, Fransson S, Siaw JT, Treis D, Van den Eynden J, Chand D, Umapathy G, Ruuth K, Svenberg P, Wessman S, Shamikh A, Jacobsson H, Gordon L, Stenman J, Svensson PJ, Hansson M, Larsson E, Martinsson T, Palmer RH, Kogner P, Hallberg B. Clinical response of the novel activating ALK-I1171T mutation in neuroblastoma to the ALK inhibitor ceritinib. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a002550. [PMID: 29907598 PMCID: PMC6071567 DOI: 10.1101/mcs.a002550] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Tumors with anaplastic lymphoma kinase (ALK) fusion rearrangements, including non-small-cell lung cancer and anaplastic large cell lymphoma, are highly sensitive to ALK tyrosine kinase inhibitors (TKIs), underscoring the notion that such cancers are addicted to ALK activity. Although mutations in ALK are heavily implicated in childhood neuroblastoma, response to the ALK TKI crizotinib has been disappointing. Embryonal tumors in patients with DNA repair defects such as Fanconi anemia (FA) often have a poor prognosis, because of lack of therapeutic options. Here we report a child with underlying FA and ALK mutant high-risk neuroblastoma responding strongly to precision therapy with the ALK TKI ceritinib. Conventional chemotherapy treatment caused severe, life-threatening toxicity. Genomic analysis of the initial biopsy identified germline FANCA mutations as well as a novel ALK-I1171T variant. ALK-I1171T generates a potent gain-of-function mutant, as measured in PC12 cell neurite outgrowth and NIH3T3 transformation. Pharmacological inhibition profiling of ALK-I1171T in response to various ALK TKIs identified an 11-fold improved inhibition of ALK-I1171T with ceritinib when compared with crizotinib. Immunoaffinity-coupled LC-MS/MS phosphoproteomics analysis indicated a decrease in ALK signaling in response to ceritinib. Ceritinib was therefore selected for treatment in this child. Monotherapy with ceritinib was well tolerated and resulted in normalized catecholamine markers and tumor shrinkage. After 7.5 mo treatment, the residual primary tumor shrunk, was surgically removed, and exhibited hallmarks of differentiation together with reduced Ki67 levels. Clinical follow-up after 21 mo treatment revealed complete clinical remission including all metastatic sites. Therefore, ceritinib presents a viable therapeutic option for ALK-positive neuroblastoma.
Collapse
Affiliation(s)
- Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden.,Children's Hospital Affiliated to Zhengzhou University, 450018 Zhengzhou, China
| | - Susanne Fransson
- Department of Pathology and Genetics, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Joachim Tetteh Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Diana Treis
- Childhood Cancer Research Unit, Department of Women's and Children's Health, and Pediatric Oncology Program Karolinska University Hospital, Stockholm 17176, Sweden
| | - Jimmy Van den Eynden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Damini Chand
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Kristina Ruuth
- Institute of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | - Petter Svenberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, and Pediatric Oncology Program Karolinska University Hospital, Stockholm 17176, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm 17176, Sweden.,Department of Clinical Pathology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Alia Shamikh
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm 17176, Sweden.,Department of Clinical Pathology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Hans Jacobsson
- Department of Radiology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Lena Gordon
- Department of Pediatric Radiology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Jakob Stenman
- Department of Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Pär-Johan Svensson
- Department of Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Magnus Hansson
- Department of Pediatrics and Pathology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Tommy Martinsson
- Department of Pathology and Genetics, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Per Kogner
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm 17176, Sweden.,Department of Clinical Pathology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| |
Collapse
|
14
|
Fernández-Calle R, Vicente-Rodríguez M, Pastor M, Gramage E, Di Geronimo B, Zapico JM, Coderch C, Pérez-García C, Lasek AW, de Pascual-Teresa B, Ramos A, Herradón G. Pharmacological inhibition of Receptor Protein Tyrosine Phosphatase β/ζ (PTPRZ1) modulates behavioral responses to ethanol. Neuropharmacology 2018; 137:86-95. [PMID: 29753117 DOI: 10.1016/j.neuropharm.2018.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022]
Abstract
Pleiotrophin (PTN) and Midkine (MK) are neurotrophic factors that are upregulated in the prefrontal cortex after alcohol administration and have been shown to reduce ethanol drinking and reward. PTN and MK are the endogenous inhibitors of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ (a.k.a. PTPRZ1, RPTPβ, PTPζ), suggesting a potential role for this phosphatase in the regulation of alcohol effects. To determine if RPTPβ/ζ regulates ethanol consumption, we treated mice with recently developed small-molecule inhibitors of RPTPβ/ζ (MY10, MY33-3) before testing them for binge-like drinking using the drinking in the dark protocol. Mice treated with RPTPβ/ζ inhibitors, particularly with MY10, drank less ethanol than controls. MY10 treatment blocked ethanol conditioned place preference, showed limited effects on ethanol-induced ataxia, and potentiated the sedative effects of ethanol. We also tested whether RPTPβ/ζ is involved in ethanol signaling pathways. We found that ethanol treatment of neuroblastoma cells increased phosphorylation of anaplastic lymphoma kinase (ALK) and TrkA, known substrates of RPTPβ/ζ. Treatment of neuroblastoma cells with MY10 or MY33-3 also increased levels of phosphorylated ALK and TrkA. However, concomitant treatment of neuroblastoma cells with ethanol and MY10 or MY33-3 prevented the increase in pTrkA and pALK. These results demonstrate for the first time that ethanol engages TrkA signaling and that RPTPβ/ζ modulates signaling pathways activated by alcohol and behavioral responses to this drug. The data support the hypothesis that RPTPβ/ζ might be a novel target of pharmacotherapy for reducing excessive alcohol consumption.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Marta Vicente-Rodríguez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Miryam Pastor
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Bruno Di Geronimo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - José María Zapico
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Claire Coderch
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Carmen Pérez-García
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Amy W Lasek
- Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Ana Ramos
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain.
| |
Collapse
|