1
|
Yin Y, Li X, Wang M, Ling G, Zhang P. Glucose detection: In-situ colorimetric analysis with double-layer hydrogel microneedle patch based on polyvinyl alcohol and carboxymethyl chitosan. Int J Biol Macromol 2024; 277:134408. [PMID: 39097056 DOI: 10.1016/j.ijbiomac.2024.134408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Skin interstitial fluid (ISF) has emerged as a significant reservoir of biomarkers for disease diagnosis and prevention. Microneedle (MN) patches are regarded as an optimal platform for ISF extraction from the skin due to their non-invasive nature. However, challenges such as prolonged sampling durations and complex detection procedures impede timely metabolic analysis. In this investigation, we amalgamated MN technology with immobilized enzyme technology to fabricate a dual-layer MN patch integrating sampling and detection functionalities, thereby enabling in-situ colorimetric detection of hyperglycemia. The tip layer of the patch, comprising polyvinyl alcohol/carboxymethyl chitosan (PVA/CMCS) MN, was synthesized utilizing a chemical crosslinking approach for the first time, with glucose oxidase (GOx) being incorporated. The hydrophilicity of CMCS expedited the extraction process, facilitating the retrieval of approximately 10 mg of ISF within 10 min. The backing layer consisted of an immobilized polyvinyl alcohol-chitosan-horseradish peroxidase (PVA-CS-HRP) hydrogel film loaded with 3,3', 5,5'-tetramethylbenzidine (TMB). Incorporating macromolecular polymer PVA and CS for HRP immobilization addressed the issue of poor stability associated with traditional natural enzymes, thereby enhancing the sensitivity of the reaction system. The in-situ colorimetric sensor facilitated minimally invasive ISF extraction and swift conversion of glucose levels into detectable color changes.
Collapse
Affiliation(s)
- Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaodan Li
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Meng Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
2
|
Abdalbagemohammedabdalsadeg S, Xiao BL, Ma XX, Li YY, Wei JS, Moosavi-Movahedi AA, Yousefi R, Hong J. Catalase immobilization: Current knowledge, key insights, applications, and future prospects - A review. Int J Biol Macromol 2024; 276:133941. [PMID: 39032907 DOI: 10.1016/j.ijbiomac.2024.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Catalase (CAT), a ubiquitous enzyme in all oxygen-exposed organisms, effectively decomposes hydrogen peroxide (H2O2), a harmful by-product, into water and oxygen, mitigating oxidative stress and cellular damage, safeguarding cellular organelles and tissues. Therefore, CAT plays a crucial role in maintaining cellular homeostasis and function. Owing to its pivotal role, CAT has garnered considerable interest. However, many challenges arise when used, especially in multiple practical processes. "Immobilization", a widely-used technique, can help improve enzyme properties. CAT immobilization offers numerous advantages, including enhanced stability, reusability, and facilitated downstream processing. This review presents a comprehensive overview of CAT immobilization. It starts with discussing various immobilization mechanisms, support materials, advantages, drawbacks, and factors influencing the performance of immobilized CAT. Moreover, the review explores the application of the immobilized CAT in various industries and its prospects, highlighting its essential role in diverse fields and stimulating further research and investigation. Furthermore, the review highlights some of the world's leading companies in the field of the CAT industry and their substantial potential for economic contribution. This review aims to serve as a discerning, source of information for researchers seeking a comprehensive cutting-edge overview of this rapidly evolving field and have been overwhelmed by the size of publications.
Collapse
Affiliation(s)
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Xin-Xin Ma
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Yang-Yang Li
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Jian-She Wei
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | | | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, 1417614418 Tehran, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, 475000 Kaifeng, China.
| |
Collapse
|
3
|
Bakar B, Akbulut M, Ulusal F, Ulu A, Özdemir N, Ateş B. Horseradish Peroxidase Immobilized onto Mesoporous Magnetic Hybrid Nanoflowers for Enzymatic Decolorization of Textile Dyes: A Highly Robust Bioreactor and Boosted Enzyme Stability. ACS OMEGA 2024; 9:24558-24573. [PMID: 38882139 PMCID: PMC11170722 DOI: 10.1021/acsomega.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Recently, hybrid nanoflowers (hNFs), which are accepted as popular carrier supports in the development of enzyme immobilization strategies, have attracted much attention. In this study, the horseradish peroxidase (HRP) was immobilized to mesoporous magnetic Fe3O4-NH2 by forming Schiff base compounds and the HRP@Fe3O4-NH2/hNFs were then synthesized. Under optimal conditions, 95.0% of the available HRP was immobilized on the Fe3O4-NH2/hNFs. Structural morphology and characterization of synthesized HRP@Fe3O4-NH2/hNFs were investigated. The results demonstrated that the average size of HRP@Fe3O4-NH2/hNFs was determined to be around 220 nm. The ζ-potential and magnetic saturation values of HRP@Fe3O4-NH2/hNFs were -33.58 mV and ∼30 emu/g, respectively. Additionally, the optimum pH, optimum temperature, thermal stability, kinetic parameters, reusability, and storage stability were examined. It was observed that the optimum pH value shifted from 5.0 to pH 8.0 after immobilization, while the optimum temperature shifted from 30 to 80 °C. K m values were calculated to be 15.5502 and 7.6707 mM for free HRP and the HRP@Fe3O4-NH2/hNFs, respectively, and V max values were calculated to be 0.0701 and 0.0038 mM min-1. The low K m value observed after immobilization indicated that the affinity of HRP for its substrate increased. The HRP@Fe3O4-NH2/hNFs showed higher thermal stability than free HRP, and its residual activity after six usage cycles was approximately 45%. While free HRP lost all of its activity within 120 min at 65 °C, the HRP@Fe3O4-NH2/hNFs retained almost all of its activity during the 6 h incubation period at 80 °C. Most importantly, the HRP@Fe3O4-NH2/hNFs demonstrated good potential efficiency for the biodegradation of methyl orange, phenol red, and methylene blue dyes. The HRP@Fe3O4-NH2/hNFs were used for a total of 8 cycles to degrade methyl orange, phenol red, and methylene blue, and degradation of around 81, 96, and 56% was obtained in 8 h, respectively. Overall, we believe that the HRP@Fe3O4-NH2/hNFs reported in this work can be potentially used in various industrial and environmental applications, particularly for the biodegradation of recalcitrant compounds, such as textile dyes.
Collapse
Affiliation(s)
- Büşra Bakar
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Mustafa Akbulut
- Department of Chemistry, Faculty of Science, Erciyes University, 38280 Kayseri, Türkiye
| | - Fatma Ulusal
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences, Tarsus University, 33400, Mersin, Türkiye
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Nalan Özdemir
- Department of Chemistry, Faculty of Science, Erciyes University, 38280 Kayseri, Türkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| |
Collapse
|
4
|
Koley P, Jakku R, Hosseinnejad T, Periasamy S, Bhargava SK. Immobilizing nanozymes on 3D-printed metal substrates for enhanced peroxidase-like activity and trace-level glucose detection. NANOSCALE 2024; 16:5561-5573. [PMID: 38258585 DOI: 10.1039/d3nr05427f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The prevalence of 3D-printed portable biomedical sensing devices, which are fashioned mainly from plastic and polymer materials, introduces a pressing concern due to their limited reusability and consequential generation of substantial disposable waste. Considering this, herein, we pioneered a ground-breaking advancement, i.e., a 3D-printed metal substrate-based enzyme. Our inventive methodology involved the synthesis of a thermally degraded Fe-based metal-organic framework, DEG 500, followed by its deposition on a 3D-printed metal substrate composed of Ti-Al-V alloy. This novel composite exhibited remarkable peroxidase-like activity in a range of different temperatures and pH, coupled with the ability to detect glucose in real-world samples such as blood and fruit juices. The exceptional enzymatic behaviour was attributed to the diverse iron (Fe) oxidation states and the presence of oxygen vacancies, as evidenced through advanced characterization techniques. Fundamentally, we rigorously explored the mechanistic pathway through controlled studies and theoretical calculations, culminating in a transformative stride toward more sustainable and effective biomedical sensing practices.
Collapse
Affiliation(s)
- Paramita Koley
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| | - Ranjithkumar Jakku
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| | - Tayebeh Hosseinnejad
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| | - Selvakannan Periasamy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| | - Suresh K Bhargava
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| |
Collapse
|
5
|
Zayed MEM, Obaid AY, Almulaiky YQ, El-Shishtawy RM. Enhancing the sustainable immobilization of laccase by amino-functionalized PMMA-reinforced graphene nanomaterial. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119503. [PMID: 38043312 DOI: 10.1016/j.jenvman.2023.119503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Human health and the environment are negatively affected by endocrine-disrupting chemicals (EDCs), such as bisphenol A. Therefore, developing appropriate remediation methods is essential for efficiently removing phenolic compounds from aqueous solutions. Enzymatic biodegradation is a potential biotechnological approach for responsibly addressing water pollution. With its high catalytic efficiency and few by-products, laccase is an eco-friendly biocatalyst with significant promise for biodegradation. Herein, two novel supporting materials (NH2-PMMA and NH2-PMMA-Gr) were fabricated via the functionalization of poly(methylmethacrylate) (PMMA) polymer using ethylenediamine and reinforced with graphene followed by glutaraldehyde activation. NH2-PMMA and NH2-PMMA-Gr were utilized for laccase immobilization with an immobilization yield (IY%) of 78.3% and 82.5% and an activity yield (AY%) of 81.2% and 85.9%, respectively. Scanning electron microscope (SEM) and Fourier-transform infrared (FTIR) were used to study the characteristics of fabricated material supports. NH2-PMMA-Gr@laccase exhibited an optimal pH profile from 4.5 to 5.0, while NH2-PMMA@laccase exhibited optimum pH at 5.0 compared to a value of 4.0 for free form. A wider temperature ranges of 40-50 °C was noted for both immobilized laccases compared to a value of 40 °C for the free form. Additionally, it was reported that immobilized laccase outperformed free laccase in terms of substrate affinity and storage stability. NH2-PMMA@laccase and NH2-PMMA-Gr@laccase improved stability by up to 3.9 and 4.6-fold when stored for 30 days at 4 °C and preserved up to 80.5% and 86.7% of relative activity after ten cycles of reuse. Finally, the degradation of BPA was achieved using NH2-PMMA@laccase and NH2-PMMA-Gr@laccase. After five cycles, NH2-PMMA@laccase and NH2-PMMA-Gr@laccase showed that the residual degradation of BPA was 77% and 84.5% using 50 μm of BPA. This study introduces a novel, high-performance material for organic pollution remediation in wastewater that would inspire further progress.
Collapse
Affiliation(s)
- Mohie E M Zayed
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah Y Obaid
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Yaaser Q Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah, 21921, Saudi Arabia
| | - Reda M El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
6
|
Korram J, Anbalagan AC, Banerjee A, Sawant SN. Bio-conjugated carbon dots for the bimodal detection of prostate cancer biomarkers via sandwich fluorescence and electrochemical immunoassays. J Mater Chem B 2024; 12:742-751. [PMID: 38165823 DOI: 10.1039/d3tb02090h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Bimodal detection facilitates the accurate and reliable detection of cancer biomarkers, which can assist in the early diagnosis of cancer. Herein, S-doped carbon dots (OCDs) with a size of 3 nm and blue emission were synthesized by the hydrothermal treatment of onion extract. The S-doped carbon dots were bioconjugated with an antibody (OCDs@PSAAbHRP) to design a nanoprobe for the detection of prostate specific antigen (PSA), an important serum based prostate cancer biomarker. The detection probe enabled the biomodal assay of PSA via fluorescence immunoassay (FIA) and electrochemical immunoassay (ECIA). In both assays, polyethylenimine stabilized polyaniline nanoparticles (PNPs) were used as the immobilization matrix, which played a major role in widening the linear range of biosensors (0.1 to 100 ng ml-1 for ECIA and 5 to 120 ng ml-1 for FIA). Paper-based and smartphone-integrated fluorescence immuno-array developed using the OCDs@PSAAbHRP detection probe provided cost-effective and rapid detection, while the electrochemical immunoassay provided a high sensitivity (7.8 μA ng-1 ml-1 cm-2) and low detection limit (38 pg ml-1) for PSA detection. The role of OCDs in enhancing the sensor performance was deciphered by carrying out detailed electrochemical studies with HRP enzyme-loaded OCDs. The biosensor was used to detect PSA in human blood serum samples and the results were consistent with conventional techniques. Owing to its analytical properties coupled with simplicity, cost-effectiveness, and portability, the bimodal sensor system has potential for application in clinical analysis.
Collapse
Affiliation(s)
- Jyoti Korram
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | | | - Anannya Banerjee
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Shilpa N Sawant
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
7
|
Ledesma F, Nishitani S, Cunningham FJ, Hubbard JD, Yim D, Lui A, Chio L, Murali A, Landry MP. Covalent Attachment of Horseradish Peroxidase to Single-Walled Carbon Nanotubes for Hydrogen Peroxide Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571773. [PMID: 38168430 PMCID: PMC10760104 DOI: 10.1101/2023.12.14.571773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) are desirable nanoparticles for sensing biological analytes due to their photostability and intrinsic near-infrared fluorescence. Previous strategies for generating SWCNT nanosensors have leveraged nonspecific adsorption of sensing modalities to the hydrophobic SWCNT surface that often require engineering new molecular recognition elements. An attractive alternate strategy is to leverage pre-existing molecular recognition of proteins for analyte specificity, yet attaching proteins to SWCNT for nanosensor generation remains challenging. Towards this end, we introduce a generalizable platform to generate protein-SWCNT-based optical sensors and use this strategy to synthesize a hydrogen peroxide (H 2 O 2 ) nanosensor by covalently attaching horseradish peroxidase (HRP) to the SWCNT surface. We demonstrate a concentration-dependent response to H 2 O 2 , confirm the nanosensor can image H 2 O 2 in real-time, and assess the nanosensor's selectivity for H 2 O 2 against a panel of biologically relevant analytes. Taken together, these results demonstrate successful covalent attachment of enzymes to SWCNTs while preserving both intrinsic SWCNT fluorescence and enzyme function. We anticipate this platform can be adapted to covalently attach other proteins of interest including other enzymes for sensing or antibodies for targeted imaging and cargo delivery.
Collapse
|
8
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
9
|
Weber AC, da Silva BE, Cordeiro SG, Henn GS, Costa B, Dos Santos JSH, Corbellini VA, Ethur EM, Hoehne L. Immobilization of commercial horseradish peroxidase in calcium alginate-starch hybrid support and its application in the biodegradation of phenol red dye. Int J Biol Macromol 2023; 246:125723. [PMID: 37419265 DOI: 10.1016/j.ijbiomac.2023.125723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
In this study, horseradish peroxidase (HRP) was immobilized for the first time on Ca alginate-starch hybrid beads and employed for the biodegradation of phenol red dye. The optimal protein loading was 50 mg/g of support. Immobilized HRP demonstrated improved thermal stability and maximum catalytic activity at 50 °C and pH 6.0, with an increase in half-life (t1/2) and enzymatic deactivation energy (Ed) compared to free HRP. After 30 days of storage at 4 °C, immobilized HRP retained 109% of its initial activity. Compared to free HRP, the immobilized enzyme exhibited higher potential for phenol red dye degradation, as evidenced by the removal of 55.87% of initial phenol red after 90 min, which was 11.5 times greater than free HRP. In sequential batch reactions, the immobilized HRP demonstrated good potential efficiency for the biodegradation of phenol red dye. The immobilized HRP was used for a total of 15 cycles, degrading 18.99% after 10 cycles and 11.69% after 15 cycles, with a residual enzymatic activity of 19.40% and 12.34%, respectively. Overall, the results suggest that HRP immobilized on Ca alginate-starch hybrid supports shows promise as a biocatalyst for industrial and biotechnological applications, particularly for the biodegradation of recalcitrant compounds such as phenol red dye.
Collapse
Affiliation(s)
- Ani Caroline Weber
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Bruno Eduardo da Silva
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Sabrina Grando Cordeiro
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Guilherme Schwingel Henn
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Bruna Costa
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | | | | | - Eduardo Miranda Ethur
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Lucélia Hoehne
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
10
|
Ding Y, Yuan J, Wang L, Jin N, Wang S, Li Y, Lin J. Semi-circle magnetophoretic separation under rotated magnetic field for colorimetric biosensing of Salmonella. Biosens Bioelectron 2023; 229:115230. [PMID: 36940661 DOI: 10.1016/j.bios.2023.115230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Magnetic separation was often applied to isolate and concentrate foodborne bacteria using immunomagnetic nanobeads before downstream bacterial detection. However, nanobead-bacteria conjugates (magnetic bacteria) were coexisting with excessive unbound nanobeads, limiting these nanobeads on magnetic bacteria to further act as signal probes for bacterial detection. Here, a new microfluidic magnetophoretic biosensor was elaboratively developed using a rotated high gradient magnetic field and platinum modified immunomagnetic nanobeads for continuous-flow isolation of magnetic bacteria from free nanobeads, and combined with nanozyme signal amplification for colorimetric biosensing of Salmonella. First, the platinum modified immunomagnetic nanobeads were mixed with the bacterial sample to form the magnetic bacteria, and magnetically separated to eliminate non-magnetic background. Then, the mixture of free immunomagnetic nanobeads and magnetic bacteria was injected with sheath flow (PBS) at higher flowrate into the semi-circle magnetophoretic separation channel under rotated magnetic field, which was generated by two repulsive cylindric magnets and their in-between ring iron gear, leading to continuous-flow isolation of magnetic bacteria from free immunomagnetic nanobeads because they suffered from different magnetic forces and thus had different deviating positions at the outlet. Finally, the separated magnetic bacteria and unbound magnetic nanobeads were respectively collected and used to catalyze coreless substrate into blue product, which was further analyzed using the microplate reader to obtain bacterial amount. This biosensor could determinate Salmonella as low as 41 CFU/mL in 40 min.
Collapse
Affiliation(s)
- Ying Ding
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Jing Yuan
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Nana Jin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jianhan Lin
- Key Laboratory of Smart Agriculture System Integration, Ministry of Education, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
11
|
Alatzoglou C, Patila M, Giannakopoulou A, Spyrou K, Yan F, Li W, Chalmpes N, Polydera AC, Rudolf P, Gournis D, Stamatis H. Development of a Multi-Enzymatic Biocatalytic System through Immobilization on High Quality Few-Layer bio-Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010127. [PMID: 36616038 PMCID: PMC9824680 DOI: 10.3390/nano13010127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 06/02/2023]
Abstract
In this work, we report the green production of few-layer bio-Graphene (bG) through liquid exfoliation of graphite in the presence of bovine serum albumin. Microscopic characterization evaluated the quality of the produced nanomaterial, showing the presence of 3-4-layer graphene. Moreover, spectroscopic techniques also confirmed the quality of the resulted bG, as well as the presence of bovine serum albumin on the graphene sheets. Next, for the first time, bG was used as support for the simultaneous covalent co-immobilization of three enzymes, namely β-glucosidase, glucose oxidase, and horseradish peroxidase. The three enzymes were efficiently co-immobilized on bG, demonstrating high immobilization yields and activity recoveries (up to 98.5 and 90%, respectively). Co-immobilization on bG led to an increase of apparent KM values and a decrease of apparent Vmax values, while the stability of the nanobiocatalysts prevailed compared to the free forms of the enzymes. Co-immobilized enzymes exhibited high reusability, preserving a significant part of their activity (up to 72%) after four successive catalytic cycles at 30 °C. Finally, the tri-enzymatic nanobiocatalytic system was applied in three-step cascade reactions, involving, as the first step, the hydrolysis of p-Nitrophenyl-β-D-Glucopyranoside and cellobiose.
Collapse
Affiliation(s)
- Christina Alatzoglou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Michaela Patila
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Archontoula Giannakopoulou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Feng Yan
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wenjian Li
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nikolaos Chalmpes
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Angeliki C. Polydera
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dimitrios Gournis
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
12
|
Liu X, Li X, Bai Y, Zhou X, Chen L, Qiu C, Lu C, Jin Z, Long J, Xie Z. Enhanced Stability of β-Agarase Immobilized on Streptavidin-Coated Fe 3O 4 Nanoparticles: Effect of Biotin Linker Length. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| |
Collapse
|
13
|
Polyester fabric modification by chemical treatment to enhancing the β-glucosidase immobilization. Heliyon 2022; 8:e11660. [DOI: 10.1016/j.heliyon.2022.e11660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
|
14
|
A Positive Effect of Magnetic Field on the Catalytic Activity of Immobilized L-Asparaginase: Evaluation of its Feasibility. Catal Letters 2022. [DOI: 10.1007/s10562-022-04075-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
An Enzyme-Based Interdigitated Electrode-Type Biosensor for Detecting Low Concentrations of H2O2 Vapor/Aerosol. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This work introduces a novel method for the detection of H2O2 vapor/aerosol of low concentrations, which is mainly applied in the sterilization of equipment in medical industry. Interdigitated electrode (IDE) structures have been fabricated by means of microfabrication techniques. A differential setup of IDEs was prepared, containing an active sensor element (active IDE) and a passive sensor element (passive IDE), where the former was immobilized with an enzymatic membrane of horseradish peroxidase that is selective towards H2O2. Changes in the IDEs’ capacitance values (active sensor element versus passive sensor element) under H2O2 vapor/aerosol atmosphere proved the detection in the concentration range up to 630 ppm with a fast response time (<60 s). The influence of relative humidity was also tested with regard to the sensor signal, showing no cross-sensitivity. The repeatability assessment of the IDE biosensors confirmed their stable capacitive signal in eight subsequent cycles of exposure to H2O2 vapor/aerosol. Room-temperature detection of H2O2 vapor/aerosol with such miniaturized biosensors will allow a future three-dimensional, flexible mapping of aseptic chambers and help to evaluate sterilization assurance in medical industry.
Collapse
|
16
|
Immobilized glucosyltransferase and sucrose synthase on Fe3O4@Uio-66 in cascade catalysis for the one-pot conversion of rebaudioside D from rebaudioside A. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Bilal M, Iqbal HM, Adil SF, Shaik MR, Abdelgawad A, Hatshan MR, Khan M. Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-A review. J Adv Res 2022; 38:157-177. [PMID: 35572403 PMCID: PMC9091734 DOI: 10.1016/j.jare.2021.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Enzymes based bio-catalysis has wide range of applications in various chemical and biological processes. Thus, the process of enzymes immobilization on suitable support to obtain highly active and stable bio-catalysts has great potential in industrial applications. Particularly, surface-modified magnetic nanomaterials have garnered a special interest as versatile platforms for biomolecules/enzyme immobilization. AIM OF REVIEW This review spotlights recent progress in the immobilization of various enzymes onto surface-coated multifunctional magnetic nanostructured materials and their derived nano-constructs for multiple applications. Conclusive remarks, technical challenges, and insightful opinions on this field of research which are helpful to expand the application prospects of these materials are also given with suitable examples. KEY SCIENTIFIC CONCEPTS OF REVIEW Nanostructured materials, including surface-coated magnetic nanoparticles have recently gained immense significance as suitable support materials for enzyme immobilization, due to their large surface area, unique functionalities, and high chemical and mechanical stability. Besides, magnetic nanoparticles are less expensive and offers great potential in industrial applications due to their easy recovery and separation form their enzyme conjugates with an external magnetic field. Magnetic nanoparticles based biocatalytic systems offer a wide-working temperature, pH range, increased storage and thermal stabilities. So far, several studies have documented the application of a variety of surface modification and functionalization techniques to circumvent the aggregation and oxidation of magnetic nanoparticles. Surface engineering of magnetic nanoparticles (MNPs) helps to improve the dispersion stability, enhance mechanical and physicochemical properties, upgrade the surface activity and also increases enzyme immobilization capabilities and biocompatibility of the materials. However, several challenges still need to be addressed, such as controlled synthesis of MNPs and clinical aspects of these materials require consistent research from multidisciplinary scientists to realize its practical applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Corresponding authors.
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
- Corresponding authors.
| | - Abdelatty Abdelgawad
- Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
- Corresponding authors.
| |
Collapse
|
18
|
Alzahrani HA. Encapsulation of peroxidase on hydrogel sodium polyacrylate spheres incorporated by silver and gold nanoparticles: A comparative study. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The selectivity of biocatalysts based on enzymes, eco-friendly reaction systems, and strong catalyst performance is exceptionally compelling. For improving enzyme recyclability and stability, a good option that has been proved is immobilization. For enzyme immobilization, hydrogel sodium polyacrylate combined with nanoparticles is an interesting class of support matrices as compared to others. This study synthesizes and uses the cross-linked hydrogel sodium polyacrylate-decorated gold or silver nanoparticles (HSP/AuNPs or AgNPs) as immobilized support for peroxidase and FTIR characterizes it. The novel supports immobilized system properties enhanced biocompatibility. They have attained a greater immobilization yield (91% with HSP/AuNPs and 84% with HSP/AgNPs). The rest of the immobilized peroxidase activity, after 10 recurring cycles of HSP/AuNPs was 61% and HSP/AgNPs was 54% . The remaining activity of the immobilized enzyme onto HSP/AgNPs, after storing at 4°C for 6 weeks, was 73% and HSP/AuNPs was 75% of its initial activity. It was revealed that the optimum temperature for the free enzyme and the immobilized enzyme was 50°C and 50–60°C, respectively. For the immobilized enzyme, the optimum pH is 7–7.5, as compared to the optimum pH of free enzyme pH 6.5.
Collapse
Affiliation(s)
- Hassan A.H. Alzahrani
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Zdarta J, Jesionowski T, Pinelo M, Meyer AS, Iqbal HMN, Bilal M, Nguyen LN, Nghiem LD. Free and immobilized biocatalysts for removing micropollutants from water and wastewater: Recent progress and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126201. [PMID: 34710611 DOI: 10.1016/j.biortech.2021.126201] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
Enzymatic conversion of micropollutants into less-toxic derivatives is an important bioremediation strategy. This paper aims to critically review the progress in water and wastewater treatment by both free and immobilized enzymes presenting this approach as highly efficient and performed under environmentally benign and friendly conditions. The review also summarises the effects of inorganic and organic wastewater matrix constituents on enzymatic activity and degradation efficiency of micropollutants. Finally, application of enzymatic reactors facilitate continuous treatment of wastewater and obtaining of pure final effluents. Of a particular note, enzymatic treatment of micropollutants from wastewater has been mostly reported by laboratory scale studies. Thus, this review also highlights key research gaps of the existing techniques and provides future perspectives to facilitate the transfer of the lab-scale solutions to a larger scale and to improve operationability of biodegradation processes.
Collapse
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo, PL-60965 Poznan, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo, PL-60965 Poznan, Poland
| | - Manuel Pinelo
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark
| | - Anne S Meyer
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
20
|
Miao Q, Zhang C, Zhou S, Meng L, Huang L, Ni Y, Chen L. Immobilization and Characterization of Pectinase onto the Cationic Polystyrene Resin. ACS OMEGA 2021; 6:31683-31688. [PMID: 34869992 PMCID: PMC8637955 DOI: 10.1021/acsomega.1c04374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
In the present study, the immobilization of free pectinase onto polystyrene resin beads via crosslinking with glutaraldehyde was investigated. The immobilized pectinase was characterized by Fourier transform infrared spectroscopy and confocal laser scanning microscopy. After optimizing the immobilization conditions, the optimum pH of immobilized pectinase shifted from 8.0 to 8.5 and the optimum temperature shifted from 45 to 60 °C, showing its improved stability to temperature and pH compared with the free pectinase. The Michaelis-Menten constant K m value of free and immobilized pectinase was determined to be 1.95 and 5.36 mM, respectively. The storage stability of immobilized pectinase was demonstrated with 36.8% of the initial activity preserved after 30 days at 25 °C. The reusability of the immobilized pectinase activity was 54.6% of its initial activity after being recycled six times. Therefore, based on the findings mentioned above, it can be inferred that this simple immobilization technique for pectinase appears to be promising for industrial applications.
Collapse
Affiliation(s)
- Qingxian Miao
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University
of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chen Zhang
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
| | - Shuai Zhou
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
| | - Lingchao Meng
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
| | - Liulian Huang
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
| | - Yonghao Ni
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
- Limerick
Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Lihui Chen
- College
of Material Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
| |
Collapse
|
21
|
Pereira FM, Melo MN, Santos ÁKM, Oliveira KV, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells. Enzyme Microb Technol 2021; 150:109889. [PMID: 34489042 DOI: 10.1016/j.enzmictec.2021.109889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023]
Abstract
Hybrid nanoparticles composed of different biopolymers for delivery of enzyme/prodrug systems are of interest for cancer therapy. Hyaluronic acid-coated chitosan nanoparticles (CS/HA NP) were prepared to encapsulate individually an enzyme/pro-drug complex based on horseradish peroxidase (HRP) and indole-3-acetic acid (IAA). CS/HA NP showed size around 158 nm and increase to 170 and 200 nm after IAA and HRP encapsulation, respectively. Nanoparticles showed positive zeta potential values (between +20.36 mV and +24.40 mV) and higher encapsulation efficiencies for both nanoparticles (up to 90 %) were obtained. Electron microscopy indicated the formation of spherical particles with smooth surface characteristic. Physicochemical and thermal characterizations suggest the encapsulation of HRP and IAA. Kinetic parameters for encapsulated HRP were similar to those of the free enzyme. IAA-CS/HA NP showed a bimodal release profile of IAA with a high initial release (72 %) followed by a slow-release pattern. The combination of HRP-CS/HA NP and IAA- CS/HA NP reduced by 88 % the cell viability of human bladder carcinoma cell line (T24) in the concentrations 0.5 mM of pro-drug and 1.2 μg/mL of the enzyme after 24 h.
Collapse
Affiliation(s)
- Fernanda Menezes Pereira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Micael Nunes Melo
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Átali Kayane Mendes Santos
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Karony Vieira Oliveira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Fernando Mendonça Diz
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Rosane Angélica Ligabue
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Patrícia Severino
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Alini Tinoco Fricks
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil.
| |
Collapse
|
22
|
Zeng Y, Li Y, Tan X, Gong J, Wang Z, An Y, Wang Z, Li H. B,N-Doped PdRu Aerogels as High-Performance Peroxidase Mimics for Sensitive Detection of Glucose. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36816-36823. [PMID: 34319065 DOI: 10.1021/acsami.1c07987] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Among plentiful porous nanomaterials, noble metal aerogels taken as nanozymes attract broad attention in sensing applications with their distinct enzyme mimic functions. In the catalytic field, the heteroatom doping strategy is a kind of way with great promise in improving the enzyme mimic activity of noble metal aerogels. In this experiment, we find a type of creative materials that were prepared by the fast and simple method. Due to the unique porous structure and synergetic effect from doped atoms, PdRu aerogels co-doped with boron and nitrogen (B, N-PdRu aerogels) were prepared using NH3BH3 as a reductant, which present improved peroxidase mimicking activity. With the existence of H2O2, the oxidation of 3,3',5,5'-tetramethylbenzidine was catalyzed by B, N-PdRu aerogels fairly efficiently, whose solution would be a blue appearance at optimum absorption wavelength 652 nm. Thus, by the tandem reaction bound to the enzyme glucose oxidase, the B, N-PdRu aerogels can be used for the sensitive determination of glucose. The new method has a good linear detection effect for glucose in the range of 10 μM to 2 mM. The minimum limit of detection can reach as low as 6 μM. This work will contribute to research on the rational design of metal aerogels based on the heteroatomic doping strategy and enhance the corresponding performance for a variety of applications.
Collapse
Affiliation(s)
- Yuting Zeng
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yan Li
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Xiaofeng Tan
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Jindi Gong
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Ziyu Wang
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yuhao An
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Zhenqiang Wang
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - He Li
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| |
Collapse
|
23
|
Abstract
Nanoparticles have the advantage of a superior surface area to volume ratio, and thus such materials are useful for enzyme immobilization. A silver nanoparticle coated cotton fabric (AgNp-CF) is used to immobilize camel liver catalase in the present work. The effect of loading levels of AgNp inside cotton fabrics on the immobilization of catalase was investigated. The results revealed that a 6 mL loading level of AgNp precursor (silver nitrate, 2 mM) at pH 8 showed the maximum immobilization efficiency (76%). The morphological properties of the cotton fabric (CF), AgNp-CF and AgNp-CF-catalase were characterized by SEM. The reusability of the immobilized enzyme was tested over ten reuses to show a 67% retained function of its initial activity. Compared with the soluble enzyme’s working pH (6.5), a rather broader working pH (6.5–7.0) was observed for the immobilized catalase. Additionally, the optimum working temperature increased from 30 for the soluble enzyme to 40 °C for the immobilized one, indicating thermal stability. The free and immobilized catalase enzyme’s Km values were 22.5 and 25 mM H2O2, respectively, reflecting the enzyme’s effective properties. The inhibitory effect of metal ions on the enzyme activity was higher toward soluble catalase than the immobilized catalase. This work has developed a method for immobilizing catalase to be useful for several applications.
Collapse
|
24
|
Immobilization of Catalase on Chitosan/ZnO and Chitosan/ZnO/Fe2O3 Nanocomposites: A Comparative Study. Catalysts 2021. [DOI: 10.3390/catal11070820] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The strong catalytic performance, eco-friendly reaction systems, and selectivity of enzyme-based biocatalysts are extremely interesting. Immobilization has been shown to be a good way to improve enzyme stability and recyclability. Chitosan-incorporated metal oxides, among other support matrices, are an intriguing class of support matrices for the immobilization of various enzymes. Herein, the cross-linked chitosan/zinc oxide nanocomposite (CS/ZnO) was synthesized and further improved by adding iron oxide (Fe2O3) nanoparticles. The final cross-linked CS/ZnO/Fe2O3 nanocomposite was used as an immobilized support for catalase and is characterized by SEM, EDS, and FTIR. The nanocomposite CS/ZnO/Fe2O3 enhanced the biocompatibility and immobilized system properties. CS/ZnO/Fe2O3 achieved a higher immobilization yield (84.32%) than CS/ZnO (37%). After 10 repeated cycles, the remaining immobilized catalase activity of CS/ZnO and CS/ZnO/Fe2O3 was 14% and 45%, respectively. After 60 days of storage at 4 °C, the remaining activity of immobilized enzyme onto CS/ZnO and CS/ZnO/Fe2O3 was found to be 32% and 47% of its initial activity. The optimum temperature was noticed to be broad at 25–30 °C for the immobilized enzyme and 25 °C for the free enzyme. Compared with the free enzyme optimum pH (7.0), the optimum pH for the immobilized enzyme was 7.5. The Km and Vmax values for the free and immobilized enzyme on CS/ZnO, and the immobilized enzyme on CS/ZnO/Fe2O3, were found to be 91.28, 225.17, and 221.59 mM, and 10.45, 15.87, and 19.92 µmole ml−1, respectively. Catalase immobilization on CS/ZnO and CS/ZnO/Fe2O3 offers better stability than free catalase due to the enzyme’s half-life. The half-life of immobilized catalase on CS/ZnO/Fe2O3 was between 31.5 and 693.2 min.
Collapse
|
25
|
Almulaiky YQ, Al-Harbi SA. Preparation of a Calcium Alginate-Coated Polypyrrole/Silver Nanocomposite for Site-Specific Immobilization of Polygalacturonase with High Reusability and Enhanced Stability. Catal Letters 2021. [DOI: 10.1007/s10562-021-03631-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Long J, Li X, Liu X, Jin Z, Xie Z, Xu X, Lu C. Preparation of Streptavidin-Coated Magnetic Nanoparticles for Specific Immobilization of Enzymes with High Activity and Enhanced Stability. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c03281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xiaoxiao Liu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xueming Xu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
27
|
Enzymatic degradation of ginkgolic acids by laccase immobilized on core/shell Fe 3O 4/nylon composite nanoparticles using novel coaxial electrospraying process. Int J Biol Macromol 2021; 172:270-280. [PMID: 33418049 DOI: 10.1016/j.ijbiomac.2021.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
Enzyme immobilization can increase enzyme reusability to reduce cost of industrial production. Ginkgo biloba leaf extract is commonly used for medical purposes, but it contains ginkgolic acid, which has negative effects on human health. Here, we report a novel approach to solve the problem by degrading the ginkgolic acid with immobilized-laccase, where core/shell composite nanoparticles prepared by coaxial electrospraying might be first applied to enzyme immobilization. The core/shell Fe3O4/nylon 6,6 composite nanoparticles (FNCNs) were prepared using one-step coaxial electrospraying and can be simply recovered by magnetic force. The glutaraldehyde-treated FNCNs (FNGCNs) were used to immobilize laccase. As a result, thermal stability of the free laccase was significantly improved in the range of 60-90 °C after immobilization. The laccase-immobilized FNGCNs (L-FNGCNs) were applied to degrade the ginkgolic acids, and the rate constants (k) and times (τ50) were ~0.02 min-1 and lower than 39 min, respectively, showing good catalytic performance. Furthermore, the L-FNGCNs exhibited a relative activity higher than 0.5 after being stored for 21 days or reused for 5 cycles, showing good storage stability and reusability. Therefore, the FNGCNs carrier was a promising enzyme immobilization system and its further development and applications were of interest.
Collapse
|
28
|
Shu J, Yue J, Qiu X, Liu X, Ren W, Li Q, Li Y, Xu B, Zhang K, Jiang W. Binuclear metal complexes with a novel hexadentate imidazole derivative for the cleavage of phosphate diesters and biomolecules: distinguishable mechanisms. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00108f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative cleavage of phosphate diesters (HPNP, BNPP) is highly faster than the hydrolytic one by binuclear metal complexes with novel imidazole derivative, producing a non-lactone phosphate monoester due to the direct attack of free radicals.
Collapse
Affiliation(s)
- Jun Shu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Jian Yue
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Xin Qiu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Xiaoqiang Liu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Wang Ren
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Qianli Li
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Shandong Liaocheng 252059
- P. R. China
| | - Yulong Li
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Bin Xu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Kaiming Zhang
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Weidong Jiang
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| |
Collapse
|
29
|
Bayramoglu G, Akbulut A, Arica MY. Utilization of immobilized horseradish peroxidase for facilitated detoxification of a benzidine based azo dye. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Melo MN, Pereira FM, Rocha MA, Ribeiro JG, Diz FM, Monteiro WF, Ligabue RA, Severino P, Fricks AT. Immobilization and characterization of horseradish peroxidase into chitosan and chitosan/PEG nanoparticles: A comparative study. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
El-Shishtawy RM, Aldhahri M, Almulaiky YQ. Dual immobilization of α-amylase and horseradish peroxidase via electrospinning: A proof of concept study. Int J Biol Macromol 2020; 163:1353-1360. [DOI: 10.1016/j.ijbiomac.2020.07.278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 11/25/2022]
|
32
|
Bretz RR, de Castro AA, Lara Ferreira IF, Ramalho TC, Silva MC. Experimental and theoretical affinity and catalysis studies between halogenated phenols and peroxidases: Understanding the bioremediation potential. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110895. [PMID: 32615496 DOI: 10.1016/j.ecoenv.2020.110895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Halogenated phenols, such as 2,4-dichlorophenol (2,4-DCP) and 4-bromophenol (4-BP) are pollutants generated by a various industrial sectors like chemical, dye, paper bleaching, pharmaceuticals or in an agriculture as pesticides. The use of Horseradish peroxidase (HRP) in the halogenated phenols treatment has already been mentioned, but it is not well understood how the different phenolic substrates can bind in the peroxidase active site nor how these specific interactions can influence in the bioremediation potential. In this work, different removal efficiencies were obtained for phenolic compounds investigated using HRP as catalyst (93.87 and 59.19% to 4BP and 2,4 DCP, respectively). Thus, to rationalize this result based on the interactions of phenols with active center of HRP, we combine computational and experimental methodologies. The theoretical approaches utilized include density functional theory (DFT) calculations, docking simulation and quantum mechanics/molecular mechanics (QM/MM) technique. Michaelis Menten constant (Km) obtained through experimental methodologies were 2.3 and 0.95 mM to 2,4-DCP and 4-BP, respectively, while the specificity constant (Kcat/Km) found was 1.44 mM-1 s-1 and 0.62 mM-1 s-1 for 4-BP and 2,4-DCP, respectively. The experimental parameters appointed to the highest affinity of HRP to 4-BP. According to the molecular docking calculations, both ligands have shown stabilizing intermolecular interaction energies within the HRP active site, however, the 4-BP showed more stabilizing interaction energy (-53.00 kcal mol-1) than 2,4-dichlorophenol (-49.23 kcal mol-1). Besides that, oxidative mechanism of 4-BP and 2,4-DCP was investigated by the hybrid QM/MM approach. This study showed that the lowest activation energy values for transition states investigated were obtained for 4-BP. Therefore, by theoretical approach, the compound 4-BP showed the more stabilizing interaction and activation energy values related to the interaction within the enzyme and the oxidative reaction mechanism, respectively, which corroborates with experimental parameters obtained. The combination between experimental and theoretical approaches was essential to understand how the degradation potential of the HRP enzyme depends on the interactions between substrate and the active center cavity of the enzyme.
Collapse
Affiliation(s)
- Raphael Resende Bretz
- Department of Natural Sciences (DCNAT), Federal University of São João del-Rei, São João del Rei, Brazil
| | | | - Igor F Lara Ferreira
- Department of Natural Sciences (DCNAT), Federal University of São João del-Rei, São João del Rei, Brazil
| | - Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Maria Cristina Silva
- Department of Natural Sciences (DCNAT), Federal University of São João del-Rei, São João del Rei, Brazil.
| |
Collapse
|
33
|
Alatawi FS, Elsayed NH, Monier M. Immobilization of Horseradish Peroxidase on Modified Nylon‐6 Fibers. ChemistrySelect 2020. [DOI: 10.1002/slct.202000818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Fatema S. Alatawi
- Biochemistry DepartmentFaculty of ScienceUniversity of Tabuk Tabuk 71421 Saudi Arabia
| | - Nadia H. Elsayed
- Department of ChemistryUniversity college-AlwajhUniversity of Tabuk Tabuk Saudi Arabia
- Department of Polymers and PigmentsNational Research Center, Dokki Cairo 12311 Egypt
| | - Mohammed Monier
- Chemistry DepartmentFaculty of ScienceMansoura University Mansoura Egypt
- Chemistry DepartmentFaculty of ScienceTaibah University Yanbu Branch Yanbu El-Bahr Saudi Arabia
| |
Collapse
|