1
|
Rao RS, Bashri M, Mohideen MIH, Yildiz I, Shetty D, Shaya J. Recent advances in heterogeneous porous Metal-Organic Framework catalysis for Suzuki-Miyaura cross-couplings. Heliyon 2024; 10:e40571. [PMID: 39687170 PMCID: PMC11647841 DOI: 10.1016/j.heliyon.2024.e40571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Suzuki-Miyaura coupling (SMC), a crucial C-C cross-coupling reaction, is still associated with challenges such as high synthetic costs, intricate work-ups, and contamination with homogeneous metal catalysts. Research intensely focuses on strategies to convert homogeneous soluble metal catalysts into insoluble powder solids, promoting heterogeneous catalysis for easy recovery and reuse as well as for exploring greener reaction protocols. Metal-Organic Frameworks (MOFs), recognized for their high surface area, porosity, and presence of transition metals, are increasingly studied for developing heterogeneous SMC. The molecular fence effect, attributed to MOF surface functionalization, helps preventing catalyst deactivation by aggregation, migration, and leaching during catalysis. Recent reports demonstrate the enhanced catalytic activity, selectivity, stability, application scopes, and potential of MOFs in developing greener heterogeneous synthetic methodologies. This review focuses on the catalytic applications of MOFs in SMC reactions, emphasizing developments after 2016. It critically examines the synthesis and incorporation of active metal species into MOFs, focusing on morphology, crystallinity, and dimensionality for catalytic activity induction. MOF catalysts are categorized based on their metal nodes in subsections, with comprehensive discussion on Pd incorporation strategies, catalyst structures, optimal SMC conditions, and application scopes, concluding with insights into challenges and future research directions in this important emerging area of MOF applications.
Collapse
Affiliation(s)
- Ravulakollu Srinivasa Rao
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Mahira Bashri
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Mohamed Infas Haja Mohideen
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Ibrahim Yildiz
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Functional Biomaterials Group, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Dinesh Shetty
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Janah Shaya
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| |
Collapse
|
2
|
Deevi SK, Anilkumar B, Pinto PG, Ramani P, Vishnuprasad CN, Shanmugaraju S, Pandurangan N. Facile synthesis of corticiolic acid-a bioactive pharmacophore from natural sources. RSC Adv 2024; 14:37539-37545. [PMID: 39582939 PMCID: PMC11583867 DOI: 10.1039/d4ra06585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Fungal strains have inspired us to find the untapped sources of secondary metabolites. Corticiolic acid (CA, 2,4-dihydroxy-6-pentadecylbenzoic acid; from fungus, Hapalopilus mutans) is one of the core active scaffolds in natural compounds such as Aquastatin-A, B, & C. CA can also be isolated from the plant Lysimachia japonica. CA is a selective inhibitor of PTB1B, a crucial biomarker for anti-diabetic activity. Herein, we report the total synthesis of corticiolic acid achieved via the 9-BBN-based reductive Suzuki-Miyaura coupling of aryl bromide and pentadecane, a key reaction in this strategy. Further, this approach has been explored for the protection-free synthesis of corticiolic acid. The improved synthesis is short, requires mild reaction conditions, and avoids the use of hydrogenation and pyrophoric reagents. Further, the reaction is scalable and does not require protection-deprotection steps. Preliminary studies on cancer cells indicated that corticiolic acid and cordol significantly inhibited the proliferation of HepG2, N2A, and CaCo-2 cancer cells.
Collapse
Affiliation(s)
- Sunil Kumar Deevi
- Dhanvanthri Lab, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Coimbatore-641112 Tamil Nadu India
| | - Bhadra Anilkumar
- Dhanvanthri Lab, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Coimbatore-641112 Tamil Nadu India
| | - Priyanka Gladys Pinto
- Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology Bangalore-560064 India,
| | - Prasanna Ramani
- Dhanvanthri Lab, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Coimbatore-641112 Tamil Nadu India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham Coimbatore-641112 India
| | - Chethala N Vishnuprasad
- Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology Bangalore-560064 India,
| | | | - Nanjan Pandurangan
- Dhanvanthri Lab, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Coimbatore-641112 Tamil Nadu India
- Functional Materials Lab, Amrita School of Engineering, Amrita Vishwa Vidyapeetham Coimbatore-641112 Tamil Nadu India
| |
Collapse
|
3
|
Bock MJ, Denmark SE. Rapid, Homogenous, B-Alkyl Suzuki-Miyaura Cross-Coupling of Boronic Esters. J Org Chem 2024; 89:16195-16202. [PMID: 38483187 PMCID: PMC11399326 DOI: 10.1021/acs.joc.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
A rapid, anhydrous Suzuki-Miyaura cross-coupling of alkylboronic esters with aryl halides is described. Parallel experimentation revealed that the combination of AntPhos, an oxaphosphole ligand, neopentyldiol alkylboronic esters, and potassium trimethylsilanolate (TMSOK) enables successful cross-coupling. In general, reactions proceed in under 1 h with good yields and high linear/branched (l/b) selectivities. Crucially, two literature examples which previously took >20 h to reach completion were accomplished in a fraction of the time with the method described herein. Mechanistic studies revealed that the reaction proceeds through a stereoretentive pathway and identified the boronic ester skeleton as a predominant pathway for deleterious protodehalogenation.
Collapse
Affiliation(s)
- Matthew J Bock
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave, Urbana, Illinois 61801, United States
| | - Scott E Denmark
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Romano C, Martin R. Ni-catalysed remote C(sp 3)-H functionalization using chain-walking strategies. Nat Rev Chem 2024; 8:833-850. [PMID: 39354168 DOI: 10.1038/s41570-024-00649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/03/2024]
Abstract
The dynamic translocation of a metal catalyst along an alkyl side chain - often coined as 'chain-walking' - has opened new retrosynthetic possibilities that enable functionalization at unactivated C(sp3)-H sites. The use of nickel complexes in chain-walking strategies has recently gained considerable momentum owing to their versatility for forging sp3 architectures and their redox promiscuity that facilitates both one-electron or two-electron reaction manifolds. This Review discusses the relevance and impact that these processes might have in synthetic endeavours, including mechanistic considerations when appropriate. Particular emphasis is given to the latest discoveries that leverage the potential of Ni-catalysed chain-walking scenarios for tackling transformations that would otherwise be difficult to accomplish, including the merger of chain-walking with other new approaches such as photoredox catalysis or electrochemical activation.
Collapse
Affiliation(s)
- Ciro Romano
- Department of Chemistry, University of Manchester, Manchester, UK.
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain.
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
5
|
Zia A, Khalid S, Rasool N, Mohsin N, Imran M, Toma SI, Misarca C, Andreescu O. Pd-, Cu-, and Ni-Catalyzed Reactions: A Comprehensive Review of the Efficient Approaches towards the Synthesis of Antibacterial Molecules. Pharmaceuticals (Basel) 2024; 17:1370. [PMID: 39459010 PMCID: PMC11509998 DOI: 10.3390/ph17101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
A strong synthetic tool for many naturally occurring chemicals, polymers, and pharmaceutical substances is transition metal-catalyzed synthesis. A serious concern to human health is the emergence of bacterial resistance to a broad spectrum of antibacterial medications. The synthesis of chemical molecules that are potential antibacterial candidates is underway. The main contributions to medicine are found to be effective in transition metal catalysis and heterocyclic chemistry. This review underlines the use of heterocycles and certain effective transition metals (Pd, Cu, and Ni) as catalysts in chemical methods for the synthesis of antibacterial compounds. Pharmaceutical chemists might opt for clinical exploration of these techniques due to their potential.
Collapse
Affiliation(s)
- Almeera Zia
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nayab Mohsin
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sebastian Ionut Toma
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Oana Andreescu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| |
Collapse
|
6
|
Wan T, Capaldo L, Djossou J, Staffa A, de Zwart FJ, de Bruin B, Noël T. Rapid and scalable photocatalytic C(sp 2)-C(sp 3) Suzuki-Miyaura cross-coupling of aryl bromides with alkyl boranes. Nat Commun 2024; 15:4028. [PMID: 38740738 DOI: 10.1038/s41467-024-48212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
In recent years, there has been a growing demand for drug design approaches that incorporate a higher number of sp3-hybridized carbons, necessitating the development of innovative cross-coupling strategies to reliably introduce aliphatic fragments. Here, we present a powerful approach for the light-mediated B-alkyl Suzuki-Miyaura cross-coupling between alkyl boranes and aryl bromides. Alkyl boranes were easily generated via hydroboration from readily available alkenes, exhibiting excellent regioselectivity and enabling the selective transfer of a diverse range of primary alkyl fragments onto the arene ring under photocatalytic conditions. This methodology eliminates the need for expensive catalytic systems and sensitive organometallic compounds, operating efficiently at room temperature within just 30 min. We further demonstrate the translation of the present protocol to continuous-flow conditions, enhancing scalability, safety, and overall efficiency of the method. This versatile approach offers significant potential for accelerating drug discovery efforts by enabling the introduction of complex aliphatic fragments in a straightforward and reliable manner.
Collapse
Affiliation(s)
- Ting Wan
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Luca Capaldo
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
- SynCat Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Jonas Djossou
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
| | - Angela Staffa
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Felix J de Zwart
- Homogeneous, Supramolecular and Bioinspired Catalysis Group (HomKat), van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), 1098, XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bioinspired Catalysis Group (HomKat), van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), 1098, XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098, XH, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Cai Q, McWhinnie IM, Dow NW, Chan AY, MacMillan DWC. Engaging Alkenes in Metallaphotoredox: A Triple Catalytic, Radical Sorting Approach to Olefin-Alcohol Cross-Coupling. J Am Chem Soc 2024; 146:12300-12309. [PMID: 38657210 PMCID: PMC11493080 DOI: 10.1021/jacs.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metallaphotoredox cross-coupling is a well-established strategy for generating clinically privileged aliphatic scaffolds via single-electron reactivity. Correspondingly, expanding metallaphotoredox to encompass new C(sp3)-coupling partners could provide entry to a novel, medicinally relevant chemical space. In particular, alkenes are abundant, bench-stable, and capable of versatile C(sp3)-radical reactivity via metal-hydride hydrogen atom transfer (MHAT), although metallaphotoredox methodologies invoking this strategy remain underdeveloped. Importantly, merging MHAT activation with metallaphotoredox could enable the cross-coupling of olefins with feedstock partners such as alcohols, which undergo facile open-shell activation via photocatalysis. Herein, we report the first C(sp3)-C(sp3) coupling of MHAT-activated alkenes with alcohols by performing deoxygenative hydroalkylation via triple cocatalysis. Through synergistic Ir photoredox, Mn MHAT, and Ni radical sorting pathways, this branch-selective protocol pairs diverse olefins and methanol or primary alcohols with remarkable functional group tolerance to enable the rapid construction of complex aliphatic frameworks.
Collapse
Affiliation(s)
- Qinyan Cai
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Iona M. McWhinnie
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Nathan W. Dow
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Amy Y. Chan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
8
|
Du W, Zhao F, Yang R, Xia Z. Gold-Catalyzed C(sp 3)-C(sp 2) Suzuki-Miyaura Coupling Reaction. Org Lett 2024; 26:3145-3150. [PMID: 38551489 DOI: 10.1021/acs.orglett.4c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A gold-catalyzed C(sp3)-C(sp2) Suzuki-Miyaura coupling reaction facilitated by ligand-enabled Au(I)/Au(III) redox catalysis was developed. The cross-coupling of alkyl organometallics was first realized in the redox catalytic cycle in gold chemistry, without the use of external oxidants. This gold-catalyzed C(sp3)-C(sp2) coupling reaction allows a variety of alkyl chain and useful methyl trifluoroborates to react with aryl and vinyl iodides under very mild conditions, which provides a new reactivity pattern for challenging couplings with alkyl organometallics.
Collapse
Affiliation(s)
- Wenqian Du
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fen Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Rongjie Yang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhonghua Xia
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
9
|
Duran Arroyo V, Arevalo R. Tandem manganese catalysis for the chemo-, regio-, and stereoselective hydroboration of terminal alkynes: in situ precatalyst activation as a key to enhanced chemoselectivity. RSC Adv 2024; 14:5514-5523. [PMID: 38352676 PMCID: PMC10863604 DOI: 10.1039/d3ra08747f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
The manganese(ii) complex [Mn(iPrPNP)Cl2] (iPrPNP = 2,6-bis(diisopropylphosphinomethyl)pyridine) was found to catalyze the stereo- and regioselective hydroboration of terminal alkynes employing HBPin (pinacolborane). In the absence of in situ activators, mixtures of alkynylboronate and E-alkenylboronate esters were formed, whereas when NaHBEt3 was employed as the in situ activator, E-alkenylboronate esters were exclusively accessed. Mechanistic studies revealed a tandem C-H borylation/semihydrogenation pathway accounting for the formation of the products. Stoichiometric reactions hint toward reaction of a Mn-H active species with the terminal alkyne as the catalyst entry pathway to the cycle, whereas reaction with HBPin led to catalyst deactivation.
Collapse
Affiliation(s)
- Victor Duran Arroyo
- Department of Chemistry and Biochemistry, University of California 5200 North Lake Road 95343 Merced California USA
| | - Rebeca Arevalo
- Department of Chemistry and Biochemistry, University of California 5200 North Lake Road 95343 Merced California USA
| |
Collapse
|
10
|
Arndt CM, Bitai J, Brunner J, Opatz T, Martinelli P, Gollner A, Sokol KR, Krumb M. One-Pot Synthesis of Cereblon Proteolysis Targeting Chimeras via Photoinduced C(sp 2)-C(sp 3) Cross Coupling and Amide Formation for Proteolysis Targeting Chimera Library Synthesis. J Med Chem 2023; 66:16939-16952. [PMID: 38096359 DOI: 10.1021/acs.jmedchem.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In this study, a one-pot synthesis via photoinduced C(sp2)-C(sp3) coupling followed by amide formation to access proteolysis targeting chimeras (PROTACs) was developed. The described protocol was studied on cereblon (CRBN)-based E3-ligase binders and (+)-JQ-1, a bromodomain inhibitor, to generate BET (bromodomain and extra terminal domain) targeting protein degraders. The generated PROTACs were profiled in vitro and tested for their degradation ability with several potent candidates identified. Upfront, the individual reactions of the one-pot transformation were carefully optimized for CRBN binder functionalization and multiple heterobifunctional linker moieties were designed and synthesized. Separate scopes detailing the C(sp2)-C(sp3) coupling and one-pot PROTAC synthesis are described in this report as well as a library miniaturization study showing the high-throughput compatibility. Overall, the developed protocol provides rapid access to PROTACs in a single process, thereby allowing efficient generation of CRBN-based PROTAC libraries.
Collapse
Affiliation(s)
- Christine M Arndt
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, Mainz 55128, Germany
| | - Jacqueline Bitai
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
| | - Jessica Brunner
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, Mainz 55128, Germany
| | - Paola Martinelli
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
| | - Andreas Gollner
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
| | - Kevin R Sokol
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
| | - Matthias Krumb
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
| |
Collapse
|
11
|
Zhang Z, Zhang L, Huai L, Wang Z, Fang Y. α-Arylsulfonyloxyacrylates: attractive O-centered electrophiles for synthesis of α-substituted acrylates via Pd-catalysed Suzuki reactions. RSC Adv 2023; 13:9180-9185. [PMID: 36950707 PMCID: PMC10026373 DOI: 10.1039/d3ra00401e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/09/2023] [Indexed: 03/22/2023] Open
Abstract
We herein report α-arylsulfonyloxyacrylates as a kind of useful and attractive O-centered electrophiles for Suzuki cross-coupling reactions. A range of α-(hetero)aryl substituted acrylates has been prepared via the palladium-catalysed C-C cross-coupling reactions between potassium (hetero)aryltrifluoroborates and α-arylsulfonyloxyacrylates. Moreover, α-arylsulfonyloxyacrylate could also react with B-alkyl-9-BBN to produce α-alkyl substituted acrylates. The synthetic application of this new method was demonstrated by the preparation of the intermediate for synthesis of retinoid X receptors-selective retinoids. These Suzuki reaction-based protocols feature broad substrate scope, generality, and mild reaction conditions.
Collapse
Affiliation(s)
- Zhongya Zhang
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Land and Resources of China, College of Environmental Science and Engineering, Chang'an University No. 126 Yanta Road Xi'an 710054 China
| | - Li Zhang
- School of Fundamental Science, Zhejiang Pharmaceutical University No. 666 Siming Road Ningbo 315500 China
| | - Linge Huai
- College of Chemistry and Material Science, Shandong Agricultural University No. 61 Daizong Road Tai'an 271018 China
| | - Zhentao Wang
- College of Chemistry and Material Science, Shandong Agricultural University No. 61 Daizong Road Tai'an 271018 China
| | - Yewen Fang
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Land and Resources of China, College of Environmental Science and Engineering, Chang'an University No. 126 Yanta Road Xi'an 710054 China
- School of Materials and Chemical Engineering, Ningbo University of Technology No. 201 Fenghua Road Ningbo 315211 China
- Zhejiang Institute of Tianjin University No. 201 Fenghua Road Ningbo 315211 China
| |
Collapse
|
12
|
Roh B, Farah AO, Kim B, Feoktistova T, Moeller F, Kim KD, Cheong PHY, Lee HG. Stereospecific Acylative Suzuki–Miyaura Cross-Coupling: General Access to Optically Active α-Aryl Carbonyl Compounds. J Am Chem Soc 2023; 145:7075-7083. [PMID: 37016901 DOI: 10.1021/jacs.3c00637] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A novel strategy for the stereospecific Pd-catalyzed acylative cross-coupling of enantiomerically enriched alkylboron compounds has been developed. The protocol features an extremely high level of enantiospecificity to allow facile access to synthetically challenging and valuable chiral ketones and carboxylic acid derivatives. The use of a sterically encumbered and electron-rich phosphine ligand proved to be crucial for the success of the reaction. Furthermore, on the basis of experimental and computational studies, a unique mechanism for the transmetalation, assisted by the noncovalent interactions of the C(sp3)-based organoboron reagent, has been identified.
Collapse
Affiliation(s)
- Byeongdo Roh
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Beomsu Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Taisiia Feoktistova
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Finn Moeller
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kyeong Do Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
13
|
Wu FP, Gu XW, Geng HQ, Wu XF. Copper-catalyzed defluorinative arylboration of vinylarenes with polyfluoroarenes. Chem Sci 2023; 14:2342-2347. [PMID: 36873842 PMCID: PMC9977451 DOI: 10.1039/d2sc06472c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
An unprecedented but challenging defluorinative arylboration has been achieved. Enabled by a copper catalyst, an interesting procedure on defluorinative arylboration of styrenes has been established. With polyfluoroarenes as the substrates, this methodology offers flexible and facile access to provide a diverse assortment of products under mild reaction conditions. In addition, by using a chiral phosphine ligand, an enantioselective defluorinative arylboration was also realized, affording a set of chiral products with unprecedented levels of enantioselectivity.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xing-Wei Gu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Hui-Qing Geng
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany .,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
14
|
Benzothiazole-Based Palladium Complexes as Efficient Nano-Sized Catalysts for Microwave Hydrothermal Suzuki –Miyaura Cross-Couplings. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Khormi AY, Farghaly TA, Shaaban MR. Microwave-Assisted Synthesis of 2-Aryl and 2,5-Diarylthiophene Derivatives via Suzuki-Miyaura Cross-Coupling Using Novel Palladium Complex as a Catalyst. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1874429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Afaf Y. Khormi
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Thoraya. A. Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed R. Shaaban
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
16
|
Altuner EE, El Houda Tiri RN, Aygun A, Gulbagca F, Sen F, Iranbakhsh A, Karimi F, Vasseghian Y, Dragoi EN. Hydrogen production and photocatalytic activities from NaBH4 using trimetallic biogenic PdPtCo nanoparticles: Development of machine learning model. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Jiang Y, Qiu H, Liang W, Lin J, Lin J, Liu W, Wang X, Cui W, Chen X, Wang H, Zhao L, Liang H. Derivatization of Marine‐Derived Fascaplysin via Highly Regioselective Suzuki‐Miyaura Coupling Contributing to the Enhanced Antibacterial Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202201441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yinli Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Hongda Qiu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Junhao Lin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Jiayu Lin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Wan Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Xiao Wang
- Immunology Innovation Team School of Medicine Ningbo University Ningbo Zhejiang 315211 China
| | - Wei Cui
- Immunology Innovation Team School of Medicine Ningbo University Ningbo Zhejiang 315211 China
| | - Xiaowei Chen
- Immunology Innovation Team School of Medicine Ningbo University Ningbo Zhejiang 315211 China
| | - Huifei Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| |
Collapse
|
18
|
Wang H, Wu J, Noble A, Aggarwal VK. Selective Coupling of 1,2-Bis-Boronic Esters at the more Substituted Site through Visible-Light Activation of Electron Donor-Acceptor Complexes. Angew Chem Int Ed Engl 2022; 61:e202202061. [PMID: 35213775 PMCID: PMC9314813 DOI: 10.1002/anie.202202061] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 12/15/2022]
Abstract
1,2-Bis-boronic esters are useful synthetic intermediates particularly as the two boronic esters can be selectively functionalized. Usually, the less hindered primary boronic ester reacts, but herein, we report a coupling reaction that enables the reversal of this selectivity. This is achieved through the formation of a boronate complex with an electron-rich aryllithium which, in the presence of an electron-deficient aryl nitrile, leads to the formation of an electron donor-acceptor complex. Following visible-light photoinduced electron transfer, a primary radical is generated which isomerizes to the more stable secondary radical before radical-radical coupling with the arene radical-anion, giving β-aryl primary boronic ester products. The reactions proceed under catalyst-free conditions. This method also allows stereodivergent coupling of cyclic cis-1,2-bis-boronic esters to provide trans-substituted products, complementing the selectivity observed in the Suzuki-Miyaura reaction.
Collapse
Affiliation(s)
- Hui Wang
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Jingjing Wu
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
- Current address: Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical EngineeringShanghai Jiaotong UniversityNo. 800, Dongchuan RoadShanghai200240China
| | - Adam Noble
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
19
|
Xu G, Gao P, Colacot TJ. Tunable Unsymmetrical Ferrocene Ligands Bearing a Bulky Di-1-adamantylphosphino Motif for Many Kinds of C sp2–C sp3 Couplings. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guolin Xu
- Research and Development, Life Science Chemistry, MilliporeSigma, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209, United States
| | - Peng Gao
- Research and Development, Life Science Chemistry, MilliporeSigma, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209, United States
| | - Thomas J. Colacot
- Research and Development, Life Science Chemistry, MilliporeSigma, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209, United States
| |
Collapse
|
20
|
Wang H, Wu J, Noble A, Aggarwal VK. Selective Coupling of 1,2‐Bis‐Boronic Esters at the more. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hui Wang
- Bristol University school of chemistry UNITED KINGDOM
| | - Jingjing Wu
- Bristol University school of chemistry UNITED KINGDOM
| | - Adam Noble
- Bristol University school of chemistry UNITED KINGDOM
| | | |
Collapse
|
21
|
Mdluli SB, Ramoroka ME, Yussuf ST, Modibane KD, John-Denk VS, Iwuoha EI. π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells. Polymers (Basel) 2022; 14:716. [PMID: 35215629 PMCID: PMC8877693 DOI: 10.3390/polym14040716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
The evolution and emergence of organic solar cells and hybrid organic-silicon heterojunction solar cells have been deemed as promising sustainable future technologies, owing to the use of π-conjugated polymers. In this regard, the scope of this review article presents a comprehensive summary of the applications of π-conjugated polymers as hole transporting layers (HTLs) or emitters in both organic solar cells and organic-silicon hybrid heterojunction solar cells. The different techniques used to synthesize these polymers are discussed in detail, including their electronic band structure and doping mechanisms. The general architecture and principle of operating heterojunction solar cells is addressed. In both discussed solar cell types, incorporation of π-conjugated polymers as HTLs have seen a dramatic increase in efficiencies attained by these devices, owing to the high transmittance in the visible to near-infrared region, reduced carrier recombination, high conductivity, and high hole mobilities possessed by the p-type polymeric materials. However, these cells suffer from long-term stability due to photo-oxidation and parasitic absorptions at the anode interface that results in total degradation of the polymeric p-type materials. Although great progress has been seen in the incorporation of conjugated polymers in the various solar cell types, there is still a long way to go for cells incorporating polymeric materials to realize commercialization and large-scale industrial production due to the shortcomings in the stability of the polymers. This review therefore discusses the progress in using polymeric materials as HTLs in organic solar cells and hybrid organic-silicon heterojunction solar cells with the intention to provide insight on the quest of producing highly efficient but less expensive solar cells.
Collapse
Affiliation(s)
- Siyabonga B. Mdluli
- Sensor Laboratories (SensorLab), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.T.Y.); (V.S.J.-D.)
| | - Morongwa E. Ramoroka
- Sensor Laboratories (SensorLab), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.T.Y.); (V.S.J.-D.)
| | - Sodiq T. Yussuf
- Sensor Laboratories (SensorLab), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.T.Y.); (V.S.J.-D.)
| | - Kwena D. Modibane
- Department of Chemistry, School of Physical and Mineral Science, University of Limpopo, Sovenga, Polokwane 0727, South Africa;
| | - Vivian S. John-Denk
- Sensor Laboratories (SensorLab), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.T.Y.); (V.S.J.-D.)
| | - Emmanuel I. Iwuoha
- Sensor Laboratories (SensorLab), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.T.Y.); (V.S.J.-D.)
| |
Collapse
|
22
|
Ma WT, Huang MG, Fuyue L, Wang ZH, Tao JY, Li JW, Liu YJ, Zeng MH. Ru(II)-catalyzed P(III)-assisted C8-alkylation of naphthphosphines. Chem Commun (Camb) 2022; 58:7152-7155. [DOI: 10.1039/d2cc02161g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a phosphine-directed ruthenium-catalyzed C8-selective alkylation of naphthalenes with alkenes. This protocol provides a straightforward access to a large library of electron-rich C8-alkyl substituent 1-naphthphosphines, which outperformed commonly commercial...
Collapse
|
23
|
Shaya J, Correia G, Heinrich B, Ribierre JC, Polychronopoulou K, Mager L, Méry S. Functionalization of Biphenylcarbazole (CBP) with Siloxane-Hybrid Chains for Solvent-Free Liquid Materials. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010089. [PMID: 35011322 PMCID: PMC8746609 DOI: 10.3390/molecules27010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022]
Abstract
We report herein the synthesis of siloxane-functionalized CBP molecules (4,4′-bis(carbazole)-1,1′-biphenyl) for liquid optoelectronic applications. The room-temperature liquid state is obtained through a convenient functionalization of the molecules with heptamethyltrisiloxane chains via hydrosilylation of alkenyl spacers. The synthesis comprises screening of metal-catalyzed methodologies to introduce alkenyl linkers into carbazoles (Stille and Suzuki Miyaura cross-couplings), incorporate the alkenylcarbazoles to dihalobiphenyls (Ullmann coupling), and finally introduce the siloxane chains. The used conditions allowed the synthesis of the target compounds, despite the high reactivity of the alkenyl moieties bound to π-conjugated systems toward undesired side reactions such as polymerization, isomerization, and hydrogenation. The features of these solvent-free liquid CBP derivatives make them potentially interesting for fluidic optoelectronic applications.
Collapse
Affiliation(s)
- Janah Shaya
- IPCMS, CNRS-Strasbourg University, UMR7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; (G.C.); (B.H.); (L.M.)
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence: (J.S.); (S.M.)
| | - Gabriel Correia
- IPCMS, CNRS-Strasbourg University, UMR7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; (G.C.); (B.H.); (L.M.)
| | - Benoît Heinrich
- IPCMS, CNRS-Strasbourg University, UMR7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; (G.C.); (B.H.); (L.M.)
| | - Jean-Charles Ribierre
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan;
| | - Kyriaki Polychronopoulou
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Center for Catalysis and Separation, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Loïc Mager
- IPCMS, CNRS-Strasbourg University, UMR7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; (G.C.); (B.H.); (L.M.)
| | - Stéphane Méry
- IPCMS, CNRS-Strasbourg University, UMR7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; (G.C.); (B.H.); (L.M.)
- Correspondence: (J.S.); (S.M.)
| |
Collapse
|
24
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
25
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
26
|
Lamola JL, Moshapo PT, Holzapfel CW, Maumela MC. Evaluation of P-bridged biaryl phosphine ligands in palladium-catalysed Suzuki-Miyaura cross-coupling reactions. RSC Adv 2021; 11:26883-26891. [PMID: 35480011 PMCID: PMC9037619 DOI: 10.1039/d1ra04947j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022] Open
Abstract
A family of biaryl phosphacyclic ligands derived from phobane and phosphatrioxa-adamantane frameworks is described. The rigid biaryl phosphacycles are efficient for Suzuki-Miyaura cross-coupling of aryl bromides and chlorides. In particular, coupling reactions of the challenging sterically hindered and heterocyclic substrates were viable at room temperature.
Collapse
Affiliation(s)
- Jairus L Lamola
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences University of Johannesburg, Kingsway Campus Auckland Park 2006 South Africa
| | - Paseka T Moshapo
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences University of Johannesburg, Kingsway Campus Auckland Park 2006 South Africa
| | - Cedric W Holzapfel
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences University of Johannesburg, Kingsway Campus Auckland Park 2006 South Africa
| | - Munaka Christopher Maumela
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences University of Johannesburg, Kingsway Campus Auckland Park 2006 South Africa .,Sasol (Pty) Ltd, Research and Technology (R & T) 1 Klasie Havenga Rd Sasolburg 1947 South Africa
| |
Collapse
|
27
|
Lamola JL, Shilubana JC, Ngodwana L, Vatsha B, Adeyinka AS, Maumela MC, Holzapfel CW, Mmutlane EM. Easily Prepared Mono(N,N‐dialkylamino)phosphine Palladium(II) Complexes: Structural and Catalytic Evaluation. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jairus L. Lamola
- Research Centre for Synthesis and Catalysis Department of Chemical Sciences University of Johannesburg, Kingsway Campus P.O. Box 123 Johannesburg, Auckland Park 2006 South Africa
| | - Joy C. Shilubana
- Research Centre for Synthesis and Catalysis Department of Chemical Sciences University of Johannesburg, Kingsway Campus P.O. Box 123 Johannesburg, Auckland Park 2006 South Africa
| | - Lonwabo Ngodwana
- Research Centre for Synthesis and Catalysis Department of Chemical Sciences University of Johannesburg, Kingsway Campus P.O. Box 123 Johannesburg, Auckland Park 2006 South Africa
| | - Banele Vatsha
- Research Centre for Synthesis and Catalysis Department of Chemical Sciences University of Johannesburg, Kingsway Campus P.O. Box 123 Johannesburg, Auckland Park 2006 South Africa
| | - Adedapo S. Adeyinka
- Research Centre for Synthesis and Catalysis Department of Chemical Sciences University of Johannesburg, Kingsway Campus P.O. Box 123 Johannesburg, Auckland Park 2006 South Africa
| | - Munaka C. Maumela
- Research Centre for Synthesis and Catalysis Department of Chemical Sciences University of Johannesburg, Kingsway Campus P.O. Box 123 Johannesburg, Auckland Park 2006 South Africa
- Sasol (Pty) Ltd Research & Technology (R & T) 1 Klasie Havenga Rd Sasolburg 1947 South Africa
| | - Cedric W. Holzapfel
- Research Centre for Synthesis and Catalysis Department of Chemical Sciences University of Johannesburg, Kingsway Campus P.O. Box 123 Johannesburg, Auckland Park 2006 South Africa
| | - Edwin M. Mmutlane
- Research Centre for Synthesis and Catalysis Department of Chemical Sciences University of Johannesburg, Kingsway Campus P.O. Box 123 Johannesburg, Auckland Park 2006 South Africa
| |
Collapse
|
28
|
Chen CC, Shaya J, Polychronopoulou K, Golovko VB, Tesana S, Wang SY, Lu CS. Photocatalytic Degradation of Ethiofencarb by a Visible Light-Driven SnIn 4S 8 Photocatalyst. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1325. [PMID: 34069767 PMCID: PMC8157292 DOI: 10.3390/nano11051325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 01/19/2023]
Abstract
This work reports the preparation and detailed characterization of stannum indium sulfide (SnIn4S8) semiconductor photocatalyst for degradation of ethiofencarb (toxic insecticide) under visible-light irradiation. The as-prepared SnIn4S8 showed catalytic efficiency of 98% in 24 h under optimal operating conditions (pH = 3, catalyst dosage of 0.5 g L-1). The photodegradation reaction followed pseudo-first-order kinetics. The major intermediates have been identified using gas chromatography/mass spectrometry. •O2- and •OH radicals appeared to be the primary active species in the degradation process as revealed by scavenger and electronic spin resonance studies, while photogenerated holes had a secondary role in this process. A plausible mechanism involving two routes was proposed for ethiofencarb degradation by SnIn4S8 after identifying the major intermediate species: oxidative cleavage of the CH2-S and the amide bonds of the carbamate moiety. Lastly, SnIn4S8 was found to be efficient, stable, and reusable in treating real water samples in three successive photodegradation experiments. This study demonstrates the prospect of SnIn4S8 photocatalysis in treatment of natural and contaminated water from extremely toxic organic carbamates as ethiofencarb.
Collapse
Affiliation(s)
- Chiing-Chang Chen
- Department of Science Education and Application, National Taichung University of Education, Taichung 403, Taiwan;
| | - Janah Shaya
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- College of Arts and Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separation, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Kyriaki Polychronopoulou
- Center for Catalysis and Separation, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Vladimir B. Golovko
- School of Physical and Chemical Sciences, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand; (V.B.G.); (S.T.)
| | - Siriluck Tesana
- School of Physical and Chemical Sciences, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand; (V.B.G.); (S.T.)
| | - Syuan-Yun Wang
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Chung-Shin Lu
- Department of General Education, National Taichung University of Science and Technology, Taichung 403, Taiwan
| |
Collapse
|
29
|
Editorial Catalysts: Special Issue on Transition Metal Catalyzed Cross-Coupling Reactions. Catalysts 2021. [DOI: 10.3390/catal11040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transition metal catalyzed cross-coupling reactions have proved to be powerful tools for carbon–carbon as well as carbon–heteroatom bond formation in the development of synthetic methodologies for applications ranging from pharmaceuticals to materials [...]
Collapse
|
30
|
Matsumoto A, Maruoka K. Development of Organosilicon Peroxides as Practical Alkyl Radical Precursors and Their Applications to Transition Metal Catalysis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
31
|
Arora V, Narjinari H, Nandi PG, Kumar A. Recent advances in pincer-nickel catalyzed reactions. Dalton Trans 2021; 50:3394-3428. [PMID: 33595564 DOI: 10.1039/d0dt03593a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organometallic catalysts have played a key role in accomplishing numerous synthetically valuable organic transformations that are either otherwise not possible or inefficient. The use of precious, sparse and toxic 4d and 5d metals are an apparent downside of several such catalytic systems despite their immense success over the last several decades. The use of complexes containing Earth-abundant, inexpensive and less hazardous 3d metals, such as nickel, as catalysts for organic transformations has been an emerging field in recent times. In particular, the versatile nature of the corresponding pincer-metal complexes, which offers great control of their reactivity via countless variations, has garnered great interest among organometallic chemists who are looking for greener and cheaper alternatives. In this context, the current review attempts to provide a glimpse of recent developments in the chemistry of pincer-nickel catalyzed reactions. Notably, there have been examples of pincer-nickel catalyzed reactions involving two electron changes via purely organometallic mechanisms that are strikingly similar to those observed with heavier Pd and Pt analogues. On the other hand, there have been distinct differences where the pincer-nickel complexes catalyze single-electron radical reactions. The applicability of pincer-nickel complexes in catalyzing cross-coupling reactions, oxidation reactions, (de)hydrogenation reactions, dehydrogenative coupling, hydrosilylation, hydroboration, C-H activation and carbon dioxide functionalization has been reviewed here from synthesis and mechanistic points of view. The flurry of global pincer-nickel related activities offer promising avenues in catalyzing synthetically valuable organic transformations.
Collapse
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
32
|
Valadbeigi Y, Gal JF. Organometallic superacids and hyperacids: Acidity enhancement by internal bonding with a strong electron-pair acceptor group BX2. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Thiosemicarbazone Complexes of Transition Metals as Catalysts for Cross-Coupling Reactions. Catalysts 2020. [DOI: 10.3390/catal10101107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Catalysis of cross-coupling reactions under phosphane-free conditions represents an important ongoing challenge. Although transition metal complexes based on the thiosemicarbazone unit have been known for a very long time, their use in homogeneous catalysis has been studied only relatively recently. In particular, reports of cross-coupling catalytic reactions with such complexes have appeared only in the last 15 years. This review provides a survey of the research in this area and a discussion of the prospects for future developments.
Collapse
|
34
|
Visible-Light Driven Photocatalytic Degradation of Pirimicarb by Pt-Doped AgInS2 Nanoparticles. Catalysts 2020. [DOI: 10.3390/catal10080857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study describes the synthesis and characterization of Pt-doped AgInS2 nanoparticles and reports their prospective application as visible-light catalysts for photodegradation of frequently used pirimicarb insecticides, which pose serious health and environmental concerns. The nanomaterials were characterized by XRD, SEM, TEM, XPS, photoluminescence (PL), and UV–vis diffuse reflectance spectra (DRS). The presented photocatalytic method for water treatment from pirimicarb has the advantages of using visible light source without any costly additive such as H2O2 needed in other employed methods. The Pt-doped AgInS2 exhibited higher photocatalytic activities for pirimicarb degradation than undoped AgInS2. The 1.0 wt% Pt/AgInS2 photocatalyst exhibited the highest photodegradation rate, showing enhancement of 56% in comparison to the pure AgInS2 photocatalyst. The photodegradation rate was found to increase with increasing the catalyst dosage until reaching the optimal dosage of 1.0 g L−1. The pirimicarb degradation was significantly more efficient under acidic conditions, and the rates drastically dropped upon increasing the pH. The photocatalytic mechanism of Pt/AgInS2 composites and the main active species involved in the process were investigated. The mechanism of pirimicarb degradation was proposed via two different pathways, N-dealkylation and decarbamoylation. Lastly, the photocatalysts demonstrated remarkable stability and were reusable in three successive catalytic tests without compromising catalytic activities. The Pt/AgInS2 photocatalyst also exhibited efficiency and feasibility in pirimicarb removal from environmental lake and river water samples.
Collapse
|
35
|
Buskes MJ, Blanco MJ. Impact of Cross-Coupling Reactions in Drug Discovery and Development. Molecules 2020; 25:E3493. [PMID: 32751973 PMCID: PMC7436090 DOI: 10.3390/molecules25153493] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Cross-coupling reactions have played a critical role enabling the rapid expansion of structure-activity relationships (SAR) during the drug discovery phase to identify a clinical candidate and facilitate subsequent drug development processes. The reliability and flexibility of this methodology have attracted great interest in the pharmaceutical industry, becoming one of the most used approaches from Lead Generation to Lead Optimization. In this mini-review, we present an overview of cross-coupling reaction applications to medicinal chemistry efforts, in particular the Suzuki-Miyaura and Buchwald-Hartwig cross-coupling reactions as a remarkable resource for the generation of carbon-carbon and carbon-heteroatom bonds. To further appreciate the impact of this methodology, the authors discuss some recent examples of clinical candidates that utilize key cross-coupling reactions in their large-scale synthetic process. Looking into future opportunities, the authors highlight the versatility of the cross-coupling reactions towards new chemical modalities like DNA-encoded libraries (DELs), new generation of peptides and cyclopeptides, allosteric modulators, and proteolysis targeting chimera (PROTAC) approaches.
Collapse
Affiliation(s)
| | - Maria-Jesus Blanco
- Medicinal Chemistry. Sage Therapeutics, Inc. 215 First Street, Cambridge, MA 02142, USA;
| |
Collapse
|
36
|
You LX, Yao SX, Zhao BB, Xiong G, Dragutan I, Dragutan V, Liu XG, Ding F, Sun YG. Striking dual functionality of a novel Pd@Eu-MOF nanocatalyst in C(sp 2)-C(sp 2) bond-forming and CO 2 fixation reactions. Dalton Trans 2020; 49:6368-6376. [PMID: 32347863 DOI: 10.1039/d0dt00770f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pd nanoparticles were immobilized on a highly porous, hydrothermally stable Eu-MOF via solution impregnation and H2 reduction to yield a novel Pd@Eu-MOF nanocatalyst. This composite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), inductively coupled plasma optical emission spectroscopy (ICP-OES), powder X-ray diffraction (PXRD) and X-ray photoelectron spectroscopy (XPS). Unprecedentedly, the Pd@Eu-MOF nanocatalyst could be applied with excellent results in two strikingly different, mechanistically distinct, reactions i.e., Suzuki-Miyaura cross-coupling and cycloaddition of CO2 to a range of epoxides. Under the best reaction conditions, 98-99% yields have been attained in both catalytic processes. Moreover, in either case the heterogeneous catalyst was easily recovered and efficiently reused for more than four cycles, indicating its high stability and reproducibility. PXRD, TEM and XPS measurements on the recycled catalyst confirmed that it maintained its original structure and morphology; no Pd NP agglomeration was observed.
Collapse
Affiliation(s)
- Li-Xin You
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Shan-Xin Yao
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Bai-Bei Zhao
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Gang Xiong
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Ileana Dragutan
- Institute of Organic Chemistry, Romanian Academy, P. O. Box 35-108, Bucharest, 060023, Romania.
| | - Valerian Dragutan
- Institute of Organic Chemistry, Romanian Academy, P. O. Box 35-108, Bucharest, 060023, Romania.
| | - Xue-Gui Liu
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Fu Ding
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Ya-Guang Sun
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| |
Collapse
|
37
|
Demchuk OP, Hryshchuk OV, Vashchenko BV, Kozytskiy AV, Tymtsunik AV, Komarov IV, Grygorenko OO. Photochemical [2 + 2] Cycloaddition of Alkenyl Boronic Derivatives: An Entry into 3-Azabicyclo[3.2.0]heptane Scaffold. J Org Chem 2020; 85:5927-5940. [PMID: 32233365 DOI: 10.1021/acs.joc.0c00265] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The synthesis of 3-azabicyclo[3.2.0]heptyl boropinacolates and trifluoroborates via the [2 + 2] photocycloaddition of the corresponding alkenyl boronic derivatives and maleimides or maleic anhydride is described. Optimization of the reaction conditions (i.e., wavelength, concentration of the reagents, photosensitizer) was carried out, and the scope and limitations of the method were studied. Alkenyl boronic acid pinacolates were found to be more suitable for the [2 + 2] cycloaddition, providing better reaction outcomes compared to the trifluoroborates. The utility of this approach was shown by the preparation of bi- and trifunctional building blocks (21 examples), which could be easily synthesized on up to 60 g scale. These cycloadducts provide a convenient entry into the 3-azabicyclo[3.2.0]heptane scaffold through the C-C coupling or oxidative deborylation reactions.
Collapse
Affiliation(s)
- Oleksandr P Demchuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine
| | - Oleksandr V Hryshchuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Bohdan V Vashchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Andriy V Kozytskiy
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,L. V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Nauky Avenue, 31, Kyiv 03028, Ukraine
| | - Andriy V Tymtsunik
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Prospect Peremogy 37, Kyiv 03056, Ukraine
| | - Igor V Komarov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| |
Collapse
|
38
|
Kanwal S, Ann NU, Fatima S, Emwas AH, Alazmi M, Gao X, Ibrar M, Zaib Saleem RS, Chotana GA. Facile Synthesis of NH-Free 5-(Hetero)Aryl-Pyrrole-2-Carboxylates by Catalytic C-H Borylation and Suzuki Coupling. Molecules 2020; 25:molecules25092106. [PMID: 32365945 PMCID: PMC7248765 DOI: 10.3390/molecules25092106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 11/25/2022] Open
Abstract
A convenient two-step preparation of NH-free 5-aryl-pyrrole-2-carboxylates is described. The synthetic route consists of catalytic borylation of commercially available pyrrole-2-carboxylate ester followed by Suzuki coupling without going through pyrrole N–H protection and deprotection steps. The resulting 5-aryl substituted pyrrole-2-carboxylates were synthesized in good- to excellent yields. This synthetic route can tolerate a variety of functional groups including those with acidic protons on the aryl bromide coupling partner. This methodology is also applicable for cross-coupling with heteroaryl bromides to yield pyrrole-thiophene, pyrrole-pyridine, and 2,3’-bi-pyrrole based bi-heteroaryls.
Collapse
Affiliation(s)
- Saba Kanwal
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Noor-ul- Ann
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Saman Fatima
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Meshari Alazmi
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.A.); (X.G.)
- College of Computer Science and Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81481, Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.A.); (X.G.)
| | - Maha Ibrar
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Ghayoor Abbas Chotana
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
- Correspondence: ; Tel.: +92-42-3560-8281
| |
Collapse
|