1
|
Hansda B, Mishra S, Ghosh A, Das B, Biswas T, Mondal TK, Srivastava B, Mondal S, Roy D, Mandal B. Chemically Bonded Pepsin via Its Inert Center to Diazo Functionalized Silica Gel through Multipoint Attachment Mode: A Way of Restoring Biocatalytic Sustainability over "Wider pH" Range. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2146-2164. [PMID: 38240266 DOI: 10.1021/acs.langmuir.3c03113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Proteolytic enzymes play a pivotal role in the industry. Still, because of denaturation, the extensive applicability at their level of best catalytic efficiency over a more comprehensive pH range, particularly in alkaline conditions over pH 8, has not been fully developed. On the other hand, enzyme immobilization following a suitable protocol is a long pending issue that determines the conformational stability, specificity, selectivity, enantioselectivity, and activity of the native enzymes at long-range pH. As a bridge between these two findings, in an attempt at a freezing temperature 273-278 K at an alkaline pH, the diazo-functionalized silica gel (SG) surface has been used to rapidly diazo couple pepsin through its inert center, the O-carbon of the phenolic -OH of surface-occupied Tyr residues in a multipoint mode: when all the various protein groups, viz., amino, thiol, phenol, imidazole, carboxy, etc., in the molecular sequence including those belonging to the active sites, remain intact, the inherent inbuilt interactions among themselves remain. Thereby, the macromolecule's global conformation and helicity preserve the status quo. The dimension of the SG-enzyme conjugate confirms as {Si(OSi)4 (H2O)1.03}n {-O-Si(CH3)2-O-C6H4-N═N+}4·{pepsin}·yH2O; where the values of n and y have been determined respectively as 347 and 188. The material performs the catalytic activity much better at 7-8.5 than at pH 2-3.5 and continues for up to six months without any appreciable change.
Collapse
Affiliation(s)
- Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Tanay K Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Bhavya Srivastava
- The West Bengal National University of Juridical Sciences, Dr. Ambedkar Bhavan, Kolkata 700098, India
| | - Sneha Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Dipika Roy
- Department of Chemistry, Jadavpur University, Main Campus 188, Raja S.C. Mallick Rd, Kolkata, West Bengal700032, India
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| |
Collapse
|
2
|
Milessi TS, Lopes LA, Novelli PK, Tardioli PW, Giordano RLC. Improvement of functional properties of cow's milk peptides through partial proteins hydrolysis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4520-4529. [PMID: 36193486 PMCID: PMC9525475 DOI: 10.1007/s13197-022-05533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
Allergy by cow's milk proteins is among the major food allergies and could be reduced by the partial hydrolysis of these proteins by proteases, without significantly affecting its physicochemical properties. In addition, the peptides generated through enzymatic hydrolysis of the cow's milk can present prebiotic and bioactive properties. In this work, the cow's milk proteins were submitted to a controlled hydrolysis by Novo-Pro D® and the influence of the degree of hydrolysis (DH) on peptide size distribution was evaluated, as well as the prebiotic and antimicrobial properties of milk hydrolysates. It was shown that for DH-10%, all the peptides have sizes lower than 12 kDa which is the size of the most allergenic proteins, without apparent changes in the milk, as long as heating of the hydrolysate is avoided. The protein hydrolysis promoted a great improvement in the milk functional properties. In addition, the obtained milk peptides presented great prebiotic activities, as indicated by the significant improvement of the growth of prebiotic L. acidophilus and L. reuteri and by the production of bacteriocins indicated by the inhibition halos in the growth of a pathogenic microorganism. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05533-x.
Collapse
Affiliation(s)
- Thais S. Milessi
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, Itajubá, MG 1303, 37500-903 Brazil
| | - Laiane A. Lopes
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPEQ-UFSCar), Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
| | - Paula K. Novelli
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
| | - Paulo W. Tardioli
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPEQ-UFSCar), Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
| | - Raquel L. C. Giordano
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPEQ-UFSCar), Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
| |
Collapse
|
3
|
Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 2021; 52:107821. [PMID: 34455028 DOI: 10.1016/j.biotechadv.2021.107821] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
The use of enzymes in industrial processes requires the improvement of their features in many instances. Enzyme immobilization, a requirement to facilitate the recovery and reuse of these water-soluble catalysts, is one of the tools that researchers may utilize to improve many of their properties. This review is focused on how enzyme immobilization may improve enzyme stability. Starting from the stabilization effects that an enzyme may experience by the mere fact of being inside a solid particle, we detail other possibilities to stabilize enzymes: generation of favorable enzyme environments, prevention of enzyme subunit dissociation in multimeric enzymes, generation of more stable enzyme conformations, or enzyme rigidification via multipoint covalent attachment. In this last point, we will discuss the features of an "ideal" immobilization protocol to maximize the intensity of the enzyme-support interactions. The most interesting active groups in the support (glutaraldehyde, epoxide, glyoxyl and vinyl sulfone) will be also presented, discussing their main properties and uses. Some instances in which the number of enzyme-support bonds is not directly related to a higher stabilization will be also presented. Finally, the possibility of coupling site-directed mutagenesis or chemical modification to get a more intense multipoint covalent immobilization will be discussed.
Collapse
Affiliation(s)
- Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil
| | | | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
4
|
Braham SA, Morellon-Sterling R, de Andrades D, Rodrigues RC, Siar EH, Aksas A, Pedroche J, Millán MDC, Fernandez-Lafuente R. Effect of Tris Buffer in the Intensity of the Multipoint Covalent Immobilization of Enzymes in Glyoxyl-Agarose Beads. Appl Biochem Biotechnol 2021; 193:2843-2857. [PMID: 34019251 DOI: 10.1007/s12010-021-03570-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Tris is an extensively used buffer that presents a primary amine group on its structure. In the present work trypsin, chymotrypsin and penicillin G acylase (PGA) were immobilized/stabilized on glyoxyl agarose in presence of different concentrations of Tris (from 0 to 20 mM). The effects of the presence of Tris during immobilization were studied analyzing the thermal stability of the obtained immobilized biocatalysts. The results indicate a reduction of the enzyme stability when immobilized in the presence of Tris. This effect can be observed in inactivations carried out at pH 5, 7, and 9 with all the enzymes assayed. The reduction of enzyme stability increased with the Tris concentration. Another interesting result is that the stability reduction was more noticeable for immobilized PGA than in the other immobilized enzymes, the biocatalysts prepared in presence of 20 mM Tris lost totally the activity at pH 7 just after 1 h of inactivation, while the reference at this time still kept around 61 % of the residual activity. These differences are most likely due to the homogeneous distribution of the Lys groups in PGA compared to trypsin and chymotrypsin (where almost 50% of Lys group are in a small percentage of the protein surface). The results suggest that Tris could be affecting the multipoint covalent immobilization in two different ways, on one hand, reducing the number of available glyoxyl groups of the support during immobilization, and on the other hand, generating some steric hindrances that difficult the formation of covalent bonds.
Collapse
Affiliation(s)
- Sabrina Ait Braham
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/ Marie Curie 2, Campus UAM-CSI, Cantoblanco, 28049, Madrid, Spain.,Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael C Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - El-Hocine Siar
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/ Marie Curie 2, Campus UAM-CSI, Cantoblanco, 28049, Madrid, Spain.,Transformation and Food Product Elaboration Laboratory, Nutrition and Food Technology Institute (INATAA), University of Brothers Mentouri Constantine 1, Constantine, Algeria
| | - Ali Aksas
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Justo Pedroche
- Group of Plant Proteins, Department of Food and Health, Instituto de la Grasa-CSIC, Seville, Spain
| | - Maria Del Carmen Millán
- Group of Plant Proteins, Department of Food and Health, Instituto de la Grasa-CSIC, Seville, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/ Marie Curie 2, Campus UAM-CSI, Cantoblanco, 28049, Madrid, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
5
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
6
|
Sugarcane Bagasse Saccharification by Enzymatic Hydrolysis Using Endocellulase and β-glucosidase Immobilized on Different Supports. Catalysts 2021. [DOI: 10.3390/catal11030340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The saccharification of sugarcane bagasse by enzymatic hydrolysis is one of the most promising processes for obtaining fermentable sugar to be used in the production of second-generation ethanol. The objective of this work was to study the immobilization and stabilization of two commercial enzymes: Endocellulase (E-CELBA) in dextran coated iron oxide magnetic nanoparticles activated with aldehyde groups (DIOMNP) and β-glucosidase (E-BGOSPC) in glyoxyl agarose (GLA) so that their immobilized derivatives could be applied in the saccharification of pretreated sugarcane bagasse. This was the first time that the pretreated sugarcane bagasse was saccharified by cascade reaction using a endocellulase immobilized on dextran coated Fe2O3 with aldehyde groups combined with a β-glucosidase immobilized on glyoxyl agarose. Both enzymes were successfully immobilized (more than 60% after reduction with sodium borohydride) and presented higher thermal stability than free enzymes at 60, 70, and 80 °C. The enzymatic hydrolysis of the sugarcane bagasse was carried out with 15 U of each enzyme per gram of bagasse in a solid-liquid ratio of 1:20 for 48 h at 50 °C. Under these conditions, 39.06 ± 1.18% of the cellulose present in the pretreated bagasse was hydrolyzed, producing 14.11 ± 0.47 g/L of reducing sugars (94.54% glucose). In addition, DIOMNP endo-cellulase derivative maintained 61.40 ± 1.17% of its enzymatic activity after seven reuse cycles, and GLA β-glucosidase derivative maintained up to 58.20 ± 1.55% of its enzymatic activity after nine reuse cycles.
Collapse
|
7
|
Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins. Catalysts 2021. [DOI: 10.3390/catal11030305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Enzymatic hydrolysis of food proteins is convenient method to improve their functional properties and physiological activity. Herein, the successful covalent attachment of alcalase on alginate micron and submicron beads using the carbodiimide based chemistry reaction and the subsequent application of the beads for egg white and soy proteins hydrolysis were studied. In addition to the electrostatic extrusion technique (EE) previously used by others, the potential utilization of a novel ultrasonic spray atomization technique without drying (UA) and with drying (UAD) for alginate submicron beads production has been attempted. The immobilization parameters were optimized on microbeads obtained by EE technique (803 ± 23 µm) with respect to enzyme loading and alcalase activity. UA and UAD techniques resulted in much smaller particles (607 ± 103 nm and 394 ± 51 nm in diameter, respectively), enabling even higher enzyme loading of 671.6 ± 4 mg g−1 on the carrier and the highest immobilized alcalase activity of 2716.1 IU g−1 in the standard reaction. The UAD biocatalyst exhibited also better performances in the real food system based on egg white or soy proteins. It has been shown that the immobilized alcalase can be reused in seven successive soy protein hydrolysis cycles with a little decrease in the activity.
Collapse
|
8
|
Corradini FAS, Milessi TS, Gonçalves VM, Ruller R, Sargo CR, Lopes LA, Zangirolami TC, Tardioli PW, Giordano RC, Giordano RLC. High stabilization and hyperactivation of a Recombinant β-Xylosidase through Immobilization Strategies. Enzyme Microb Technol 2020; 145:109725. [PMID: 33750534 DOI: 10.1016/j.enzmictec.2020.109725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/15/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Attainment of a stable and highly active β-xylosidase is of major importance for the efficient and cost-competitive hydrolysis of hemicellulose xylan, as well as for its industrial conversion into biofuels and biochemicals. Here, a recombinant β-xylosidase of the glycoside hydrolase family (GH43) from Bacillus subtilis was produced in Escherichia coli culture, purified, and subsequently immobilized on agarose and chitosan. Glutaraldehyde and glyoxyl groups were evaluated as activating agents to select the most efficient derivative. Multi-point immobilization on agarose led to an extraordinary thermal stability (half-lives 3604 and 164-fold higher than the free enzyme, at 50° and 35 °C, respectively). Even for chitosan activated with glutaraldehyde, a low-cost support, thermal stability of the immobilized enzyme was 326 and 12-fold higher than the free enzyme at 50° and 35°C, respectively. Immobilized enzymes showed no release of any subunit for the agarose-glyoxyl derivative, and only a few ones for the support activated with glutaraldehyde. Most remarkably, the enzyme kinetic behavior after immobilization increased up to 4-fold in relation to the free one. β-xylosidase, a tetrameric enzyme with four identical subunits, exists in equilibrium between the monomeric and oligomeric forms in solution. Depending on the pH of immobilization, the enzyme oligomerization can be favored, thus explaining the hyperactivation phenomenon. Both glyoxyl-agarose and chitosan-glutaraldehyde derivatives were used to catalyze corncob xylan hydrolysis, reaching 72 % conversion, representing a xylose productivity of around 20 g L-1 h-1. After ten 4h-cycles (pH 6.0, 35 °C), the xylan-to-xylose conversion remained approximately unchanged. Therefore, the immobilized β-xylosidases prepared in this work can be of great interest as biocatalysts in a biorefinery context.
Collapse
Affiliation(s)
- Felipe A S Corradini
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Thais S Milessi
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Institute of Natural Resources, Federal University of Itajubá, Av. BPS, 1300, 37500-903, Itajubá, MG, Brazil
| | - Viviane M Gonçalves
- Laboratory of Vaccine Development, Butantan Institute, Av Vital Brasil 1500, 05503-900, São Paulo, SP, Brazil
| | - Roberto Ruller
- General Biochemistry and Microorganism Laboratory, Bioscience Institute, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/n, 79070-900, Campo Grande, MS, Brazil
| | - Cíntia R Sargo
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| | - Laiane A Lopes
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Teresa C Zangirolami
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Paulo W Tardioli
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Roberto C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Raquel L C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
9
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|