1
|
Su S, Zhao J, Ly TH. Scanning Probe Microscopies for Characterizations of 2D Materials. SMALL METHODS 2024; 8:e2400211. [PMID: 38766949 PMCID: PMC11579571 DOI: 10.1002/smtd.202400211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/12/2024] [Indexed: 05/22/2024]
Abstract
2D materials are intriguing due to their remarkably thin and flat structure. This unique configuration allows the majority of their constituent atoms to be accessible on the surface, facilitating easier electron tunneling while generating weak surface forces. To decipher the subtle signals inherent in these materials, the application of techniques that offer atomic resolution (horizontal) and sub-Angstrom (z-height vertical) sensitivity is crucial. Scanning probe microscopy (SPM) emerges as the quintessential tool in this regard, owing to its atomic-level spatial precision, ability to detect unitary charges, responsiveness to pico-newton-scale forces, and capability to discern pico-ampere currents. Furthermore, the versatility of SPM to operate under varying environmental conditions, such as different temperatures and in the presence of various gases or liquids, opens up the possibility of studying the stability and reactivity of 2D materials in situ. The characteristic flatness, surface accessibility, ultra-thinness, and weak signal strengths of 2D materials align perfectly with the capabilities of SPM technologies, enabling researchers to uncover the nuanced behaviors and properties of these advanced materials at the nanoscale and even the atomic scale.
Collapse
Affiliation(s)
- Shaoqiang Su
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077China
| | - Jiong Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077P. R. China
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhen518057China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077China
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
| |
Collapse
|
2
|
Kim W, Kim K, Kim J, Lee Z. In situ observation of catalyst nanoparticle sintering resistance on oxide supports via gas phase transmission electron microscopy. Appl Microsc 2024; 54:7. [PMID: 39284998 PMCID: PMC11405595 DOI: 10.1186/s42649-024-00100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Oxide-supported metal catalysts are essential components in industrial processes for catalytic conversion. However, the performance of these catalysts is often compromised in high temperature reaction environments due to sintering effects. Currently, a number of studies are underway with the objective of improving the metal support interaction (MSI) effect in order to enhance sintering resistance by surface modification of the oxide support, including the formation of inhomogeneous defects on the oxide support, the addition of a rare earth element, the use of different facets, encapsulation, and other techniques. The recent developments in in situ gas phase transmission electron microscopy (TEM) have enabled direct observation of the sintering process of NPs in real time. This capability further allows to verify the efficacy of the methods used to tailor the support surface and contributes effectively to improving sintering resistance. Here, we review a few selected studies on how in situ gas phase TEM has been used to prevent the sintering of catalyst NPs on oxide supports.
Collapse
Affiliation(s)
- Wonjun Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kangsik Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jaejin Kim
- Shell International Exploration & Production, Inc, Shell Technology Center Houston, 3333 Hwy 6 S, Houston, TX, 77082-3101, USA
| | - Zonghoon Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
3
|
Singh R, Wang L, Huang J. In-Situ Characterization Techniques for Mechanism Studies of CO 2 Hydrogenation. Chempluschem 2024; 89:e202300511. [PMID: 38853143 DOI: 10.1002/cplu.202300511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The paramount concerns of global warming, fossil fuel depletion, and energy crises have prompted the need of hydrocarbons productions via CO2 conversion. In order to achieve global carbon neutrality, much attention needs to be diverted towards CO2 management. Catalytic hydrogenation of CO2 is an exciting opportunity to curb the increasing CO2 and produce value-added products. However, the comprehensive understanding of CO2 hydrogenation is still a matter of discussion due to its complex reaction mechanism and involvement of various species. This review comprehensively discusses three processes: reverse water gas shift (RWGS) reaction, modified Fischer Tropsch synthesis (MFTS), and methanol-mediated route (MeOH) for CO2 hydrogenation to hydrocarbons. Along with analysing the reaction pathways, it is also very important to understand the real-time evolvement of catalytic process and reaction intermediates by employing in-situ characterization techniques under actual reaction conditions. Subsequently, in second part of this review, we provided a systematic analysis of advancements in in-situ techniques aimed to monitor the evolution of catalysts during CO2 reduction process. The section also highlights the key components of in-situ cells, their working principles, and applications in identifying reaction mechanisms for CO2 hydrogenation. Finally, by reviewing respective achievements in the field, we identify key gaps and present some future directions for CO2 hydrogenation and in-situ studies.
Collapse
Affiliation(s)
- Rasmeet Singh
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - Lizhuo Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| |
Collapse
|
4
|
Yue S, Praveen CS, Klyushin A, Fedorov A, Hashimoto M, Li Q, Jones T, Liu P, Yu W, Willinger MG, Huang X. Redox dynamics and surface structures of an active palladium catalyst during methane oxidation. Nat Commun 2024; 15:4678. [PMID: 38824167 PMCID: PMC11144237 DOI: 10.1038/s41467-024-49134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Catalysts based on palladium are among the most effective in the complete oxidation of methane. Despite extensive studies and notable advances, the nature of their catalytically active species and conceivable structural dynamics remains only partially understood. Here, we combine operando transmission electron microscopy (TEM) with near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and density functional theory (DFT) calculations to investigate the active state and catalytic function of Pd nanoparticles (NPs) under methane oxidation conditions. We show that the particle size, phase composition and dynamics respond appreciably to changes in the gas-phase chemical potential. In combination with mass spectrometry (MS) conducted simultaneously with in situ observations, we uncover that the catalytically active state exhibits phase coexistence and oscillatory phase transitions between Pd and PdO. Aided by DFT calculations, we provide a rationale for the observed redox dynamics and demonstrate that the emergence of catalytic activity is related to the dynamic interplay between coexisting phases, with the resulting strained PdO having more favorable energetics for methane oxidation.
Collapse
Affiliation(s)
- Shengnan Yue
- College of Chemistry, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - C S Praveen
- International School of Photonics, Cochin University of Science and Technology, Cochin, Kerala, India
| | | | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Qian Li
- College of Chemistry, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Travis Jones
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Panpan Liu
- College of Chemistry, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Wenqian Yu
- College of Chemistry, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Marc-Georg Willinger
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Zurich, Switzerland
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Xing Huang
- College of Chemistry, Fuzhou University, Fuzhou, China.
- Qingyuan Innovation Laboratory, Quanzhou, China.
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
6
|
Moradifar P, Liu Y, Shi J, Siukola Thurston ML, Utzat H, van Driel TB, Lindenberg AM, Dionne JA. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy. Chem Rev 2023. [PMID: 37979189 DOI: 10.1021/acs.chemrev.2c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.
Collapse
Affiliation(s)
- Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yin Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jiaojian Shi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | | | - Hendrik Utzat
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Zhang X, Zhou Y, Chen Y, Li M, Yu H, Li X. Advanced In Situ TEM Microchip with Excellent Temperature Uniformity and High Spatial Resolution. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094470. [PMID: 37177673 PMCID: PMC10181734 DOI: 10.3390/s23094470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Transmission electron microscopy (TEM) is a highly effective method for scientific research, providing comprehensive analysis and characterization. However, traditional TEM is limited to observing static material structures at room temperature within a high-vacuum environment. To address this limitation, a microchip was developed for in situ TEM characterization, enabling the real-time study of material structure evolution and chemical process mechanisms. This microchip, based on microelectromechanical System (MEMS) technology, is capable of introducing multi-physics stimulation and can be used in conjunction with TEM to investigate the dynamic changes of matter in gas and high-temperature environments. The microchip design ensures a high-temperature uniformity in the sample observation area, and a system of tests was established to verify its performance. Results show that the temperature uniformity of 10 real-time observation windows with a total area of up to 1130 μm2 exceeded 95%, and the spatial resolution reached the lattice level, even in a flowing atmosphere of 1 bar.
Collapse
Affiliation(s)
- Xuelin Zhang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
A review of in situ/Operando studies of heterogeneous catalytic hydrogenation of CO2 to methanol. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Wang Y, Du F, Wang C, Zhao J, Sun H, Sun C. The synthesis and oxidation desulfurization performance of Ti-modified hierarchical cheese-like ZSM-5 zeolite. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198211068663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
High-performance hierarchical cheese-like C-ZSM-5 nanocrystals are successfully prepared by acid–base treatment and are evaluated for oxidative desulfurization of dibenzothiophene. The acid–base treatment can generate a large number of Si-OH bonds and an open-mesoporous structure, which is conducive for the dispersion of TiO2 and also for the transport of dibenzothiophene and its oxidation products simultaneously. The catalytic results indicate that the hierarchical cheese-like C-ZSM-5 nanocrystals are highly active catalysts for the oxidative desulfurization of dibenzothiophene due to open mesoporosity. Complete conversion was obtained within 80 min at 338 K. The excellent performance is due to the large number of active framework sites and open mesopores generated by post-processing.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang, P.R. China
| | - Fei Du
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang, P.R. China
| | - Chunyan Wang
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang, P.R. China
| | - Jiaqiang Zhao
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang, P.R. China
| | - Haizhu Sun
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang, P.R. China
| | - Chuanyin Sun
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang, P.R. China
| |
Collapse
|
10
|
Aggarwal P, Sarkar D, Awasthi K, Menezes PW. Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Fritsch B, Wu M, Hutzler A, Zhou D, Spruit R, Vogl L, Will J, Garza HHP, März M, Jank MP, Spiecker E. Sub-Kelvin thermometry for evaluating the local temperature stability within in situ TEM gas cells. Ultramicroscopy 2022; 235:113494. [DOI: 10.1016/j.ultramic.2022.113494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/14/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
|
12
|
|
13
|
Nassereddine A, Wang Q, Loffreda D, Ricolleau C, Alloyeau D, Louis C, Delannoy L, Nelayah J, Guesmi H. Revealing Size Dependent Structural Transitions in Supported Gold Nanoparticles in Hydrogen at Atmospheric Pressure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104571. [PMID: 34761525 DOI: 10.1002/smll.202104571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The enhancement of the catalytic activity of gold nanoparticles with their decreasing size is often attributed to the increasing proportion of low-coordinated surface sites. This correlation is based on the paradigmatic picture of working gold nanoparticles as perfect crystal forms having complete and static outer surface layers whatever their size. This picture is incomplete as catalysts can dynamically change their structure according to the reaction conditions and as such changes can be eventually size-dependent. In this work, using aberration-corrected environmental electron microscopy, size-dependent crystal structure and morphological evolution in gold nanoparticles exposed to hydrogen at atmospheric pressure, with loss of the face-centered cubic crystal structure of gold for particle size below 4 nm, are revealed for the first time. Theoretical calculations highlight the role of mobile gold atoms in the observed symmetry changes and particle reshaping in the critical size regime. An unprecedented stable surface molecular structure of hydrogenated gold decorating a highly distorted core is identified. By combining atomic scale in situ observations and modeling of nanoparticle structure under relevant reaction conditions, this work provides a fundamental understanding of the size-dependent reactivity of gold nanoparticles with a precise picture of their surface at working conditions.
Collapse
Affiliation(s)
- Abdallah Nassereddine
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris, CNRS, Paris, F-75013, France
| | - Qing Wang
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - David Loffreda
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Université Claude Bernard Lyon 1, Lyon F, 69342, France
| | - Christian Ricolleau
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris, CNRS, Paris, F-75013, France
| | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris, CNRS, Paris, F-75013, France
| | - Catherine Louis
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, Paris, F 75252, France
| | - Laurent Delannoy
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, Paris, F 75252, France
| | - Jaysen Nelayah
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris, CNRS, Paris, F-75013, France
| | - Hazar Guesmi
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
14
|
Behera M, Tiwari N, Basu A, Rekha Mishra S, Banerjee S, Chakrabortty S, Tripathy SK. Maghemite/ZnO nanocomposites: A highly efficient, reusable and non-noble metal catalyst for reduction of 4-nitrophenol. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Abstract
One of the main factors in the deterioration of automobile three-way catalysts is the sintering of platinum group metals (PGMs). In this study, we used in situ tunneling electron microscopy (TEM) to examine the sintering of Rh particles as the temperature increases. Two types of environmental conditions were tested, namely, vacuum atmosphere with heating up to 1050 °C, and N2 with/without 1% O2 at 1 atm and up to 1000 °C. Under vacuum, Rh particles appeared to be immersed in ZrO2. In contrast, at 1 atm N2 with or without 1% O2, the sintered Rh particles appeared spherical and not immersed in ZrO2. The latter trend of Rh sintering resembles the actual engine-aged catalyst observed ex situ in this study. In the N2 atmosphere, the sintering of support material (ZrO2 or Y-ZrO2) was first observed by in situ TEM, followed by Rh particle sintering. The Rh particle size was slightly smaller on Y-ZrO2 compared to that on ZrO2. To better understand these experimental results, density functional theory was used to calculate the systems’ junction energies, assuming three layers of Rh(111) 4 × 4 structures joined to the support material (ZrO2 and Y-ZrO2). The calculated energies were consistent with the in situ TEM observations in the N2 atmosphere.
Collapse
|
16
|
Boniface M, Plodinec M, Schlögl R, Lunkenbein T. Quo Vadis Micro-Electro-Mechanical Systems for the Study of Heterogeneous Catalysts Inside the Electron Microscope? Top Catal 2020. [DOI: 10.1007/s11244-020-01398-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractDuring the last decade, modern micro-electro-mechanical systems (MEMS) technology has been used to create cells that can act as catalytic nanoreactors and fit into the sample holders of transmission electron microscopes. These nanoreactors can maintain atmospheric or higher pressures inside the cells as they seal gases or liquids from the vacuum of the TEM column and can reach temperatures exceeding 1000 °C. This has led to a paradigm shift in electron microscopy, which facilitates the local characterization of structural and morphological changes of solid catalysts under working conditions. In this review, we outline the development of state-of-the-art nanoreactor setups that are commercially available and are currently applied to study catalytic reactions in situ or operando in gaseous or liquid environments. We also discuss challenges that are associated with the use of environmental cells. In catalysis studies, one of the major challenge is the interpretation of the results while considering the discrepancies in kinetics between MEMS based gas cells and fixed bed reactors, the interactions of the electron beam with the sample, as well as support effects. Finally, we critically analyze the general role of MEMS based nanoreactors in electron microscopy and catalysis communities and present possible future directions.
Collapse
|