1
|
Suwannaruang T, Pratyanuwat A, Sinthujariwat P, Wantala K, Chirawatkul P, Junlek N, Nijpanich S, Shahmoradi B, Shivaraju HP. Dynamically driven perovskite La-Fe-modified SrTiO 3 nanocubes and their improved photoresponsive activity under visible light: influence of alkaline environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90298-90317. [PMID: 36357757 DOI: 10.1007/s11356-022-23977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Visible-light active La-Fe-SrTiO3 (La0.01Sr0.99Fe0.01Ti0.99O3) photocatalysts were synthesized via a dynamic hydrothermal route under different NaOH concentrations (2, 3, 4, 5, and 6 M). The results showed that altering NaOH concentrations changed the physicochemical characteristics of the materials. Namely, the decrease in particle size was observed when the NaOH levels were increased. The specific surface area of the photocatalysts changed with an increased concentration of NaOH, and the maximum value was 17.10 m2/g in 5 M of NaOH. The crystal structure of all prepared samples remained unaffected when altered the NaOH concentration or when incorporated La and Fe in the lattice of SrTiO3. Namely, all samples synthesized under various NaOH concentrations crystallized and maintained in the standard cubic perovskite structure of SrTiO3. The increased NaOH concentration slightly altered the absorption wavelength towards a longer wavelength region. The La atom, replacing some Sr2+ in the structure of modified SrTiO3, was confirmed to be in the La3+ valence state. Simultaneously, Fe atoms demonstrating oxidation states of Fe3+ can also be incorporated into the SrTiO3 network. The photocatalytic degradation of ciprofloxacin antibiotic revealed that the highest performance was approximately 75% within 9 h over the La0.01Sr0.99Fe0.01Ti0.99O3 sample prepared at 5 M of NaOH via the dynamic hydrothermal process. Meanwhile, this photocatalyst also displayed greater activity than the pristine SrTiO3, the single-doped samples (SrFe0.01Ti0.99O3 and La0.01Sr0.99TiO3), and the La0.01Sr0.99Fe0.01Ti0.99O3 sample prepared through a static hydrothermal technique under the same synthesis condition.
Collapse
Affiliation(s)
- Totsaporn Suwannaruang
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Acapol Pratyanuwat
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Putichot Sinthujariwat
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kitirote Wantala
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Prae Chirawatkul
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Narong Junlek
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Supinya Nijpanich
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Behzad Shahmoradi
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | |
Collapse
|
2
|
Lu X, Xie J, Wang L, Ren J, Yang S, Yang Q, Wang S, Huang C, Yang P. CuBi2O4/CuO Heterojunction Coated with Electrodeposited ZnO Overlayer for Stable Solar Hydrogen Evolution. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Heterogeneous Activation of Peroxymonosulfate by a Spinel CoAl2O4 Catalyst for the Degradation of Organic Pollutants. Catalysts 2022. [DOI: 10.3390/catal12080847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bimetallic catalysts have significantly contributed to the chemical community, especially in environmental science. In this work, a CoAl2O4 spinel bimetal oxide was synthesized by a facile co-precipitation method and used for the degradation of organic pollutants through peroxymonosulfate (PMS) activation. Compared with Co3O4, the as-prepared CoAl2O4 possesses a higher specific surface area and a larger pore volume, which contributes to its becoming increasingly conducive to the degradation of organic pollutants. Under optimal conditions (calcination temperature: 500 °C, catalyst: 0.1 g/L, and PMS: 0.1 g/L), the as-prepared CoAl2O4 catalyst could degrade over 99% of rhodamine B (RhB) at a degradation rate of 0.048 min−1, which is 2.18 times faster than Co3O4 (0.022 min−1). The presence of Cl− could enhance RhB degradation in the CoAl2O4/PMS system, while HCO3− and CO32− inhibit RhB degradation. Furthermore, the considerable reusability and universality of CoAl2O4 were testified. Through quenching tests, 1O2 and SO4•− were identified as the primary reactive species in RhB degradation. The toxicity evaluation verified that the degraded solution exhibited lower biological toxicity than the initial RhB solution. This study provides new prospects in the design of cost-effective and stable cobalt-based catalysts and promotes the application of PMS-based advanced oxidation processes for refractory wastewater treatment.
Collapse
|
4
|
Jin J, Hu J, Qu J, Cao G, Lei Y, Zheng Z, Yang X, Li CM. Reaction Kinetics of Photoelectrochemical CO 2 Reduction on a CuBi 2O 4-Based Photocathode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17509-17519. [PMID: 35385644 DOI: 10.1021/acsami.2c02205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The CO2 reduction reaction (CO2RR) is an essential step in natural photosynthesis and artificial photosynthesis to provide carbohydrate foods and hydrocarbon energy in the carbon-neutral cycle. However, the current solar conversion efficiencies and/or product selectivity of the CO2RR are very sluggish due to its complicated multiple-step charge transfer reactions. Here, we systematically investigate the charge transfer reaction rate during CO2 reduction on CuBi2O4 photocathodes, where the surface is modified with 3-aminopropyltriethoxysilane (APTES). We discover that the surface amine group increases the charge separation rate, significantly enhancing the surface charge transfer reaction rate. However, the surface acidity has less influence on the first-order reaction, indicating that a rate-determining step (RDS) exists in the early stage of the photoelectrochemical cell (PEC) processes. Moreover, the intensity-modulated photocurrent spectroscopy (IMPS) confirms that both surface charge transfer and the recombination rate on APTES-coated CuBi2O4 are larger than bare CuBi2O4 while possessing comparable charge transfer efficiencies. Overall, the surface charge transfer reactions under the PEC condition require designing more effective nanostructured photoelectrodes and powerful characterization methods to intrinsically increase the charge separation and transfer rate while reducing the recombination rate.
Collapse
Affiliation(s)
- Jiaqi Jin
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao 266071, P. R. China
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Jundie Hu
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Jiafu Qu
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Guangming Cao
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
- School of Physics and Technology, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yan Lei
- Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, Xuchang University, 88 Bayi Road, Xuchang, Henan 461000, P. R. China
| | - Zhi Zheng
- Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, Xuchang University, 88 Bayi Road, Xuchang, Henan 461000, P. R. China
| | - Xiaogang Yang
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Chang Ming Li
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao 266071, P. R. China
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| |
Collapse
|
5
|
Dai P, Li Y, Chen Y, Jiao J, Wang Q, Li C, Gu Y, Zhang Y, Xia Q, Zhang WH. (Fluoromethylsulfonyl)methylation of Quinoxalinones Using NaSO2CH2F for C–F Bond Cleavage. Org Lett 2022; 24:1357-1361. [DOI: 10.1021/acs.orglett.2c00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Jiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingqing Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenxiao Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell RG42 6EY, U.K
| | - Yanbin Zhang
- Department of Chemistry, National University of Singapore, 117545 Singapore
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
He J, Yu D, Zou X, Wang Z, Zheng Y, Liu X, Zeng Y. Degradation intermediates of Amitriptyline and fundamental importance of transition metal elements in LDH-based catalysts in Heterogeneous Electro-Fenton system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Manjceevan A, sulaimalebbe N, Somapala T. Visible-Light-Harvesting Hedgehog like Copper Bismuth Oxide: Optical, Structural and Electrochemical Properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Abstract
An increase of carrier concentration is one of the most important routes for enhancing the catalytic performance of semiconductor photocatalysts. In this study, the Sillén–Aurivillius oxychloride Bi4NbO8Cl with hole doping was successfully prepared by a solid-state reaction method. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible diffuse reflectance spectra (UV–vis DRS), X-ray photoelectron spectrometry (XPS) and photoluminescence spectra (PL) were used to characterize and analyze the prepared samples. The experimental results and density functional theory calculations demonstrate that hole doping can be formed in Bi4NbO8Cl by inserting zinc into the niobium site, and the photocatalytic activity can be improved by introducing additional holes into Bi4NbO8Cl. The photogenerated hole (h+) is considered to be the main active species to degrade trypan blue (TB) through trapping experiments. The optimal photocatalyst of Bi4Nb0.8Zn0.2O8Cl exhibits excellent photocatalytic activity in degradation of trypan blue under visible light irritation. Moreover, a possible photocatalytic degradation mechanism is discussed according the experimental and analytical results.
Collapse
|