1
|
Wang S, Zhang D, Su P, Yao X, Liu J, Pu X, Li H, Cai P. In-situ preparation of mossy tile-like ZnIn 2S 4/Cu 2MoS 4 S-scheme heterojunction for efficient photocatalytic H 2 evolution under visible light. J Colloid Interface Sci 2023; 650:825-835. [PMID: 37450971 DOI: 10.1016/j.jcis.2023.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The reasonable design and fabrication of heterojunction could regulate the photocatalytic performance to some extent, yet it is still a great challenge to construct the S-scheme heterostructure with the stable as well as tight interface on the surface of semiconductor photocatalysts. Herein, the ZnIn2S4/Cu2MoS4 (ZIS/CMS) S-scheme heterostructure was fabricated by in-situ assembling ZIS nanosheets on the CMS plates, obtaining a mossy tile-like morphology. Owing to the compact interface resulting from in-situ growth, this unique architecture efficiently facilitated the separation and transfer of light-induced charges, guaranteed the larger interface area, and enriched the active sites for photocatalytic redox reactions. After adjusting the mass ratio of CMS in ZIS/CMS, S-scheme heterostructure exhibited the remarkable performance with an optimal H2 producing rate up to 1298 μmol·h-1 g-1, about 13.8 times than that of pristine ZIS. The mechanism and driving force of charge transfer and separation in S-scheme heterostructure photocatalysts were explained and discussed. This investigation will provide new insight into design and construction of S-scheme heterojunction photocatalysts for H2 evolution.
Collapse
Affiliation(s)
- Shikai Wang
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Dafeng Zhang
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Ping Su
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xintong Yao
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Junchang Liu
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xipeng Pu
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China.
| | - Hengshuai Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Peiqing Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| |
Collapse
|
2
|
Ashraf W, Parvez SH, Khanuja M. Synthesis of highly efficient novel two-step spatial 2D photocatalyst material WS 2/ZnIn 2S 4 for degradation/reduction of various toxic pollutants. ENVIRONMENTAL RESEARCH 2023; 236:116715. [PMID: 37481055 DOI: 10.1016/j.envres.2023.116715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
In this article, we report the synthesis, characterization of novel biofriendly 2D/2D heterostructure WS2/ZnIn2S4 material in which 2D WS2 nanosheets are uniformly distributed spatially onto the spherically arranged 2D leaves of ZnIn2S4. We then studied the in-depth photocatalytic degradation activity of this novel nanocomposite and its pristine component materials on cationic dye: malachite green, anionic dye: congo red and reduction of heavy metal: chromium(VI) and the degradation efficiency of composite material was also tested on rhodamine-B, methylene blue, methyl orange dyes and acetaminophen/paracetamol drug. Form factor, structure factor and shape factor analysis has been carried out using X-ray diffractometry (XRD). Bond vibrations, functional groups and phonon vibration mode analysis has been done based on Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. Morphological and compositional analysis has been done using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDAX) and X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM). Surface area and pore size/distribution was characterized using Brunauer-Emmett-Teller (BET) method and Barrett-Joyner-Halenda Model. Degradation pathways and intermediate products are proposed using the high-performance liquid chromatography (HPLC). Photocatalytic activity of the nanocomposite WS2/ZnIn2S4 is compared with pristine ZnIn2S4 and pristine WS2, which shows more than 50% enhancement in both efficiency and rate of degradation/reduction for all the pollutants. A scavenger study was carried out to get insight of primary and secondary reactive oxygen species (ROS) taking part in degradation. Exciton lifetime, surface charge and stability, and flat band positions were studied based on time-correlated single photon counting (TCSPC) also known as time-resolved photoluminescence (TRPL), zeta potential, and Mott-Schottky respectively. Rate kinetics study was performed to analyze the physical and chemical behaviour of the nanocomposite with pollutants in consideration. Results show ∼100%, ∼90%, and ∼95% degradation efficiency by the heterostructure for malachite green (MG), congo red (CR), and reduction of heavy metal chromium (Cr(VI)) respectively within 5 min, which is a huge improvement as compared to pristine WS2 and pristine ZnIn2S4, both of which show the efficiencies of only ∼25% to∼75% in all the cases.
Collapse
Affiliation(s)
- Waseem Ashraf
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Syed Hasan Parvez
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Manika Khanuja
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
3
|
Chang YC, Chiao YC, Hsu PC. Rapid Microwave-Assisted Synthesis of ZnIn 2S 4 Nanosheets for Highly Efficient Photocatalytic Hydrogen Production. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1957. [PMID: 37446473 DOI: 10.3390/nano13131957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
In this study, a facile and rapid microwave-assisted synthesis method was used to synthesize In2S3 nanosheets, ZnS nanosheets, and ZnIn2S4 nanosheets with sulfur vacancies. The two-dimensional semiconductor photocatalysts of ZnIn2S4 nanosheets were characterized by XRD, FESEM, BET, TEM, XPS, UV-vis diffuse reflectance, and PL spectroscopy. The ZnIn2S4 with sulfur vacancies exhibited an evident energy bandgap value of 2.82 eV, as determined by UV-visible diffuse reflectance spectroscopy, and its energy band diagram was obtained through the combination of XPS and energy bandgap values. ZnIn2S4 nanosheets exhibited about 33.3 and 16.6 times higher photocatalytic hydrogen production than In2S3 nanosheets and ZnS nanosheets, respectively, under visible-light irradiation. Various factors, including materials, sacrificial reagents, and pH values, were used to evaluate the influence of ZnIn2S4 nanosheets on photocatalytic hydrogen production. In addition, the ZnIn2S4 nanosheets revealed the highest photocatalytic hydrogen production from seawater, which was about 209.4 and 106.7 times higher than that of In2S3 nanosheets and ZnS nanosheets, respectively. The presence of sulfur vacancies in ZnIn2S4 nanosheets offers promising opportunities for developing highly efficient and stable photocatalysts for photocatalytic hydrogen production from seawater under visible-light irradiation.
Collapse
Affiliation(s)
- Yu-Cheng Chang
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407102, Taiwan
| | - Yung-Chang Chiao
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407102, Taiwan
| | - Po-Chun Hsu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Photocatalytic hydrogen evolution from glycerol-water mixture under visible light over zinc indium sulfide (ZnIn 2S 4) nanosheets grown on bismuth oxychloride (BiOCl) microplates. J Colloid Interface Sci 2023; 640:578-587. [PMID: 36878075 DOI: 10.1016/j.jcis.2023.02.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/26/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
ZnIn2S4 (ZIS) is one of the widely studied photocatalyst for photocatalytic hydrogen evolution applications due to its prominent visible light response and strong reduction ability. However, its photocatalytic glycerol reforming performance for hydrogen evolution has never been reported. Herein, the visible light driven BiOCl@ZnIn2S4 (BiOCl@ZIS) composite was synthesized by growth of ZIS nanosheets on a template-like hydrothermally pre-prepared wide-band-gap BiOCl microplates using simple oil-bath method to be used for the first time for photocatalytic glycerol reforming for photocatalytic hydrogen evolution (PHE) under visible light irradiation (λ > 420 nm). The optimum amount of BiOCl microplates in the composite was found 4 wt% (4% BiOCl@ZIS) in the presence of in-situ 1 wt% Pt deposition. Then, the in-situ Pt photodeposition optimization studies over 4% BiOCl@ZIS composite showed the highest PHE rate of 674 μmol g-1h-1 with the ultra-low platinum amount (0.0625 wt%). The possible mechanisms behind this improvement can be ascribed to the formation of Bi2S3 low-band-gap semiconductor during BiOCl@ZIS composite synthesis resulting in Z-scheme charge transfer mechanism between ZIS and Bi2S3 upon visible light irradiation. This work expresses not only the photocatalytic glycerol reforming over ZIS photocatalyst but also a solid proof of the contribution of wide-band-gap BiOCl photocatalysts to enhancement of ZIS PHE performance under visible light.
Collapse
|
5
|
Zheng X, Song Y, Liu Y, Yang Y, Wu D, Yang Y, Feng S, Li J, Liu W, Shen Y, Tian X. ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Geng L, Li W, Liu X, Li X, Fan H, Qiu H, Ma X, Dong M. Active sites modification and superior carriers separation synergistically boosted hydrogen production of Bi/Bi2MoO6/ZnIn2S4 non-noble metal S-scheme photocatalyst. J Colloid Interface Sci 2023; 629:723-732. [DOI: 10.1016/j.jcis.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022]
|
7
|
Wang X, Chen Y. ZnIn2S4/CoFe2O4 p-n junction-decorated biochar as magnetic recyclable nanocomposite for efficient photocatalytic degradation of ciprofloxacin under simulated sunlight. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Study on Optimum Preparation Conditions of ZnIn2S4 to Effectively Reduce Cr(VI) under Visible Light Radiation. Catalysts 2022. [DOI: 10.3390/catal12111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous studies have displayed various conclusions about the effect of preparation factors on the photoreduction property of ZnIn2S4. Therefore, it is not easy to figure out the optimal preparation conditions of ZnIn2S4 for Cr(VI) photoreduction. To ensure Cr(VI) reduction efficiency, various ZnIn2S4 photocatalysts were prepared in different solvents (i.e., water and ethylene glycol) and temperatures (i.e., 120 °C, 150 °C and 180°C). Different characterization methods were used to explain the difference in optical performance and photocatalytic property among the obtained samples. The results show that all the samples exhibit a similar band gap. The reaction solvent and temperature have a great influence on the surface morphology and optical property, leading to the different photocatalytic properties. ZnIn2S4 synthesized at 120 °C in the solvothermal condition shows the optimal efficiency on Cr(VI) photoreduction due to the effective utilization of photo-induced carriers. The reasonable analysis and effective conclusion presented may provide the optimal synthesis method of ZnIn2S4 to effectively remove Cr(VI) from water environment.
Collapse
|
9
|
Tailoring Structure: Current Design Strategies and Emerging Trends to Hierarchical Catalysts. Catalysts 2022. [DOI: 10.3390/catal12101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nature mimicking implies the design of nanostructured materials, which can be assembled into a hierarchical structure, thus outperforming the features of the neat components because of their multiple length scale organization. This approach can be effectively exploited for the design of advanced photocatalysts with superior catalytic activity for energy and environment applications with considerable development in the recent six years. In this context, we propose a review on the state of the art for hierarchical photocatalyst production. Particularly, different synthesis strategies are presented, including template-free structuring, and organic, inorganic, and hybrid templating. Furthermore, emerging approaches based on hybrid and bio-waste templating are also highlighted. Finally, a critical comparison among available methods is carried out based on the envisaged application.
Collapse
|
10
|
Xi X, Dang Q, Wang G, Chen W, Tang L. ZIF-67-derived flower-like ZnIn 2S 4@CoS 2 heterostructures for photocatalytic hydrogen production. NEW J CHEM 2021. [DOI: 10.1039/d1nj03625d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, efficient photocatalytic hydrogen production was achieved by using ZIF-67 derived ZnIn2S4@CoS2 heterostructures as photocatalysts.
Collapse
Affiliation(s)
- Xiuqing Xi
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Qi Dang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Ganyu Wang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Wenqian Chen
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|