1
|
Tharuman S, Chen TW, Nataraj N, Chen SM, Lou BS, Abid I, Rizwana H, Elshikh MS, Yu J. Exploring the economic viability of electrochemical assessment for water contaminants with NiFe-PBA/ZIF-67 core shell modified GCE. ENVIRONMENTAL RESEARCH 2024; 261:119710. [PMID: 39102938 DOI: 10.1016/j.envres.2024.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Zeolitic Imidazolate (metal organic) Frameworks (ZIFs) and Prussian Blue Analogues (PBAs) are promising materials in electrochemical sensing due to their unique properties. In this study, a composite material comprising NiFe-PBA and ZIF-67 was synthesized and made to form a uniform layer onto a glassy carbon electrode (GCE) to enhance electrochemical performance for furazolidone (FZD) detection. The synthesized NiFe-PBA/ZIF-67 composite exhibited excellent sensitivity, selectivity, and stability towards FZD detection, with a low limit of detection (LOD). The electrochemical behaviour of FZD on the NiFe-PBA/ZIF-67/GCE electrode was investigated, revealing a diffusion-controlled process. Differential pulse voltammetry (DPV) analysis demonstrated the synergetic effect of the PBA/MOF core-shell structure in enhancing FZD electro-reduction. The sensor exhibited exceptional LOD of 0.007 μM. Selectivity studies confirmed the sensor's ability to distinguish FZD from potential interferents. Extensive evaluations demonstrated the sensor's reproducibility, repeatability, and long-term stability, affirming its practical utility. Real sample analysis further validated the sensor's excellent analytical capabilities in diverse matrices.
Collapse
Affiliation(s)
- Sharmila Tharuman
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106
| | - Shen Ming Chen
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106.
| | - Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan; Department of Orthopaedic Surgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, 236, Taiwan.
| | - Islem Abid
- Centre of Excellence in Biotechnology Research, King Saud University, P.O Box 2455, Riyadh, 11495, Saudi Arabia
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jaysan Yu
- Well Fore Special Wire Corporation, 10, Tzu-Chiang 7th., Chung-Li Industrial Park, Taoyuan, Taiwan
| |
Collapse
|
2
|
De P, Priya S, Halder J, Srivastava AK, Chandra A. Metal-Organic Framework for Aluminum based Energy Storage Devices: Utilizing Redox Additives for Significant Performance Enhancement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26299-26315. [PMID: 38733338 DOI: 10.1021/acsami.4c04112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
There are various methods being tried to address the sluggish kinetics observed in Al-ion batteries (AIBs). They mostly deal with morphology tuning, but have led to limited improvement. A new approach is proposed to overcome this limitation. It focuses on the use of a redox additive modified electrolyte in combination with framework like materials, which have wider channels. The ordered microporous and interconnected framework of ZIF 67, with large surface area, effectively facilitates the diffusion of aluminum ions. Therefore, AIBs are able to exhibit a superior discharge capacity of 288 mAh g-1 at 0.2 A g-1 current density with robust cycling stability. The addition of potassium ferricyanide as a redox-active species in an aqueous solution of aluminum chloride (supporting electrolyte) leads to significant enhancement in the specific capacity with much higher cycling stability. Al-ion based BatCap devices can be assembled by using ZIF 67 as the cathode, ZIF 67 derived porous carbon as the anode, and a redox additive modified electrolyte. The BatCap device exhibits excellent energy density of 86 Wh kg-1 at a power density of 2 KW kg-1, which is higher than reported aqueous AIBs. The ex situ characterization clearly explains the unexplored mechanism of redox additives in AIBs.
Collapse
Affiliation(s)
- Puja De
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Surbhi Priya
- School of Energy Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joyanti Halder
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Amreesh Chandra
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
3
|
Thenrajan T, Madhu Malar M, Wilson J. Natural Polymer Encapsulated Zeolitic Imidazolate Framework-12 Composite toward Electrochemical Sensing of Antitumor Agent. ACS APPLIED BIO MATERIALS 2024; 7:3375-3387. [PMID: 38693867 DOI: 10.1021/acsabm.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Encapsulation of natural polymer pectin (Pec) into a zeolitic imidazolate framework-12 (ZIF-12) matrix via a simple chemical method toward anticancer agent gallic acid (GA) detection is reported in this work. GA, a natural phenol found in many food sources, has gained attention by its biological effects on the human body, such as an antioxidant and anti-inflammatory. Therefore, it is crucial to accurately and rapidly determine the GA level in humans. The encapsulation of Pec inside the ZIF-12 has been successfully confirmed from the physiochemical studies such as XRD, Raman, FTIR, and XPS spectroscopy along with morphological FESEM, BET, and HRTEM characterization. Under optimized conditions, the Pec@ZIF-12 composite exhibits wide linear range of 20 nM-250 μM with a detection limit of 2.2 nM; also, it showed excellent selectivity, stability, and reproducibility. Furthermore, the real sample analysis of food samples including tea, coffee, grape, and pomegranate samples shows exceptional recovery percentage in an unspiked manner. So far, there is little literature for encapsulating proteins, enzymes, metals, etc., that have been reported; here, we successfully encapsulated a natural polymer Pec inside the ZIF-12 cage. This encapsulation significantly enhanced the composite electrochemical performance, which could be seen from the overall results. All of these strongly suggest that the proposed Pec@ZIF-12 composite could be used for miniaturized device fabrication for the evaluation of GA in both home and industrial applications.
Collapse
Affiliation(s)
- Thatchanamoorthy Thenrajan
- Polymer electronics lab, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Madasamy Madhu Malar
- Polymer electronics lab, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Jeyaraj Wilson
- Polymer electronics lab, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| |
Collapse
|
4
|
Lakhera P, Chaudhary V, Kumar P, Huertas CS, Kumar P, Kumar S. Nonenzymatic dual glucose sensing on boronic acid modified zeolitic imidazolate framework-67 nanoparticles for diabetes management. Mikrochim Acta 2024; 191:306. [PMID: 38713247 DOI: 10.1007/s00604-024-06370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
For early diabetes identification and management, the progression of an uncomplicated and exceedingly responsive glucose testing technology is crucial. In this study, we present a new sensor incorporating a composite of metal organic framework (MOF) based on cobalt, coated with boronic acid to facilitate selective glucose binding. Additionally, we successfully employed a highly sensitive electro-optical immunosensor for the detection of subtle changes in concentration of the diabetes biomarker glycated haemoglobin (HbA1c), using zeolitic imidazolate framework-67 (ZIF-67) coated with polydopamine which further modified with boronic acid. Utilizing the polymerization characteristics of dopamine and the NH2 groups, a bonding structure is formed between ZIF-67 and 4-carboxyphenylboronic acid. ZIF-67 composite served as an effective substrate for immobilising 4-carboxyphenylboronic acid binding agent, ensuring precise and highly selective glucose identification. The sensing response was evaluated through both electrochemical and optical methods, confirming its efficacy. Under optimized experimental condition, the ZIF-67 based sensor demonstrated a broad detection range of 50-500 mg dL-1, a low limit of detection (LOD) of 9.87 mg dL-1 and a high correlation coefficient of 0.98. Furthermore, the 4-carboxyphenylboronic acid-conjugated ZIF-67-based sensor platform exhibited remarkable sensitivity and selectivity in optical-based detection for glycated haemoglobin within the clinical range of 4.7-11.3%, achieving a LOD of 3.7%. These findings highlight the potential of the 4-carboxyphenylboronic acid-conjugated ZIF-67-based electro-optical sensor as a highly sensitive platform for diabetes detection.
Collapse
Affiliation(s)
- Praveen Lakhera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Central Scientific Instruments Organization, Sector 30-C, Chandigarh, 160030, India
- Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Vikas Chaudhary
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Central Scientific Instruments Organization, Sector 30-C, Chandigarh, 160030, India
| | - Pradeep Kumar
- CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, 248005, India
| | - Cesar Sanchez Huertas
- Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Parveen Kumar
- Exigo Recycling Pvt. Ltd., Karnal, Haryana, 132114, India.
| | - Sanjeev Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- CSIR-Central Scientific Instruments Organization, Sector 30-C, Chandigarh, 160030, India.
| |
Collapse
|
5
|
Priya TS, Chen TW, Chen SM, Kokulnathan T, Akilarasan M, Liou WC, Al-Mohaimeed AM, Ali MA, Elshikh MS, Yu J. In-situ growth of MOF-derived Co 3S 4@MoS 2 heterostructured electrocatalyst for the detection of furazolidone. CHEMOSPHERE 2024; 356:141895. [PMID: 38579947 DOI: 10.1016/j.chemosphere.2024.141895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The over-exploitation of antibiotics in food and farming industries ruined the environmental and human health. Consequently, electrochemical sensors offer significant advantages in monitoring these compounds with high accuracy. Herein, MOF-derived hollow Co3S4@MoS2 (CS@MS) heterostructure has been prepared hydrothermally and applied to fabricate an electrochemical sensor to monitor nitrofuran class antibiotic drug. Various spectroscopic methodologies have been employed to elucidate the structural and morphological information. Our prepared electrocatalyst has better electrocatalytic performance than bare and other modified glassy carbon electrodes (GCE). Our CS@MS/GCE sensor exhibited a highly sensitive detection by offering a low limit of detection, good sensitivity, repeatability, reproducibility, and stability results. In addition, our sensor has shown a good selectivity towards the target analyte among other potential interferons. The practical reliability of the sensor was measured by analyzing various real-time environmental and biological samples and obtaining good recovery values. From the results, our fabricated CS@MS could be an active electrocatalyst material for an efficient electrochemical sensing application.
Collapse
Affiliation(s)
- Thangavelu Sakthi Priya
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Thangavelu Kokulnathan
- National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Muthumariappan Akilarasan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Wen-Chin Liou
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jaysan Yu
- Well Fore Special Wire Corporation, 10, Tzu-Chiang 7th., Chung-Li Industrial Park, Taoyuan, Taiwan
| |
Collapse
|
6
|
Lee SY, An HJ, Moon J, Kim DH, Park KW, Park JT. Design of ultra-thin nanosheet bimetallic NiCo MOF with binary ligand via solvent-assisted ligand exchange (SALE) reaction for high performance supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Construction of a stable porous composite with tunable graphene oxide in Ce-based-MOFs for enhanced solar-photocatalytic degradation of sulfamethoxazole in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Abuzalat O, Tantawy H, Basuni M, Alkordi MH, Baraka A. Designing bimetallic zeolitic imidazolate frameworks (ZIFs) for aqueous catalysis: Co/Zn-ZIF-8 as a cyclic-durable catalyst for hydrogen peroxide oxidative decomposition of organic dyes in water. RSC Adv 2022; 12:6025-6036. [PMID: 35424567 PMCID: PMC8981819 DOI: 10.1039/d2ra00218c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
ZIF-8 is well known hybrid material that is self-assembled from inorganic and organic moieties. It has several potential applications due to its unique structure. One of these potential applications is in advanced oxidation processes (AOP) via a heterogeneous catalysis system. The use of modified ZIF-8/H2O2 for the destruction of the azo dye methyl orange (MO) is presented in this work to explore its efficacy. This work presents the bimetallic Co/Zn-ZIF-8 as an efficient catalyst to promote H2O2 oxidation of the MO dye. Co/Zn-ZIF-8 was synthesized through a hydrothermal process, and the pristine structure was confirmed using XRD, FTIR, and XPS. The Co/Zn-ZIF-8/H2O2 system successfully decolorized MO at the selected pH 6.5. It was found that more than 90% of MO (10 ppm) was degraded within only about 50 minutes. Proposed radical and redox mechanisms are presented for H2O2 decomposition where the redox mechanism is suggested to predominate via a Co(ii)/Co(iii) redox consecutive cyclic process.
Collapse
Affiliation(s)
- Osama Abuzalat
- Department of Chemical Engineering, Military Technical College Cairo Egypt
| | - Hesham Tantawy
- Department of Chemical Engineering, Military Technical College Cairo Egypt
| | - Mustafa Basuni
- Center for Materials Science, Zewail City of Science and Technology Giza 12578 Egypt
| | - Mohamed H Alkordi
- Center for Materials Science, Zewail City of Science and Technology Giza 12578 Egypt
| | - Ahmad Baraka
- Department of Chemical Engineering, Military Technical College Cairo Egypt
| |
Collapse
|
9
|
Li J, Zhao M, Yi L, Feng B, Fang C, Peng Z, Hu W. Sacrificial templating synthesis of metal-organic framework hybrid nanosheets as efficient pre-electrocatalyst for oxygen evolution reaction in alkaline. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Jang HJ, Park SJ, Yang JH, Hong SM, Rhee CK, Sohn Y. Photocatalytic and Electrocatalytic Properties of Cu-Loaded ZIF-67-Derivatized Bean Sprout-Like Co-TiO 2/Ti Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1904. [PMID: 34443738 PMCID: PMC8399894 DOI: 10.3390/nano11081904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023]
Abstract
ZIF-derivatized catalysts have shown high potential in catalysis. Herein, bean sprout-like Co-TiO2/Ti nanostructures were first synthesized by thermal treatment at 800 °C under Ar-flow conditions using sacrificial ZIF-67 templated on Ti sheets. It was observed that ZIF-67 on Ti sheets started to thermally decompose at around 350 °C and was converted to the cubic phase Co3O4. The head of the bean sprout structure was observed to be Co3O4, while the stem showed a crystal structure of rutile TiO2 grown from the metallic Ti support. Cu sputter-deposited Co-TiO2/Ti nanostructures were also prepared for photocatalytic and electrocatalytic CO2 reduction performances, as well as electrochemical oxygen reaction (OER). Gas chromatography results after photocatalytic CO2 reduction showed that CH3OH, CO and CH4 were produced as major products with the highest MeOH selectivity of 64% and minor C2 compounds of C2H2, C2H4 and C2H6. For electrocatalytic CO2 reduction, CO, CH4 and C2H4 were meaningfully detected, but H2 was dominantly produced. The amounts were observed to be dependent on the Cu deposition amount. Electrochemical OER performances in 0.1 M KOH electrolyte exhibited onset overpotentials of 330-430 mV (vs. RHE) and Tafel slopes of 117-134 mV/dec that were dependent on Cu-loading thickness. The present unique results provide useful information for synthesis of bean sprout-like Co-TiO2/Ti hybrid nanostructures and their applications to CO2 reduction and electrochemical water splitting in energy and environmental fields.
Collapse
Affiliation(s)
- Hye Ji Jang
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (H.J.J.); (S.J.P.); (J.H.Y.); (S.-M.H.); (C.K.R.)
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - So Jeong Park
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (H.J.J.); (S.J.P.); (J.H.Y.); (S.-M.H.); (C.K.R.)
| | - Ju Hyun Yang
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (H.J.J.); (S.J.P.); (J.H.Y.); (S.-M.H.); (C.K.R.)
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Sung-Min Hong
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (H.J.J.); (S.J.P.); (J.H.Y.); (S.-M.H.); (C.K.R.)
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Choong Kyun Rhee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (H.J.J.); (S.J.P.); (J.H.Y.); (S.-M.H.); (C.K.R.)
| | - Youngku Sohn
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (H.J.J.); (S.J.P.); (J.H.Y.); (S.-M.H.); (C.K.R.)
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|