1
|
Saha S, Maity D, De D, Khan GG, Mandal K. Graphene Quantum Dots as Hole Extraction and Transfer Layer Empowering Solar Water Splitting of Catalyst-Coupled Zinc Ferrite Nanorods. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28441-28451. [PMID: 38772860 DOI: 10.1021/acsami.4c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Despite the narrow band gap energy, the performance of zinc ferrite (ZnFe2O4) as a photoharvester for solar-driven water splitting is significantly hindered due to its sluggish charge transfer and severe charge recombination. This work reports the fabrication of a hybrid nanostructured hydrogenated ZnFe2O4 (ZFO) photoanode with enhanced photoelectrochemical water-oxidation activity through coupling N-doped graphene quantum dots (GQDs) as a hole transfer layer and Co-Pi as a catalyst. The GQDs not only reduce the surface-mediated nonradiative electron-hole pair recombination but also induce a built-in interfacial electric field leading to a favorable band alignment at the ZFO/GQDs interface, helping rapid photogenerated hole separation and serving as a conducting hole transfer highway, improve the hole transportation into the Co-Pi catalyst for enhanced water oxidation reaction kinetics. The optimized ZFO/GQD/Co-Pi hybrid photoanode delivers a 23-fold photocurrent enhancement at 1.23 V versus the reversible hydrogen electrode (RHE) and a significant 360 mV reduction in the onset potential, reaching 0.65 VRHE compared with the ZFO photoanode under 1 sun illumination in a neutral electrolytic environment. This investigation underscores the mechanism of synergistic interplay between the hole transport layer and cocatalyst in boosting the solar-illuminated water-splitting activity of the ZFO photoanode.
Collapse
Affiliation(s)
- Soham Saha
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata, West Bengal 700 106, India
| | - Dipanjan Maity
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
| | - Debasis De
- Energy Institute, Bengaluru, (Centre of Rajiv Gandhi Institute of Petroleum Technology), International Airport Road, Vidyanagar, Bengaluru 562 157, Karnataka, India
| | - Gobinda Gopal Khan
- Department of Material Science and Engineering, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura 799 022, India
| | - Kalyan Mandal
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata, West Bengal 700 106, India
| |
Collapse
|
2
|
Zhu X, Li Y, Cao P, Li P, Xing X, Yu Y, Guo R, Yang H. Recent Advances of Graphene Quantum Dots in Chemiresistive Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2880. [PMID: 37947725 PMCID: PMC10647816 DOI: 10.3390/nano13212880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Graphene quantum dots (GQDs), as 0D graphene nanomaterials, have aroused increasing interest in chemiresistive gas sensors owing to their remarkable physicochemical properties and tunable electronic structures. Research on GQDs has been booming over the past decades, and a number of excellent review articles have been provided on various other sensing principles of GQDs, such as fluorescence-based ion-sensing, bio-sensing, bio-imaging, and electrochemical, photoelectrochemical, and electrochemiluminescence sensing, and therapeutic, energy and catalysis applications. However, so far, there is no single review article on the application of GQDs in the field of chemiresistive gas sensing. This is our primary inspiration for writing this review, with a focus on the chemiresistive gas sensors reported using GQD-based composites. In this review, the various synthesized strategies of GQDs and its composites, gas sensing enhancement mechanisms, and the resulting sensing characteristics are presented. Finally, the current challenges and future prospects of GQDs in the abovementioned application filed have been discussed for the more rational design of advanced GQDs-based gas-sensing materials and innovative gas sensors with novel functionalities.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Yongzhen Li
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Pei Cao
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Peng Li
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Xinzhu Xing
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Yue Yu
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Ruihua Guo
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Hui Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
| |
Collapse
|
3
|
Del Sole R, Lo Porto C, Lotito S, Ingrosso C, Comparelli R, Curri ML, Barucca G, Fracassi F, Palumbo F, Milella A. Atmospheric Pressure Plasma Deposition of Hybrid Nanocomposite Coatings Containing TiO 2 and Carbon-Based Nanomaterials. Molecules 2023; 28:5131. [PMID: 37446794 DOI: 10.3390/molecules28135131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Among the different applications of TiO2, its use for the photocatalytic abatement of organic pollutants has been demonstrated particularly relevant. However, the wide band gap (3.2 eV), which requires UV irradiation for activation, and the fast electron-hole recombination rate of this n-type semiconductor limit its photocatalytic performance. A strategy to overcome these limitations relies on the realization of a nanocomposite that combines TiO2 nanoparticles with carbon-based nanomaterials, such as rGO (reduced graphene oxide) and fullerene (C60). On the other hand, the design and realization of coatings formed of such TiO2-based nanocomposite coatings are essential to make them suitable for their technological applications, including those in the environmental field. In this work, aerosol-assisted atmospheric pressure plasma deposition of nanocomposite coatings containing both TiO2 nanoparticles and carbon-based nanomaterials, as rGO or C60, in a siloxane matrix is reported. The chemical composition and morphology of the deposited films were investigated for the different types of prepared nanocomposites by means of FT-IR, FEG-SEM, and TEM analyses. The photocatalytic activity of the nanocomposite coatings was evaluated through monitoring the photodegradation of methylene blue (MB) as a model organic pollutant. Results demonstrate that the nanocomposite coatings embedding rGO or C60 show enhanced photocatalytic performance with respect to the TiO2 counterpart. In particular, TiO2/C60 nanocomposites allow to achieve 85% MB degradation upon 180 min of UV irradiation.
Collapse
Affiliation(s)
- Regina Del Sole
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Chiara Lo Porto
- Istituto per i Processi Chimico Fisici, CNR, S.S. Bari, c/o Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Sara Lotito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Chiara Ingrosso
- Istituto per i Processi Chimico Fisici, CNR, S.S. Bari, c/o Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali INSTM, Unita di Ricerca di Bari, 70126 Bari, Italy
| | - Roberto Comparelli
- Istituto per i Processi Chimico Fisici, CNR, S.S. Bari, c/o Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali INSTM, Unita di Ricerca di Bari, 70126 Bari, Italy
| | - Maria Lucia Curri
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
- Istituto per i Processi Chimico Fisici, CNR, S.S. Bari, c/o Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali INSTM, Unita di Ricerca di Bari, 70126 Bari, Italy
| | - Gianni Barucca
- Dipartimento di Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Francesco Fracassi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
- Istituto di Nanotecnologia, CNR, S.S. Bari, c/o Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Fabio Palumbo
- Istituto di Nanotecnologia, CNR, S.S. Bari, c/o Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Antonella Milella
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
- Istituto di Nanotecnologia, CNR, S.S. Bari, c/o Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
4
|
Song S, Kim H, Kang C, Bae J. Terahertz Optical Properties and Carrier Behaviors of Graphene Oxide Quantum Dot and Reduced Graphene Oxide Quantum Dot via Terahertz Time-Domain Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1948. [PMID: 37446464 DOI: 10.3390/nano13131948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Graphene quantum dots (GQDs) with a band gap have been widely applied in many fields owing to their unique optical properties. To better utilize the optical advantages of GQDs, it is important to understand their optical characteristics. Our study demonstrates the optical properties and carrier behaviors of synthesized graphene oxide quantum dot (GOQD) and reduced graphene oxide quantum dot (rGOQD) pellets via Terahertz time-domain spectroscopy (THz-TDS). The complex permittivity and optical conductivity are obtained in the terahertz region, indicating that the optical conductivity of the GOQD is higher than that of the rGOQD. Although rGOQD has a higher carrier density, approximately 1.5-times than that of GOQD, the lower charge carrier mobility of the rGOQD, which is obtained using Drude-Lorentz oscillator model fitting contributes to a decrease in optical conductivity. This lower mobility can be attributed to the more significant number of defect states within the rGOQD compared to GOQD. To the best of our knowledge, our study initially demonstrates the optical property and carrier behaviors of GOQD and rGOQD in the THz region. Moreover, this study provides important information on factors influencing carrier behavior to various fields in which carrier behavior plays an important role.
Collapse
Affiliation(s)
- Seunghyun Song
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam 13120, Republic of Korea
| | - Hyeongmun Kim
- Department of Physics, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Advanced Photonics Research Institute, Gwangju Institue of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Chul Kang
- Advanced Photonics Research Institute, Gwangju Institue of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Joonho Bae
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam 13120, Republic of Korea
| |
Collapse
|
5
|
El-Kalliny AS, Abdel-Wahed MS, El-Zahhar AA, Hamza IA, Gad-Allah TA. Nanomaterials: a review of emerging contaminants with potential health or environmental impact. DISCOVER NANO 2023; 18:68. [PMID: 37382722 PMCID: PMC10409958 DOI: 10.1186/s11671-023-03787-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 02/02/2023] [Indexed: 06/30/2023]
Abstract
Nanotechnologies have been advantageous in many sectors and gaining much concern due to the unique physical, chemical and biological properties of nanomaterials (NMs). We have surveyed peer-reviewed publications related to "nanotechnology", "NMs", "NMs water treatment", "NMs air treatment", and "NMs environmental risk" in the last 23 years. We found that most of the research work is focused on developing novel applications for NMs and new products with peculiar features. In contrast, there are relatively few of publications concerning NMs as environmental contaminants relative to that for NMs applications. Thus, we devoted this review for NMs as emerging environmental contaminants. The definition and classification of NMs will be presented first to demonstrate the importance of unifying the NMs definition. The information provided here should facilitate the detection, control, and regulation of NMs contaminants in the environment. The high surface-area-to-volume ratio and the reactivity of NMs contaminants cause the prediction of the chemical properties and potential toxicities of NPs to be extremely difficult; therefore, we found that there are marked knowledge gaps in the fate, impact, toxicity, and risk of NMs. Consequently, developing and modifying extraction methods, detection tools, and characterization technologies are essential for complete risk assessment of NMs contaminants in the environment. This will help also in setting regulations and standards for releasing and handling NMs as there are no specific regulations. Finally, the integrated treatment technologies are necessary for the removal of NMs contaminants in water. Also, membrane technology is recommended for NMs remediation in air.
Collapse
Affiliation(s)
- Amer S El-Kalliny
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mahmoud S Abdel-Wahed
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Adel A El-Zahhar
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ibrahim A Hamza
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Tarek A Gad-Allah
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
6
|
Cui P, Xue Y. Edge carboxylation-induced charge separation dynamics of graphene quantum dot/cellulose nanocomposites. Carbohydr Polym 2023; 299:120190. [PMID: 36876805 DOI: 10.1016/j.carbpol.2022.120190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
Graphene quantum dot (GQD)@cellulose nanocomposites possess optoelectronic properties of interest for photovoltaic applications. However, the optoelectronic properties related to the shapes and edge types of GQDs have not been fully explored. In the present work, we investigate the effects of carboxylation on the energy alignment and charge separation dynamics at the interface of GQD@cellulose nanocomposites using density functional theory calculations. Our results show that the GQD@cellulose nanocomposites composed of hexagonal GQDs with armchair edges exhibit better photoelectric performance than those composed of other types of GQDs. Carboxylation stabilizes the energy level of the highest occupied molecular orbital (HOMO) of the triangular GQDs with armchair edges but destabilizes the HOMO energy level of cellulose, resulting in hole transfer from the GQDs to cellulose upon photoexcitation. However, the calculated hole transfer rate is lower than the nonradiative recombination rate because excitonic effects dominate the dynamics of charge separation in GQD@cellulose nanocomposites.
Collapse
Affiliation(s)
- Peng Cui
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou 362000, Fujian Province, P.R. China; Nanotechnology Research Laboratory, Jiangnan University, Wuxi 214122, Jiangsu Province, P.R. China.
| | - Yuan Xue
- Nanotechnology Research Laboratory, Jiangnan University, Wuxi 214122, Jiangsu Province, P.R. China
| |
Collapse
|
7
|
Li YH, Tang ZR, Xu YJ. Multifunctional graphene-based composite photocatalysts oriented by multifaced roles of graphene in photocatalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63871-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Quyen TTB, My NNT, Pham DT, Thien DVH. Synthesis of TiO2 nanosheets/graphene quantum dots and its application for detection of Hydrogen Peroxide by photoluminescence spectroscopy. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
9
|
Cheng C, Liang Q, Yan M, Liu Z, He Q, Wu T, Luo S, Pan Y, Zhao C, Liu Y. Advances in preparation, mechanism and applications of graphene quantum dots/semiconductor composite photocatalysts: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127721. [PMID: 34865907 DOI: 10.1016/j.jhazmat.2021.127721] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Due to the low efficiency of single-component nano materials, there are more and more studies on high-efficiency composites. As zero dimensional (0D) non-metallic semiconductor material, the emergence of graphene quantum dots (GQDs) overcomes the shortcomings of traditional photocatalysts (rapid rate of electron-hole recombination and narrow range of optical response). Their uniqueness is that they can combine the advantages of quantum dots (rich functional groups at edge) and sp2 carbon materials (large specific surface area). The inherent inert carbon stabilizes chemical and physical properties, and brings new breakthroughs to the development of benchmark photocatalysts. The photocatalytic efficiency of GQDs composite with semiconductor materials (SCs) can be improved by the following three points: (1) accelerating charge transfer, (2) extending light absorption range, (3) increasing active sites. The methods of preparation (bottom-up and top-down), types of heterojunctions, mechanisms of photocatalysis, and applications of GQDs/SCs (wastewater treatment, energy storage, gas sensing, UV detection, antibiosis and biomedicine) are comprehensively discussed. And it is hoped that this review can provide some guidance for the future research on of GQDs/SCs on photocatalysis.
Collapse
Affiliation(s)
- Chunyu Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Songhao Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenhui Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
10
|
González-González RB, Sharma A, Parra-Saldívar R, Ramirez-Mendoza RA, Bilal M, Iqbal HMN. Decontamination of emerging pharmaceutical pollutants using carbon-dots as robust materials. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127145. [PMID: 34547693 DOI: 10.1016/j.jhazmat.2021.127145] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/05/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Environmental pollution is a critical issue that requires proper measures to maintain environmental health in a sustainable and effective manner. The growing persistence of several active pharmaceutical residues, such as antibiotics like tetracycline, and anti-inflammatory drugs like diclofenac in water matrices is considered an issue of global concern. Numerous sewage/drain waste lines from the domestic and pharmaceutical sector contain an array of toxic compounds, so-called "emerging pollutants" and possess adverse effects on entire living ecosystem and damage its biodiversity. Therefore, effective solution and preventive measures are urgently required to sustainably mitigate and/or remediate pharmaceutically active emerging pollutants from environmental matrices. In this context, herein, the entry pathways of the pharmaceutical waste into the environment are presented, through the entire lifecycle of a pharmaceutical product. There is no detailed review available on carbon-dots (CDs) as robust materials with multifunctional features that support sustainable mitigation of emerging pollutants from water matrices. Thus, CDs-based photocatalysts are emerging as an efficient alternative for decontamination by pharmaceutical pollutants. The addition of CDs on photocatalytic systems has an important role in their performance, mainly because of their up-conversion property, transfer photoinduced electron capacities, and efficient separation of electrons and holes. In this review, we analyze the strategies followed by different researchers to optimize the photodegradation of various pharmaceutical pollutants. In this manner, the effect of different parameters such as pH, the dosage of photocatalyst, amount of carbon dots, and initial pollutant concentration, among others are discussed. Finally, current challenges are presented from a pollution prevention perspective and from CDs-based photocatalytic remediation perspective, with the aim to suggest possible research directions.
Collapse
Affiliation(s)
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González 500, Fracc, SanPablo, CP 76130 Queretaro, Mexico
| | | | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
11
|
Photocatalysis and Li-Ion Battery Applications of {001} Faceted Anatase TiO2-Based Composites. J 2021. [DOI: 10.3390/j4030038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Anatase TiO2 are the most widely used photocatalysts because of their unique electronic, optical and catalytic properties. Surface chemistry plays a very important role in the various applications of anatase TiO2 especially in the catalysis, photocatalysis, energy conversion and energy storage. Control of the surface structure by crystal facet engineering has become an important strategy for tuning and optimizing the physicochemical properties of TiO2. For anatase TiO2, the {001} crystal facets are the most reactive because they exhibit unique surface characteristics such as visible light responsiveness, dissociative adsorption, efficient charge separation capabilities and photocatalytic selectivity. In this review, a concise survey of the literature in the field of {001} dominated anatase TiO2 crystals and their composites is presented. To begin, the existing strategies for the synthesis of {001} dominated anatase TiO2 and their composites are discussed. These synthesis strategies include both fluorine-mediated and fluorine-free synthesis routes. Then, a detailed account of the effect of {001} facets on the physicochemical properties of TiO2 and their composites are reviewed, with a particular focus on photocatalysis and Li-ion batteries applications. Finally, an outlook is given on future strategies discussing the remaining challenges for the development of {001} dominated TiO2 nanomaterials and their potential applications.
Collapse
|
12
|
Abstract
Biocatalysis refers to the utilization of enzymes, either in purified form, or existed as part of crude cell lysate or intact cells, to catalyze single- or multi-step chemical reactions, converting synthetic molecules or natural metabolites into high-value products [...]
Collapse
|
13
|
Bokare A, Arif J, Erogbogbo F. Strategies for Incorporating Graphene Oxides and Quantum Dots into Photoresponsive Azobenzenes for Photonics and Thermal Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2211. [PMID: 34578524 PMCID: PMC8467028 DOI: 10.3390/nano11092211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Graphene represents a new generation of materials which exhibit unique physicochemical properties such as high electron mobility, tunable optics, a large surface to volume ratio, and robust mechanical strength. These properties make graphene an ideal candidate for various optoelectronic, photonics, and sensing applications. In recent years, numerous efforts have been focused on azobenzene polymers (AZO-polymers) as photochromic molecular switches and thermal sensors because of their light-induced conformations and surface-relief structures. However, these polymers often exhibit drawbacks such as low photon storage lifetime and energy density. Additionally, AZO-polymers tend to aggregate even at moderate doping levels, which is detrimental to their optical response. These issues can be alleviated by incorporating graphene derivatives (GDs) into AZO-polymers to form orderly arranged molecules. GDs such as graphene oxide (GO), reduced graphene oxide (RGO), and graphene quantum dots (GQDs) can modulate the optical response, energy density, and photon storage capacity of these composites. Moreover, they have the potential to prevent aggregation and increase the mechanical strength of the azobenzene complexes. This review article summarizes and assesses literature on various strategies that may be used to incorporate GDs into azobenzene complexes. The review begins with a detailed analysis of structures and properties of GDs and azobenzene complexes. Then, important aspects of GD-azobenzene composites are discussed, including: (1) synthesis methods for GD-azobenzene composites, (2) structure and physicochemical properties of GD-azobenzene composites, (3) characterization techniques employed to analyze GD-azobenzene composites, and most importantly, (4) applications of these composites in various photonics and thermal devices. Finally, a conclusion and future scope are given to discuss remaining challenges facing GD-azobenzene composites in functional science engineering.
Collapse
Affiliation(s)
| | | | - Folarin Erogbogbo
- Department of Biomedical Engineering, San José State University, 1 Washington Square, San José, CA 95112, USA; (A.B.); (J.A.)
| |
Collapse
|
14
|
Abstract
The development of civilization and the massive use of traditional energy sources has led to progressive environmental degradation that requires immediate action [...]
Collapse
|