1
|
Kim YJ, Lee S, Choi S, Eom TH, Cho SH, Park S, Park SH, Kim JY, Kim J, Nam GB, Ryu JE, Park SJ, Lee SM, Lee GD, Kim J, Jang HW. Highly Durable Chemoresistive Micropatterned PdAu Hydrogen Sensors: Performance and Mechanism. ACS Sens 2024; 9:5363-5373. [PMID: 39315860 DOI: 10.1021/acssensors.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Hydrogen (H2) is a promising alternative energy source for Net-zero, but the risk of explosion requires accurate and rapid detection systems. As the use of H2 energy expands, sensors require high performance in a variety of properties. Palladium (Pd) is an attractive material for H2 detection due to its high H2 affinity and catalytic properties. However, poor stability caused by volume changes and reliability due to environmental sensitivity remain obstacles. This study proposes a micropatterned thin film of PdAu with optimized composition (Pd0.62Au0.38) as a chemoresistive sensor to overcome these issues. At room temperature, the sensor has a wide detection range of 0.0002% to 5% and a fast response time of 9.5 s. Significantly, the sensor exhibits excellent durability for repeated operation (>35 h) in 5% H2 and resistance to humidity and carbon monoxide. We also report a negative resistivity change in PdAu, which is opposite to that of Pd. Density functional theory (DFT) calculations were performed to investigate the resistance change. DFT analysis revealed that H2 penetrates specific interstitial sites, causing partial lattice compression. The lattice compression causes a decrease in electrical resistance. This work is expected to contribute to the development of high-performance H2 sensors using Pd-based alloys.
Collapse
Affiliation(s)
- Yeong Jae Kim
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Seonyong Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungkyun Choi
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hoon Eom
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Hwan Cho
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sohyeon Park
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Hyuk Park
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Young Kim
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehyun Kim
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Baek Nam
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung-El Ryu
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, Cambridge Massachusetts 02139, United States
| | - Seon Ju Park
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Min Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Gun-Do Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyun Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| |
Collapse
|
2
|
Smiljanić M, Srejić I, Georgijević JP, Maksić A, Bele M, Hodnik N. Recent progress in the development of advanced support materials for electrocatalysis. Front Chem 2023; 11:1304063. [PMID: 38025069 PMCID: PMC10665529 DOI: 10.3389/fchem.2023.1304063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Electrocatalytic materials are pivotal for clean chemical production and energy conversion in devices like electrolyzers and fuel cells. These materials usually consist of metallic nanoparticles which serve as active reaction sites, and support materials which provide high surface area, conductivity and stability. When designing novel electrocatalytic composites, the focus is often on the metallic sites, however, the significance of the support should not be overlooked. Carbon materials, valued for their conductivity and large surface area, are commonly used as support in benchmark electrocatalysts. However, using alternative support materials instead of carbon can be beneficial in certain cases. In this minireview, we summarize recent advancements and key directions in developing novel supports for electrocatalysis, encompassing both carbon and non-carbon materials.
Collapse
Affiliation(s)
- M. Smiljanić
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - I. Srejić
- Department of Atomic Physics, Institute for Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| | - J. P. Georgijević
- Department of Atomic Physics, Institute for Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| | - A. Maksić
- Department of Atomic Physics, Institute for Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| | - M. Bele
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - N. Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
3
|
Saeloo B, Jitapunkul K, Iamprasertkun P, Panomsuwan G, Sirisaksoontorn W, Sooknoi T, Hirunpinyopas W. Size-Dependent Graphene Support for Decorating Gold Nanoparticles as a Catalyst for Hydrogen Evolution Reaction with Machine Learning-Assisted Prediction. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37919242 DOI: 10.1021/acsami.3c10553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Size-dependent two-dimensional (2D) materials (e.g., graphene) have been recently used to improve their performance in various applications such as membrane filtration, energy storage, and electrocatalysts. It has also been demonstrated that 2D nanosheets can be one of the promising support materials for decorating nanoparticles (NPs). However, the optimum nanosheet size (lateral length and thickness) for supporting NPs has not yet been explored to enhance their catalytic performance. Herein, we elucidate the mechanism behind size-dependent graphene (GP) as a support due to which gold nanoparticles (AuNPs) are used as an active catalyst for the hydrogen evolution reaction (HER). Surprisingly, the decoration of AuNPs increased with the increasing nanosheet size, counter to what is widely reported in the literature (high surface area for smaller nanosheet size). We found that a large graphene nanosheet (lGP; ∼800 nm) used as the AuNP support (lGP/AuNPs) exhibited superior performance for the HER with long-term stability. The lGP/AuNPs with a suitable content of AuNPs provides a low overpotential and a small Tafel slope, being lower than that of other reported carbon-based HER electrocatalysts. This results from highly exposed active sites of well-dispersed AuNPs on lGP giving high conductivity. The laminar structure of the stacked graphene nanosheets and the high wettability of the lGP/AuNPs electrode surface also play crucial roles in enhancing electrolytes for penetration in the electrode, suggesting a highly electrochemical surface area. Moreover, machine learning (Random Forest) was also used to reveal the essential features of the advanced catalytic material design for catalyst-based applications.
Collapse
Affiliation(s)
- Boontarika Saeloo
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Kulpavee Jitapunkul
- School of Bio-Chemical Engineering and Technology Sirindhorn International Institute of Technology (SIIT), Thammasat University - Rangsit Campus, Khlong Nueng, Pathum Thani 12120, Thailand
- Research Unit in Sustainable Electrochemical Intelligent, Thammasat University, Khlong Nueng, Pathum Thani 12120, Thailand
| | - Pawin Iamprasertkun
- School of Bio-Chemical Engineering and Technology Sirindhorn International Institute of Technology (SIIT), Thammasat University - Rangsit Campus, Khlong Nueng, Pathum Thani 12120, Thailand
- Research Unit in Sustainable Electrochemical Intelligent, Thammasat University, Khlong Nueng, Pathum Thani 12120, Thailand
| | - Gasidit Panomsuwan
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Weekit Sirisaksoontorn
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Tawan Sooknoi
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Wisit Hirunpinyopas
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
4
|
Synthesis of rGO–Nps hybrids with electrocatalytic activity for hydrogen evolution reaction. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
5
|
Improved Oxygen Reduction on GC-Supported Large-Sized Pt Nanoparticles by the Addition of Pd. Catalysts 2022. [DOI: 10.3390/catal12090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PdPt bimetallic nanoparticles on carbon-based supports functioning as advanced electrode materials have attracted attention due to their low content of noble metals and high catalytic activity for fuel cell reactions. Glassy carbon (GC)-supported Pt and PdPt nanoparticles, as promising catalysts for the oxygen reduction reaction (ORR), were prepared by the electrochemical deposition of Pt and the subsequent spontaneous deposition of Pd. The obtained electrodes were examined using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), and electroanalytical techniques. An XPS analysis of the PdPt/GC with the highest ORR performance revealed that the stoichiometric ratio of Pd: Pt was 1:2, and that both Pt and Pd were partially oxidized. AFM images of PdPt2/GC showed the full coverage of GC with PdPt nanoparticles with sizes from 100–300 nm. The ORR activity of PdPt2/GC in an acid solution approached that of polycrystalline Pt (E1/2 = 0.825 V vs. RHE), while exceeding it in an alkaline solution (E1/2 = 0.841 V vs. RHE). The origin of the improved ORR on PdPt2/GC in an alkaline solution is ascribed to the presence of a higher amount of adsorbed OH species originating from both PtOH and PdOH that facilitated the 4e-reaction pathway.
Collapse
|
6
|
PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution. Catalysts 2021. [DOI: 10.3390/catal12010043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PtAu nanoparticles spontaneously deposited on graphene support, PtAu/rGO, have shown remarkably high catalytic activity for hydrogen evolution reaction (HER) in sulfuric acid solution. SEM images of the PtAu/rGO electrode surface showed that Pt nanoparticles that are non-uniform in size occupy both the edges of previously deposited uniform Au nanoparticles and the edges of graphene support. XPS analysis showed that the atomic percentages of Au and Pt in PtAu/rGO were 0.6% and 0.3%, respectively. The atomic percentage of Au alone on previously prepared Au/rGO was 0.7%. Outstanding HER activity was achieved for the PtAu/rGO electrode, showing the initial potential close to the equilibrium potential for HER and a low Tafel slope of −38 mV/dec. This was confirmed by electrochemical impedance spectroscopy. The chronoamperometric measurement performed for 40 min for hydrogen evolution at a constant potential indicated good stability and durability of the PtAu/rGO electrode.
Collapse
|