1
|
Luo Z, Qiao L, Chen H, Mao Z, Wu S, Ma B, Xie T, Wang A, Pei X, Sheldon RA. Precision Engineering of the Co-immobilization of Enzymes for Cascade Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202403539. [PMID: 38556813 DOI: 10.1002/anie.202403539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The design and orderly layered co-immobilization of multiple enzymes on resin particles remain challenging. In this study, the SpyTag/SpyCatcher binding pair was fused to the N-terminus of an alcohol dehydrogenase (ADH) and an aldo-keto reductase (AKR), respectively. A non-canonical amino acid (ncAA), p-azido-L-phenylalanine (p-AzF), as the anchor for covalent bonding enzymes, was genetically inserted into preselected sites in the AKR and ADH. Employing the two bioorthogonal counterparts of SpyTag/SpyCatcher and azide-alkyne cycloaddition for the immobilization of AKR and ADH enabled sequential dual-enzyme coating on porous microspheres. The ordered dual-enzyme reactor was subsequently used to synthesize (S)-1-(2-chlorophenyl)ethanol asymmetrically from the corresponding prochiral ketone, enabling the in situ regeneration of NADPH. The reactor exhibited a high catalytic conversion of 74 % and good reproducibility, retaining 80 % of its initial activity after six cycles. The product had 99.9 % ee, which that was maintained in each cycle. Additionally, the double-layer immobilization method significantly increased the enzyme loading capacity, which was approximately 1.7 times greater than that of traditional single-layer immobilization. More importantly, it simultaneously enabled both the purification and immobilization of multiple enzymes on carriers, thus providing a convenient approach to facilitate cascade biocatalysis.
Collapse
Affiliation(s)
- Zhiyuan Luo
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Li Qiao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Haomin Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Zhili Mao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Shujiao Wu
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Bianqin Ma
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand PO Wits., 2050, Johannesburg, South Africa
- Department of Biotechnology, Section BOC, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
2
|
Bounegru AV, Apetrei C. Tyrosinase Immobilization Strategies for the Development of Electrochemical Biosensors-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:760. [PMID: 36839128 PMCID: PMC9962745 DOI: 10.3390/nano13040760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The development of enzyme biosensors has successfully overcome various challenges such as enzyme instability, loss of enzyme activity or long response time. In the electroanalytical field, tyrosinase is used to develop biosensors that exploit its ability to catalyze the oxidation of numerous types of phenolic compounds with antioxidant and neurotransmitter roles. This review critically examines the main tyrosinase immobilization techniques for the development of sensitive electrochemical biosensors. Immobilization strategies are mainly classified according to the degree of reversibility/irreversibility of enzyme binding to the support material. Each tyrosinase immobilization method has advantages and limitations, and its selection depends mainly on the type of support electrode, electrode-modifying nanomaterials, cross-linking agent or surfactants used. Tyrosinase immobilization by cross-linking is characterized by very frequent use with outstanding performance of the developed biosensors. Additionally, research in recent years has focused on new immobilization strategies involving cross-linking, such as cross-linked enzyme aggregates (CLEAs) and magnetic cross-linked enzyme aggregates (mCLEAs). Therefore, it can be considered that cross-linking immobilization is the most feasible and economical approach, also providing the possibility of selecting the reagents used and the order of the immobilization steps, which favor the enhancement of biosensor performance characteristics.
Collapse
|
3
|
Tan Z, Cheng H, Chen G, Ju F, Fernández-Lucas J, Zdarta J, Jesionowski T, Bilal M. Designing multifunctional biocatalytic cascade system by multi-enzyme co-immobilization on biopolymers and nanostructured materials. Int J Biol Macromol 2023; 227:535-550. [PMID: 36516934 DOI: 10.1016/j.ijbiomac.2022.12.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
In recent decades, enzyme-based biocatalytic systems have garnered increasing interest in industrial and applied research for catalysis and organic chemistry. Many enzymatic reactions have been applied to sustainable and environmentally friendly production processes, particularly in the pharmaceutical, fine chemicals, and flavor/fragrance industries. However, only a fraction of the enzymes available has been stepped up towards industrial-scale manufacturing due to low enzyme stability and challenging separation, recovery, and reusability. In this context, immobilization and co-immobilization in robust support materials have emerged as valuable strategies to overcome these inadequacies by facilitating repeated or continuous batch operations and downstream processes. To further reduce separations, it can be advantageous to use multiple enzymes at once in one pot. Enzyme co-immobilization enables biocatalytic synergism and reusability, boosting process efficiency and cost-effectiveness. Several studies on multi-enzyme immobilization and co-localization propose kinetic advantages of the enhanced turnover number for multiple enzymes. This review spotlights recent progress in developing versatile biocatalytic cascade systems by multi-enzyme co-immobilization on environmentally friendly biopolymers and nanostructured materials and their application scope in the chemical and biotechnological industries. After a succinct overview of carrier-based and carrier-free immobilization/co-immobilizations, co-immobilization of enzymes on a range of biopolymer and nanomaterials-based supports is thoroughly compiled with contemporary and state-of-the-art examples. This study provides a new horizon in developing effective and innovative multi-enzymatic systems with new possibilities to fully harness the adventure of biocatalytic systems.
Collapse
Affiliation(s)
- Zhongbiao Tan
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China.
| | - Hairong Cheng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Gang Chen
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Fang Ju
- Sateri (Jiangsu) Fiber Co. Ltd., Suqian 221428, PR China
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.
| | - Muhammad Bilal
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| |
Collapse
|
4
|
Magnetic CLEAs of β-Galactosidase from Aspergillus oryzae as a Potential Biocatalyst to Produce Tagatose from Lactose. Catalysts 2023. [DOI: 10.3390/catal13020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
β-galactosidase is an enzyme capable of hydrolysing lactose, used in various branches of industry, mainly the food industry. As the efficient industrial use of enzymes depends on their reuse, it is necessary to find an effective method for immobilisation, maintaining high activity and stability. The present work proposes cross-linked magnetic cross-linked enzyme aggregates (mCLEAs) to prepare heterogeneous biocatalysts of β-galactosidase. Different concentrations of glutaraldehyde (0.6%, 1.0%, 1.5%), used as a cross-linking agent, were studied. The use of dextran-aldehyde as an alternative cross-linking agent was also evaluated. The mCLEAs presented increased recovered activity directly related to the concentration of glutaraldehyde. Modifications to the protocol to prepare mCLEAs with glutaraldehyde, adding a competitive inhibitor or polymer coating, have not been effective in increasing the recovered activity of the heterogeneous biocatalysts or its thermal stability. The biocatalyst prepared using dextran-aldehyde presented 73.6% recovered activity, aside from substrate affinity equivalent to the free enzyme. The thermal stability at 60 °C was higher for the biocatalyst prepared with glutaraldehyde (mCLEA-GLU-1.5) than the one produced with dextran-aldehyde (mCLEA-DEX), and the opposite happened at 50 °C. Results obtained for lactose hydrolysis, the use of its product to produce a rare sugar (D-tagatose) and operational and storage stability indicate that heterogeneous biocatalysts have adequate characteristics for industrial use.
Collapse
|
5
|
Rajendran DS, Venkataraman S, Kumar PS, Rangasamy G, Bhattacharya T, Nguyen Vo DV, Vaithyanathan VK, Cabana H, Kumar VV. Coimmobilized enzymes as versatile biocatalytic tools for biomass valorization and remediation of environmental contaminants - A review. ENVIRONMENTAL RESEARCH 2022; 214:114012. [PMID: 35952747 DOI: 10.1016/j.envres.2022.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Due to stringent regulatory norms, waste processing faces confrontations and challenges in adapting technology for effective management through a convenient and economical system. At the global level, attempts are underway to achieve a green and sustainable treatment for the valorization of lignocellulosic biomass as well as organic contaminants in wastewater. Enzymatic treatment in the environmental aspect thrived on being the promising rapid strategy that appeased the aforementioned predicament. On that account, coimmobilization of various enzymes on single support enhances the catalytic activity ensuing operational stability with industrial applications. This review pivoted towards the coimmobilization of enzymes on diverse supports and their applications in biomass conversion to industrial value-added products and removal of contaminants in wastewater. The limelight of this study chronicles the unique breakthroughs in biotechnology for the production of reusable biocatalysts, which inculcating various enzymes towards the scope of environment application.
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam- 603 110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam- 603 110, Chennai, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Trishita Bhattacharya
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Vasanth Kumar Vaithyanathan
- University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Hubert Cabana
- University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India; University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada.
| |
Collapse
|
6
|
Araque-Marin M, Bellot Noronha F, Capron M, Dumeignil F, Friend M, Heuson E, Itabaiana I, Jalowiecki-Duhamel L, Katryniok B, Löfberg A, Paul S, Wojcieszak R. Strengthening the Connection between Science, Society and Environment to Develop Future French and European Bioeconomies: Cutting-Edge Research of VAALBIO Team at UCCS. Molecules 2022; 27:3889. [PMID: 35745022 PMCID: PMC9231048 DOI: 10.3390/molecules27123889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
The development of the future French and European bioeconomies will involve developing new green chemical processes in which catalytic transformations are key. The VAALBIO team (valorization of alkanes and biomass) of the UCCS laboratory (Unité de Catalyse et Chimie du Solide) are working on various catalytic processes, either developing new catalysts and/or designing the whole catalytic processes. Our research is focused on both the fundamental and applied aspects of the processes. Through this review paper, we demonstrate the main topics developed by our team focusing mostly on oxygen- and hydrogen-related processes as well as on green hydrogen production and hybrid catalysis. The social impacts of the bioeconomy are also discussed applying the concept of the institutional compass.
Collapse
Affiliation(s)
- Marcia Araque-Marin
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Fabio Bellot Noronha
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
- Catalysis, Biocatalysis and Chemical Processes Division, National Institute of Technology, Rio de Janeiro 20081-312, Brazil
| | - Mickäel Capron
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Franck Dumeignil
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Michèle Friend
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
- Department of Philosophy, George Washington University, Washington, DC 20052, USA
| | - Egon Heuson
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Ivaldo Itabaiana
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-910, Brazil
| | - Louise Jalowiecki-Duhamel
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Benjamin Katryniok
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Axel Löfberg
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Sébastien Paul
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| |
Collapse
|
7
|
Kamanina OA, Saverina EA, Rybochkin PV, Arlyapov VA, Vereshchagin AN, Ananikov VP. Preparation of Hybrid Sol-Gel Materials Based on Living Cells of Microorganisms and Their Application in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1086. [PMID: 35407203 PMCID: PMC9000353 DOI: 10.3390/nano12071086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023]
Abstract
Microorganism-cell-based biohybrid materials have attracted considerable attention over the last several decades. They are applied in a broad spectrum of areas, such as nanotechnologies, environmental biotechnology, biomedicine, synthetic chemistry, and bioelectronics. Sol-gel technology allows us to obtain a wide range of high-purity materials from nanopowders to thin-film coatings with high efficiency and low cost, which makes it one of the preferred techniques for creating organic-inorganic matrices for biocomponent immobilization. This review focuses on the synthesis and application of hybrid sol-gel materials obtained by encapsulation of microorganism cells in an inorganic matrix based on silicon, aluminum, and transition metals. The type of immobilized cells, precursors used, types of nanomaterials obtained, and their practical applications were analyzed in detail. In addition, techniques for increasing the microorganism effective time of functioning and the possibility of using sol-gel hybrid materials in catalysis are discussed.
Collapse
Affiliation(s)
- Olga A. Kamanina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | - Evgeniya A. Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | - Pavel V. Rybochkin
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | - Vyacheslav A. Arlyapov
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | | | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
8
|
Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10030494] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Enzymes are outstanding (bio)catalysts, not solely on account of their ability to increase reaction rates by up to several orders of magnitude but also for the high degree of substrate specificity, regiospecificity and stereospecificity. The use and development of enzymes as robust biocatalysts is one of the main challenges in biotechnology. However, despite the high specificities and turnover of enzymes, there are also drawbacks. At the industrial level, these drawbacks are typically overcome by resorting to immobilized enzymes to enhance stability. Immobilization of biocatalysts allows their reuse, increases stability, facilitates process control, eases product recovery, and enhances product yield and quality. This is especially important for expensive enzymes, for those obtained in low fermentation yield and with relatively low activity. This review provides an integrated perspective on (multi)enzyme immobilization that abridges a critical evaluation of immobilization methods and carriers, biocatalyst metrics, impact of key carrier features on biocatalyst performance, trends towards miniaturization and detailed illustrative examples that are representative of biocatalytic applications promoting sustainability.
Collapse
|