1
|
Farwa U, Sandhu ZA, Kiran A, Raza MA, Ashraf S, Gulzarab H, Fiaz M, Malik A, Al-Sehemi AG. Revolutionizing environmental cleanup: the evolution of MOFs as catalysts for pollution remediation. RSC Adv 2024; 14:37164-37195. [PMID: 39569125 PMCID: PMC11578092 DOI: 10.1039/d4ra05642f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/19/2024] [Indexed: 11/22/2024] Open
Abstract
The global problem of ecological safety and public health necessitates, the development of new sustainable ideas for pollution remediation. In recent development, metal-organic frameworks (MOF) are the emerging technology with remarkable potential, which have been employed in environmental remediation. MOFs are networks that are created by the coordination of metals or polyanions with ligands and contain organic components that can be customized. The interesting features of MOFs are a large surface area, tuneable porosity, functional diversity, and high predictability of pollutant adsorption, catalysis, and degradation. It is a solid material that occupies a unique position in the war against environmental pollutants. One of the main benefits of MOFs is that they exhibit selective adsorption of a wide range of pollutants, including heavy metals, organics, greenhouse gases, water and soil. Only particles with the right combination of pore size and chemical composition will achieve this selectivity, derived from the high level of specificity. Besides, they possess high catalytic ability for the removal of pollutants by means of different methods such as photocatalysis, Fenton-like reactions, and oxidative degradation. By generating mobile active sites within the framework of MOFs, we can not only ensure high affinity for pollutants but also effective transformation of toxic chemicals into less harmful or even inert end products. However, the long-term stability of MOFs is becoming more important as eco-friendly parts are replaced with those that can be used repeatedly, and systems based on MOFs that can remove pollutants in more than one way are fabricated. MOFs can reduce waste production, energy consumption as compared to the other removal process. With its endless capacities, MOF technology brings a solution to the environmental cleansing problem, working as a flexible problem solver from one field to another. The investigation of MOF synthesis and principles will allow researchers to fully understand the potential of MOFs in environmental problem solving, making the world a better place for all of us.
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Azwa Kiran
- Department of Chemistry, Faculty of Science, University of Engineering and Technology Lahore Lahore Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Hamza Gulzarab
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Fiaz
- Department of Chemistry, University of Texas at Austin USA
| | - Adnan Malik
- Department of Physics and Chemistry, Faculty of Applied Science and Technology, University Tun Hussein Onn Malaysia Pagoh Campus Malaysia
| | | |
Collapse
|
2
|
Wang Q, Zhang X, Wang A, Zhang A, Wang Y, Hou Y. A Novel Cold-Adapted Catechol 1,2-Dioxygenase From Antarctic Sea-Ice Bacterium Halomonas sp. ANT108: Characterization and Immobilization. J Basic Microbiol 2024:e2400500. [PMID: 39555744 DOI: 10.1002/jobm.202400500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
The enzyme catechol 1,2-dioxygenase (CAT) plays a critical role in the biosynthesis pathway of cis, cis-muconic acid (CCMA), which serves as an indispensable raw material for various industrial applications. In this research, we cloned a novel cold-adapted CAT (HaCAT) from the Antarctic sea ice bacterium Halomonas sp. ANT108. Homology modeling analysis revealed that HaCAT possessed the characteristic Fe3+ binding site and catalytic active site of typical CATs, and it exhibited unique structural adaptations to cold environments. The optimal temperature and pH for recombinant HaCAT (rHaCAT) were found to be 25°C and 6.5, respectively. At 0°C, the enzyme retained a maximum activity of 43.6%, and in the presence of 1.0 M NaCl, its activity reached 173.9%, demonstrating significant salt tolerance. Additionally, the Vmax and Km of rHaCAT were 6.68 μmol/min/mg and 128.90 μM at 25°C, respectively. Furthermore, rHaCAT was successfully immobilized in the metal-organic framework ZIF-8 and retained almost 50% of its activity after five reuse cycles, demonstrating excellent reusability. Overall, these results provided a new resource and theoretical foundation for the industrial biocatalytic production and modification of CAT.
Collapse
Affiliation(s)
- Quanfu Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Xiaoxuan Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Anqi Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Ailin Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Yatong Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Yanhua Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| |
Collapse
|
3
|
Tao T, Rehman SU, Xu S, Zhang J, Xia H, Guo Z, Li Z, Ma K, Wang J. A biomimetic camouflaged metal organic framework for enhanced siRNA delivery in the tumor environment. J Mater Chem B 2024; 12:4080-4096. [PMID: 38577851 DOI: 10.1039/d3tb02827e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Gene silencing through RNA interference (RNAi), particularly using small double-stranded RNA (siRNA), has been identified as a potent strategy for targeted cancer treatment. Yet, its application faces challenges such as nuclease degradation, inefficient cellular uptake, endosomal entrapment, off-target effects, and immune responses, which have hindered its effective delivery. In the past few years, these challenges have been addressed significantly by using camouflaged metal-organic framework (MOF) nanocarriers. These nanocarriers protect siRNA from degradation, enhance cellular uptake, and reduce unintended side effects by effectively targeting desired cells while evading immune detection. By combining the properties of biomimetic membranes and MOFs, these nanocarriers offer superior benefits such as extended circulation times, enhanced stability, and reduced immune responses. Moreover, through ligand-receptor interactions, biomimetic membrane-coated MOFs achieve homologous targeting, minimizing off-target adverse effects. The MOFs, acting as the core, efficiently encapsulate and protect siRNA molecules, while the biomimetic membrane-coated surface provides homologous targeting, further increasing the precision of siRNA delivery to cancer cells. In particular, the biomimetic membranes help to shield the MOFs from the immune system, avoiding unwanted immune responses and improving their biocompatibility. The combination of siRNA with innovative nanocarriers, such as camouflaged-MOFs, presents a significant advancement in cancer therapy. The ability to deliver siRNA with precision and effectiveness using these camouflaged nanocarriers holds great promise for achieving more personalized and efficient cancer treatments in the future. This review article discusses the significant progress made in the development of siRNA therapeutics for cancer, focusing on their effective delivery through novel nanocarriers, with a particular emphasis on the role of metal-organic frameworks (MOFs) as camouflaged nanocarriers.
Collapse
Affiliation(s)
- Tongxiang Tao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
| | - Sajid Ur Rehman
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Shuai Xu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Jing Zhang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Haining Xia
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Zeyong Guo
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Zehua Li
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Kun Ma
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Junfeng Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, P. R. China
| |
Collapse
|
4
|
Molina MA, Rodríguez-Campa J, Flores-Borrell R, Blanco RM, Sánchez-Sánchez M. Sustainable Synthesis of Zeolitic Imidazolate Frameworks at Room Temperature in Water with Exact Zn/Linker Stoichiometry. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:348. [PMID: 38392721 PMCID: PMC10892720 DOI: 10.3390/nano14040348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Zeolitic imidazolate frameworks (ZIFs) are widely used MOFs because of certain characteristics, but also because they can be prepared at room temperature using water as the unique solvent. However, these a priori sustainable conditions inevitably entail a huge and somehow unusable excess of linker. Here, we present the formation of ZIFs at room temperature in water, starting from mixtures with a linker/metal ratio of two, that is, coinciding with the stoichiometry found in the final MOFs, in the presence of amines. ZIF-8 can be prepared with triethylamine (TEA), giving a yield of Zn of 96.6%. Other bases, like NaOH, tetraethylammonium hydroxide or ammonium hydroxide, do not lead to ZIF-8 under the same conditions. The so-obtained ZIF-8 contains TEA inside its cavities, making it less porous than its conventionally prepared counterparts. Amine can be removed by mild thermal treatments (200-250 °C). Such thermal treatments induce the generation of g-C3N4-like species which could give added value to these materials as potential photocatalysts, increasing their affinity to CO2, as proved in this work. This methodology can be successfully extended to other amines, like N,N-dicyclohexylmethylamine, as well as to other prepared ZIFs, like Co-based ZIF-67, isostructural to ZIF-8.
Collapse
Affiliation(s)
- María Asunción Molina
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049 Madrid, Spain; (M.A.M.); (J.R.-C.); (R.F.-B.); (R.M.B.)
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0A, UK
| | - Jorge Rodríguez-Campa
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049 Madrid, Spain; (M.A.M.); (J.R.-C.); (R.F.-B.); (R.M.B.)
| | - Rosa Flores-Borrell
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049 Madrid, Spain; (M.A.M.); (J.R.-C.); (R.F.-B.); (R.M.B.)
| | - Rosa M. Blanco
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049 Madrid, Spain; (M.A.M.); (J.R.-C.); (R.F.-B.); (R.M.B.)
| | - Manuel Sánchez-Sánchez
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049 Madrid, Spain; (M.A.M.); (J.R.-C.); (R.F.-B.); (R.M.B.)
| |
Collapse
|
5
|
Addai FP, Wu J, Liu Y, Ma X, Han J, Lin F, Zhou Y, Wang Y. Amorphous-crystalline phase transition and intrinsic magnetic property of nickel organic framework for easy immobilization and recycling of β-Galactosidase. Int J Biol Macromol 2024; 254:127901. [PMID: 37952798 DOI: 10.1016/j.ijbiomac.2023.127901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
This work describes the synthesis of fibrous nickel-based metal organic framework (Ni-ZIF) via simple solvothermal method. The material formed was calcinated at 400, 600, 800 °C to improve its surface area, porosity and enzyme binding capacity. Changes in X-ray diffraction pattern after calcination revealed the Ni-ZIF transitioned from amorphous to crystalline structure. The surface area, pore volume and pore size for Ni-ZIF@600 were found to be 312.15 m2/g, 0.88 cm3/g and 10.28 nm, with an enzyme loading capacity of 593.85 mg/g after 30 h The free (β-Gal-LEH) and immobilized β-Galactosidase were stable at pH 7.5, temperature 50 °C, and yielded 70.70 and 63.95 mM glucose after milk lactose hydrolysis, respectively. The Ni-ZIF@600@β-Gal-LEH exhibited high enzyme retention capacity, maintaining 59.44 % of its original activity after 6-cycles. The enhanced magnetic property, enzyme binding capacity and easy recoverability of the calcinated Ni-ZIF could guarantee its industrial significance as immobilization module for enzyme-mediated catalysis.
Collapse
Affiliation(s)
- Frank Peprah Addai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yuelin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xinnan Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang Province 313001, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
6
|
Alvarado-Ramírez L, Machorro-García G, López-Legarrea A, Trejo-Ayala D, Rostro-Alanis MDJ, Sánchez-Sánchez M, Blanco RM, Rodríguez-Rodríguez J, Parra-Saldívar R. Metal-organic frameworks for enzyme immobilization and nanozymes: A laccase-focused review. Biotechnol Adv 2024; 70:108299. [PMID: 38072099 DOI: 10.1016/j.biotechadv.2023.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Laccases are natural catalysts with remarkable catalytic activity. However, their application is limited by their lack of stability. Metal-organic frameworks (MOFs) have emerged as a promising alternative for enzyme immobilization. Enzymes can be immobilized in MOFs via two approaches: postsynthetic immobilization and in situ immobilization. In postsynthetic immobilization, an enzyme is embedded after MOF formation by covalent interactions or adsorption. In contrast, in in situ immobilization, a MOF is formed in the presence of an enzyme. Additionally, MOFs have exhibited intrinsic enzyme-like activity. These materials, known as nanozymes when they have the ability to replace enzymes in certain catalytic processes, have multiple key advantages, such as low cost, easy preparation, and large surface areas. This review presents a general overview of the most recent advances in both enzyme@MOF biocatalysts and MOF-based nanozymes in different applications, with a focus on laccase, which is one of the most widely investigated enzymes with excellent industrial potential.
Collapse
Affiliation(s)
| | | | - Andrea López-Legarrea
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Dulce Trejo-Ayala
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | | | - Manuel Sánchez-Sánchez
- Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC). C/ Marie Curie, 2, Madrid 28049, Spain.
| | - Rosa M Blanco
- Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC). C/ Marie Curie, 2, Madrid 28049, Spain.
| | | | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico.
| |
Collapse
|
7
|
Chen L, Wang X, Chen M, Sun Q, Chen Y, Zhang X, Hong R, Xu Y, Guan J, Hong S, Cao D, Sun T, Li X, Chen L, Diwu J. Self-Aggregated Nanoscale Metal-Organic Framework for Targeted Pulmonary Decorporation of Uranium. Adv Healthc Mater 2023; 12:e2300510. [PMID: 37377120 DOI: 10.1002/adhm.202300510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/17/2023] [Indexed: 06/29/2023]
Abstract
The limited availability of effective agents for removing actinides from the lungs significantly restricts the effectiveness of medical treatments for nuclear emergencies. Inhalation is the primary route of internal contamination in 44.3% of actinide-related accidents, leading to the accumulation of radionuclides in the lungs and resulting in infections and potential tumor formation (tumorigenesis). This study focuses on the synthesis of a nanometal-organic framework (nMOF) material called ZIF-71-COOH, which is achieved by post-synthetic carboxyl functionalization of ZIF-71. The material demonstrates high and selective adsorption of uranyl, while also exhibiting increased particle size (≈2100 nm) when it aggregates in the blood, enabling passive targeting of the lungs through mechanical filtration. This unique property facilitates the rapid enrichment and selective recognition of uranyl, making nano ZIF-71-COOH highly effective in removing uranyl from the lungs. The findings of this study highlight the potential of self-aggregated nMOFs as a promising drug delivery system for targeted uranium decorporation in the lungs.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xiaomei Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Mengping Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qiwen Sun
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yemeng Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xiaojie Zhang
- Department of Experimental Center, Medical College of Soochow University, Suzhou, 215123, China
| | - Rui Hong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yigong Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jingwen Guan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Sheng Hong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Dehan Cao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Tingfeng Sun
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ximeng Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
8
|
Ghasemi S, Yousefi M, Nikseresht A. Comparison of covalent and in situ immobilization of Candida antarctica lipase A on a flexible nanoporous material. 3 Biotech 2023; 13:99. [PMID: 36866325 PMCID: PMC9971526 DOI: 10.1007/s13205-023-03522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
In this study, Candida antarctica lipase A, which has a unique applicability for the conversion of highly branched and bulky substrates, was subjected to immobilization on the flexible nanoporous MIL-53(Fe) by two approaches: covalent coupling and in situ immobilization method. The pre-synthesized support under ultrasound irradiation was incubated with N,N-dicyclohexylcarbodiimide to mediate the covalent attachment between the carboxylic groups on the support surface and amino groups of enzyme molecules. The in situ immobilization in which the enzyme molecules directly were embedded into the metal-organic framework was performed under mild operating conditions in a facile one-step manner. Both immobilized derivatives of the enzyme were characterized by scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, FT-IR spectra, and energy-dispersive X-ray spectroscopy. In the in situ immobilization method, the enzyme molecules were efficiently encapsulated within the support with a high loading capacity (220 ± 5 mg/g support). On the other hand, the covalent attachment resulted in immobilizing much lower concentrations of the enzyme (20 ± 2.2 mg/g support). Although both immobilized derivatives of lipase showed broader pH and temperature tolerance relative to the soluble enzyme, the biocatalyst, which was prepared through in situ method, was more stable at elevated temperatures than the covalently immobilized lipase. Furthermore, in situ immobilized derivatives of Candida antarctica lipase A could be efficiently reused for at least eight cycles (> 70% of retained activity). In contrast, its covalently immobilized counterpart showed a drastic decrease in activity after five cycles (less than 10% of retained activity at the end of 6 rounds).
Collapse
Affiliation(s)
- Saba Ghasemi
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ahmad Nikseresht
- Department of Chemistry, Payame Noor University (PNU), PO Box 19395-4697, Tehran, Iran
| |
Collapse
|
9
|
Shao P, Shen Y, Ye J, Zhao J, Wang L, Zhang S. Shape controlled ZIF-8 crystals for carbonic anhydrase immobilization to boost CO2 uptake into aqueous MDEA solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
11
|
Mannias G, Scano A, Pilloni M, Magner E, Ennas G. Tailoring MOFs to Biomedical Applications: A Chimera or a Concrete Reality? The Case Study of Fe-BTC by bio-friendly Mechanosynthesis. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2153837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Giada Mannias
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM unit, Monserrato, Italy
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Alessandra Scano
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM unit, Monserrato, Italy
| | - Martina Pilloni
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM unit, Monserrato, Italy
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Guido Ennas
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM unit, Monserrato, Italy
| |
Collapse
|
12
|
Wang S, Hu W, Ru Y, Shi Y, Guo X, Sun Y, Pang H. Synthesis Strategies and Electrochemical Research Progress of Nano/Microscale Metal–Organic Frameworks. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shixian Wang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Wenhui Hu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yue Ru
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| |
Collapse
|
13
|
Zou S, Wang B, Wang Q, Liu G, Song J, Zhang F, Li J, Wang F, He Q, Zhu Y, Zhang L. Dual-Modal Nanoscavenger for Detoxification of Organophosphorus Compounds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42454-42467. [PMID: 36089739 DOI: 10.1021/acsami.2c11737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organophosphorus compounds (OPs) pose great military and civilian hazards. However, therapeutic and prophylactic antidotes against OP poisoning remain challenging. In this study, we first developed a novel nanoscavenger (rOPH/ZIF-8@E-Lipo) against methyl paraoxon (MP) poisoning using enzyme immobilization and erythrocyte-liposome hybrid membrane camouflage techniques. Then, we evaluated the physicochemical characterization, stability, and biocompatibility of the nanoscavengers. Afterward, we examined acetylcholinesterase (AChE) activity, cell viability, and intracellular reactive oxygen species (ROS) to indicate the protective effects of the nanoscavengers in vitro. Following the pharmacokinetic and biodistribution studies, we further evaluated the therapeutic and prophylactic detoxification efficacy of the nanoscavengers against MP in various poisoning settings. Finally, we explored the penetration capacity of the nanoscavengers across the blood-brain barrier (BBB). The present study validated the successful construction of a novel nanoscavenger with excellent stability and biocompatibility. In vitro, the resulting nanoscavenger exhibited a significant protection against MP-induced AChE inactivation, oxidative stress, and cytotoxicity. In vivo, apart from the positive therapeutic effects, the nanoscavengers also exerted significant prophylactic detoxification efficacy against single lethal MP exposure, repeated lethal MP challenges, and sublethal MP poisoning. These excellent detoxification effects of the nanoscavengers against OPs may originate from a dual-mode mechanism of inner recombinant organophosphorus hydrolase (rOPH) and outer erythrocyte membrane-anchored AChE. Finally, in vitro and in vivo studies jointly demonstrated that monosialoganglioside (GM1)-modified rOPH/ZIF-8@E-Lipo could penetrate the BBB with high efficiency. In conclusion, a stable and safe dual-modal nanoscavenger was developed with BBB penetration capability, providing a promising strategy for the treatment and prevention of OP poisoning.
Collapse
Affiliation(s)
- Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Beilei Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Guoyan Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Juxingsi Song
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Fuhai Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Jie Li
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Fan Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Qian He
- The Third Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yuanjie Zhu
- Department of Marine Biological Injury and Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
14
|
Mahmood MS, Asghar H, Riaz S, Shaukat I, Zeeshan N, Gul R, Ashraf NM, Saleem M. Expression and immobilization of trypsin‐like domain of serine protease from
Pseudomonas aeruginosa
for improved stability and catalytic activity. Proteins 2022; 90:1425-1433. [DOI: 10.1002/prot.26323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 11/07/2022]
Affiliation(s)
| | - Hunza Asghar
- School of Biochemistry and Biotechnology University of the Punjab Lahore Pakistan
| | - Sheeba Riaz
- School of Biochemistry and Biotechnology University of the Punjab Lahore Pakistan
| | - Iqra Shaukat
- School of Biochemistry and Biotechnology University of the Punjab Lahore Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology University of Gujrat Gujrat Punjab Pakistan
| | - Roquyya Gul
- Faculty of Life Sciences Gulab Devi Educational Complex Lahore Pakistan
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology University of Gujrat Gujrat Punjab Pakistan
| | - Mahjabeen Saleem
- School of Biochemistry and Biotechnology University of the Punjab Lahore Pakistan
| |
Collapse
|
15
|
Salehipour M, Rezaei S, Asadi Khalili HF, Motaharian A, Mogharabi-Manzari M. Nanoarchitectonics of Enzyme/Metal–Organic Framework Composites for Wastewater Treatment. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02390-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Chemical Modification of Glycoproteins' Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. Polymers (Basel) 2021; 13:polym13223875. [PMID: 34833174 PMCID: PMC8621032 DOI: 10.3390/polym13223875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a protective coating to encapsulate proteins via biomimetic mineralization. The formation of nucleation centers and further biocomposite crystal growth is entirely governed by the pure electrostatic interactions between the protein’s surface and the positively charged Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification of surface amino acid residues can lead to a rapid biocomposite crystal formation. However, a chemical modification of carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule, from −10.2 to −36.9 mV, as shown by zeta potential measurements and native PAGE electrophoresis. Biomineralization experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of the ZIF-8 biocomposites. Periodate oxidation of carbohydrate components for glycoproteins can serve as a facile and general method for facilitating the biomimetic mineralization of other industrially relevant glycoproteins.
Collapse
|
17
|
Abstract
Biocatalysis refers to the utilization of enzymes, either in purified form, or existed as part of crude cell lysate or intact cells, to catalyze single- or multi-step chemical reactions, converting synthetic molecules or natural metabolites into high-value products [...]
Collapse
|