1
|
Hao L, Zhou H, Zhao Z, Zhang J, Fu B, Hao X. Enhanced phytoremediation of vanadium using coffee grounds and fast-growing plants: Integrating machine learning for predictive modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122747. [PMID: 39383761 DOI: 10.1016/j.jenvman.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
Vanadium (V) contamination posed a significant environmental challenge, while phytoremediation offered a sustainable solution. Phytoremediation performance was often limited by the slow growth cycles of traditional plants. A novel approach to enhancing V phytoremediation by integrating coffee grounds with fast-growing plants such as barley grass, wheat grass, and ryegrass was investigated in this study. The innovative use of coffee grounds leveraged not only their nutrient-rich composition but also their ability to reduce oxidative stress in plants, thereby significantly boosting phytoremediation efficiency. Notably, ryegrass achieved 48.7% V5+ removal within 6 d with initial 20 mg/L V5+ (0.338 mg/L·d·g ryegrass). When combined with coffee grounds, V5+ removal by using wheat grass increased substantially, rising from 30.51% to 62.91%. Gradient Boosting and XGBoost models, trained with optimized parameters including a learning rate of 0.1, max depth of 3, and n_estimators of 300, were employed to predict and optimize V5+ concentrations in the phytoremediation process. These models were evaluated using mean squared error (MSE) and coefficient of determination (R2) metrics, achieving high predictive accuracy (R2 = 0.95, MSE = 1.20). Feature importance analysis further identified the initial V5+ concentration and experimental duration as the most significant factors influencing the model's predictions. The addition of coffee grounds not only mitigated the stress of heavy metals on ryegrass, leading to significant reductions in CAT (87.2%), POD (98.8%), and SOD (39.2%) activities in ryegrass roots, but also significantly altered the microbial community abundance in the plant roots. This research provided an innovative enhancement to traditional phytoremediation methods, and established a new paradigm for using machine learning to predict and optimize V5+ remediation outcomes. The effectiveness of this technology in multi-metal polluted environments warrants further investigation in the future.
Collapse
Affiliation(s)
- Liting Hao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China.
| | - Hongliang Zhou
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Ziheng Zhao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Jinming Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Bowei Fu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Xiaodi Hao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China.
| |
Collapse
|
2
|
Srivastav AL, Rani L, Sharda P, Patel A, Patel N, Chaudhary VK. Sustainable biochar adsorbents for dye removal from water: present state of art and future directions. ADSORPTION 2024; 30:1791-1804. [DOI: 10.1007/s10450-024-00522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 01/05/2025]
|
3
|
Adeyi AA, Ogundola DO, Popoola LT, Bernard E, Udeagbara SG, Ogunyemi AT, Olateju II, Zainul R. Potassium permanganate-modified eggshell biosorbent for the removal of diclofenac from liquid environment: adsorption performance, isotherm, kinetic, and thermodynamic analyses. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:802. [PMID: 39120741 DOI: 10.1007/s10661-024-12964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
This study assess how well diclofenac (DCF) can be separated from aqueous solution using potassium permanganate-modified eggshell biosorbent (MEB). The MEB produced was characterised using XRD, FTIR, and SEM. Batch experiments were conducted to examine and assess the impact of contact time, adsorbent dosage, initial concentration, and temperature on the adsorption capacity of the MEB in the DCF sequestration. The best parameters to obtained 95.64% DCF removal from liquid environment were 0.05 g MEB weight, 50 mg/L initial concentration, and 60 min contact time at room temperature. The maximum DCF sequestration capacity was found to be 159.57 mg/g with 0.05 g of MEB at 298 K. The adsorption isotherm data were more accurately predicted by the Freundlich model, indicating a process of heterogeneous multilayer adsorption. The results of the kinetic study indicated that the pseudo-second-order kinetic models best matched the experimental data. The findings revealed that the dynamic of DCF entrapment is largely chemisorption and diffusion controlled. Based on the values of thermodynamic parameters, the process is both spontaneous and endothermic. The primary processes of DCF sorption mechanism onto the MEB were chemical surface complexation, hydrogen bonding, π-π stacking, and electrostatic interactions. The produced MEB showed effective DCF separation from the aqueous solution and continued to have maximal adsorption capability even after five regeneration cycles. These findings suggest that MEB could be highly efficient adsorbent for the removal of DCF from pharmaceutical wastewater.
Collapse
Affiliation(s)
- Abel A Adeyi
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria.
| | - Damilola O Ogundola
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Lekan T Popoola
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Esther Bernard
- Department of Chemical Engineering, Nasarawa State University Keffi (NSUK), PMB 1022, Keffi, Nigeria
| | - Stephen G Udeagbara
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Adebayo T Ogunyemi
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Idowu I Olateju
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Sumatera Barat, Indonesia
| |
Collapse
|
4
|
Oral B, Coşgun A, Günay ME, Yıldırım R. Machine learning-based exploration of biochar for environmental management and remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121162. [PMID: 38749129 DOI: 10.1016/j.jenvman.2024.121162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Biochar has a wide range of applications, including environmental management, such as preventing soil and water pollution, removing heavy metals from water sources, and reducing air pollution. However, there are several challenges associated with the usage of biochar for these purposes, resulting in an abundance of experimental data in the literature. Accordingly, the purpose of this study is to examine the use of machine learning in biochar processes with an eye toward the potential of biochar in environmental remediation. First, recent developments in biochar utilization for the environment are summarized. Then, a bibliometric analysis is carried out to illustrate the major trends (demonstrating that the top three keywords are heavy metal, wastewater, and adsorption) and construct a comprehensive perspective for future studies. This is followed by a detailed review of machine learning applications, which reveals that adsorption efficiency and capacity are the primary utilization targets in biochar utilization. Finally, a comprehensive perspective is provided for the future. It is then concluded that machine learning can help to detect hidden patterns and make accurate predictions for determining the combination of variables that results in the desired properties which can be later used for decision-making, resource allocation, and environmental management.
Collapse
Affiliation(s)
- Burcu Oral
- Department of Chemical Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey
| | - Ahmet Coşgun
- Department of Chemical Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey
| | - M Erdem Günay
- Department of Energy Systems Engineering, Istanbul Bilgi University, 34060, Eyupsultan, Istanbul, Turkey.
| | - Ramazan Yıldırım
- Department of Chemical Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
5
|
Kapoor RT, Zdarta J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. CHEMOSPHERE 2024; 358:142101. [PMID: 38653395 DOI: 10.1016/j.chemosphere.2024.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Biochar has emerged as an efficacious green material for remediation of a wide spectrum of environmental pollutants. Biochar has excellent characteristics and can be used to reduce the bioavailability and leachability of emerging pollutants in soil through adsorption and other physico-chemical reactions. This paper systematically reviewed previous researches on application of biochar/engineered biochar for removal of soil contaminants, and underlying adsorption mechanism. Engineered biochar are derivatives of pristine biochar that are modified by various physico-chemical and biological procedures to improve their adsorption capacities for contaminants. This review will promote the possibility to expand the application of biochar for restoration of degraded lands in the industrial area or saline soil, and further increase the useable area. This review shows that application of biochar is a win-win strategy for recycling and utilization of waste biomass and environmental remediation. Application of biochar for remediation of contaminated soils may provide a new solution to the problem of soil pollution. However, these studies were performed mainly in a laboratory or a small scale, hence, further investigations are required to fill the research gaps and to check real-time applicability of engineered biochar on the industrial contaminated sites for its large-scale application.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| |
Collapse
|
6
|
Munir R, Muneer A, Younas F, Sayed M, Sardar MF, Albasher G, Noreen S. Actas Pink-2B dye removal in biochar nanocomposites augmented vertical flow constructed wetland (VF-CWs). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1392-1409. [PMID: 38441053 DOI: 10.1080/15226514.2024.2324360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Industries generate hazardous dye wastewater, posing significant threats to public health and the environment. Removing dyes before discharge is crucial. The ongoing study primarily focused on synthesizing, applying, and understanding the mechanism of green nano-biochar composites. These composites, including zinc oxide/biochar, copper oxide/biochar, magnesium oxide/biochar, and manganese oxide/biochar, are designed to effectively remove Actas Pink-2B (Direct Red-31) in conjunction with constructed wetlands. Constructed wetland maintained pH 6.0-7.9. At the 10th week, the copper oxide/biochar treatment demonstrated the highest removal efficiency of total suspended solids (72%), dissolved oxygen (7.2 mg/L), and total dissolved solids (79.90%), followed by other biochar composites. The maximum removal efficiency for chemical oxygen demand (COD) and color was observed at a retention time of 60 days. The electrical conductivity also followed the same order, with a decrease observed up to the 8th week before becoming constant. A comprehensive statistical analysis was conducted, encompassing various techniques including variance analysis, regression analysis, correlation analysis, and principal component analysis. The rate of color and COD removal followed a second-order and first-order kinetics, respectively. A significant negative relationship was observed between dissolved oxygen and COD. The study indicates that employing biochar composites in constructed wetlands improves textile dye removal efficiency.
Collapse
Affiliation(s)
- Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad, Pakistan
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Murtaza Sayed
- National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Fahad Sardar
- Qingdao Key Laboratory of Ecological Protection and Restoration, School of Life Science, Shandong University, Qingdao, China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
7
|
Wang W, Chang JS, Lee DJ. Machine learning applications for biochar studies: A mini-review. BIORESOURCE TECHNOLOGY 2024; 394:130291. [PMID: 38184089 DOI: 10.1016/j.biortech.2023.130291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Biochar is a promising carbon sink whose application can assist in reducing carbon emissions. Development of this technology currently relies on experimental trials, which are time-consuming and labor-intensive. Machine learning (ML) technology presents a potential solution for streamlining this process. This review summarizes the current research on ML's applications in biochar production, characterization, and applications. It briefly explains commonly used machine learning algorithms and discusses prospects and challenges. A hybrid model that combines ML with mechanism-based analysis could be a future trend, addressing the ML's black-box nature. While biochar studies have adopted ML technology, current works mostly use lab-scale data for model training. Further work is needed to develop ML models based on pilot or industrial-scale data to realize the use of ML techniques for the field application of biochar.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
8
|
Yu H, Zhang Y, Wang L, Tuo Y, Yan S, Ma J, Zhang X, Shen Y, Guo H, Han L. Experimental and DFT insights into the adsorption mechanism of methylene blue by alkali-modified corn straw biochar. RSC Adv 2024; 14:1854-1865. [PMID: 38192323 PMCID: PMC10773387 DOI: 10.1039/d3ra05964b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
As an efficient and cost-effective adsorbent, biochar has been widely used in the adsorption and removal of dyes. In this study, a simple NaOH-modified biochar with the pyrolysis temperature of 300 °C (NaCBC300) was synthesized, characterized, and investigated for the adsorption performances and mechanisms of methylene blue (MB). NaCBC300 exhibited excellent MB adsorption performance with maximum removal efficiency and adsorption capacity of 99.98% and 290.71 mg g-1, which were three and four times higher than biochar without modification, respectively. This might be attributed to the increased content of -OH and the formation of irregular flakes after NaOH modification. The Freundlich isotherm suggested multilayer adsorption between NaCBC300 and MB. Spectroscopic characterizations demonstrated that multiple mechanisms including π-π interaction, H-bonding, and pore-filling were involved in the adsorption. According to density functional theory (DFT) calculations, electrostatic interaction between NaCBC300 and MB was verified. The highest possibility of the attraction between NaCBC300 and MB was between -COOH in NaCBC300 and R-N(CH3)2 in MB. This work improved our understanding of the mechanism for MB adsorption by modified biochar and provided practical and theoretical guidance for adsorbent preparation with high adsorption ability for dyes.
Collapse
Affiliation(s)
- Huali Yu
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Yulu Zhang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Lianfeng Wang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Ya Tuo
- Environmental Development Center of the Ministry of Ecology and Environment Beijing 100006 China
| | - Song Yan
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Junling Ma
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Xue Zhang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Yu Shen
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Haiyan Guo
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Lei Han
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| |
Collapse
|
9
|
Şen NE, Şenol ZM. Effective removal of Allura red food dye from water using cross-linked chitosan-diatomite composite beads. Int J Biol Macromol 2023; 253:126632. [PMID: 37657566 DOI: 10.1016/j.ijbiomac.2023.126632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Chitosan (Ch)-diatomite (D) composite beads (Ch-D) were synthesized using epichlorohydrin and tripolyphosphate crosslinkers and then moulded into uniform beads in tripolyphosphate solution. FT-IR and SEM-EDX analyses showed that Ch-D composite adsorbent was successfully synthesized by functionalization of chitosan to Ch-D by hydrogen bonding and electrostatic interactions and improved adsorption capacity for removal of Allura red AC (AR) food dye. The removal rate of AR food dye was found to be 98 % at 25 °C, natural AR dye pH value, 24 h, and at the initial AR dye concentration of 200 mg L-1. The maximum adsorption capacity was found to be 34.7 mg g-1. It was observed that π-π interactions, hydrogen bonds, and electrostatic interactions between the functional groups containing oxygen and amine on the surface of the Ch-D composite and the functional groups of the anionic AR dye, and AR dye adsorption via complexation took place. In light of all this information, the Ch-D composite adsorbent is a promising potential material for the effective treatment of colored pollutants from wastewater.
Collapse
Affiliation(s)
- Neşet Erek Şen
- Cumhuriyet University, Faculty of Science, Department of Chemistry, 58140 Sivas, Turkey
| | - Zeynep Mine Şenol
- Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Diet, 58140 Sivas, Turkey.
| |
Collapse
|
10
|
Amaku JF, Taziwa R. Preparation and characterization of Allium cepa extract coated biochar and adsorption performance for hexavalent chromium. Sci Rep 2023; 13:20786. [PMID: 38012367 PMCID: PMC10682498 DOI: 10.1038/s41598-023-48299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
The elimination of hazardous metal ions from contaminated water has been an important procedure to improve the quality of the water source. Hence, this study presents the fabrication of Allium cepa extract-coated biochar for the elimination of Cr (VI) from wastewater. The synthesized biochar (SBCH) and modified biochar (BMOJ) were characterized by making use of FTIR, BET, XRD, TGA and SEM. Optimum Cr (VI) removal was achieved at solution pH 2, 0.05 g adsorbent dosage and 180 min agitation period. The adsorptive removal of Cr (VI) onto SBCH and BMOJ followed the pseudo-second-order kinetic model with a satisfactory sum of square residuals (SSR) of 3.874 and 5.245 for SBCH and BMOJ, respectively. Meanwhile, Freundlich isotherm was found to best describe the uptake of Cr (VI) SBCH and BMOJ. Experimental data showed an adsorption capacity of 37.38 and 25.77 mg g-1 and a maximum efficiency of 85.42% and 51.63% for BMOJ and SBCH, respectively. BMOJ also showed good antioxidant characteristics. Thermodynamic data revealed that the uptake of Cr (VI) onto the SBCH and BMOJ was an exothermic and endothermic (ΔH: SBCH = - 16.22 kJ mol-1 and BMOJ = 13.74 kJ mol-1), entropy-driven (ΔS: SBCH = 40.96 J K-1 mol-1 and BMOJ = 93.26 J K-1 mol-1) and spontaneous process. Furthermore, BMOJ demonstrated excellent reusability and promising characteristics for industrial applications.
Collapse
Affiliation(s)
- James Friday Amaku
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London, 5200, South Africa.
| | - Raymond Taziwa
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London, 5200, South Africa
| |
Collapse
|
11
|
Li Z, Jia J, Zhao W, Jiang L, Tian W. Seawater as supplemental moisture: The effect of Co-hydrothermal carbonization products obtained from chicken manure and cornstalk. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118819. [PMID: 37597367 DOI: 10.1016/j.jenvman.2023.118819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/22/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
The use of seawater as a substitute for pure water as supplemental moisture raises questions about its effect on the physicochemical properties of hydrochar. Therefore, this study aimed to investigate the feasibility of using seawater as supplemental moisture by comparing the physicochemical properties of products obtained through Co-hydrothermal carbonization of chicken manure and cornstalk under seawater and deionized water conditions. By varying the HTC temperature and blending ratios of CM and CS to investigate comprehensively the effect of seawater. Results indicated that the hydrochar yield experienced a variation from 54.54% to 57.40%, while the IC value changed from 7.69% to 8.46% as the ratio of CM:CS shifted from 3:1 to 1:3 under seawater conditions. The higher heating value of the hydrochars obtained under seawater conditions was lower than those obtained under deionized water conditions. This suggests that seawater conditions promote the hydrolysis reaction of organic solid waste. Furthermore, it was observed that when no lignin hydrolysis reaction occurred, seawater conditions had no discernible effect on the fuel quality of the hydrochar. However, at an HTC temperature of 250 °C, the fuel quality of the hydrochar obtained under seawater conditions was notably inferior to that of the hydrochar obtained under deionized water. Thus, an HTC temperature lower than 250 °C is necessary for the hydrothermal carbonization of organic solid waste under seawater conditions. Moreover, the relative content of surface -C-(C, H)/CC of the hydrochar obtained under seawater conditions was lower than that obtained under deionized water conditions, indicating that the hydrochar had a low degree of aromatization. Additionally, there was a significant increase in the immobilized Mg atoms in the hydrochar under seawater conditions, which affected the hydrochar yield and higher heating value of the hydrochar. This research presents a theoretical foundation for preparing solid fuels and materials using hydrothermal carbonization of saltwater as supplemental moisture.
Collapse
Affiliation(s)
- Zhirong Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Jiandong Jia
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China.
| | - Wenjie Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Leilei Jiang
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
| | - Wenfei Tian
- College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
12
|
Rehman MU, Taj MB, Carabineiro SAC. Biogenic adsorbents for removal of drugs and dyes: A comprehensive review on properties, modification and applications. CHEMOSPHERE 2023; 338:139477. [PMID: 37442388 DOI: 10.1016/j.chemosphere.2023.139477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
This comprehensive review explores the potential and versatility of biogenic materials as sustainable and environmentally benign alternatives to conventional adsorbents for the removal of drugs and dyes. Biogenic adsorbents derived from plants, animals, microorganisms, algae and biopolymers have bioactive compounds that interact with functional groups of pollutants, resulting in their binding with the sorbent. These materials can be modified mechanically, thermally and chemically to enhance their adsorption properties. Biogenic hybrid composites, which integrate the characteristics of more than one material, have also been fabricated. Additionally, microorganisms and algae are analyzed for their ability to uptake pollutants. Various influential factors that contribute to the adsorption process are also discussed. The challenge, limitations and future prospects for research are reviewed and bridging gap between large scale application and laboratory scale. This comprehensive review, involves a combination of various biogenic adsorbents, going beyond the existing literature where typically only specific adsorbents are reported. The review also covers the isotherms, kinetics, and desorption studies of biogenic adsorbents, providing an improved framework for their effective use in removing pharmaceuticals and dyes from wastewater.
Collapse
Affiliation(s)
- Mobeen Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Babar Taj
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Sónia A C Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
13
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
14
|
Xing T, Wu Y, Wang Q, Sadrnia A, Behmaneshfar A, Dragoi EN. Adsorption of ibuprofen using waste coffee derived carbon architecture: Experimental, kinetic modeling, statistical and bio-inspired optimization. ENVIRONMENTAL RESEARCH 2023; 231:116223. [PMID: 37245577 DOI: 10.1016/j.envres.2023.116223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Pharmaceuticals in water are a growing environmental concern, as they can harm aquatic life and human health. To address this issue, an adsorbent made from coffee waste that effectively removes ibuprofen (a common pharmaceutical pollutant) from wastewater was developed. The experimental adsorption phase was planned using a Design of Experiments approach with Box-Behnken strategy. The relation between the ibuprofen removal efficiency and various independent variables, including adsorbent weight (0.01-0.1 g) and pH (3-9), was evaluated via a regression model with 3-level and 4-factors using the Response surface methodology (RSM) . The optimal ibuprofen removal was achieved after 15 min using 0.1 g adsorbent at 32.4 °C and pH = 6.9. Moreover, the process was optimized using two powerful bio-inspired metaheuristics (Bacterial Foraging Optimization and Virus Optimization Algorithm). The adsorption kinetics, equilibrium, and thermodynamics of ibuprofen onto waste coffee-derived activated carbon were modeled at the identified optimal conditions. The Langmuir and Freundlich adsorption isotherms were implemented to investigate adsorption equilibrium, and thermodynamic parameters were also calculated. According to the Langmuir isotherm model, the adsorbent's maximum adsorption capacity was 350.00 mg g-1 at 35 °C. The findings revealed that the ibuprofen adsorption was well-matched with the Freundlich isotherm model, indicating multilayer adsorption on heterogeneous sites. The computed positive enthalpy value showed the endothermic nature of ibuprofen adsorption at the adsorbate interface.
Collapse
Affiliation(s)
- Tao Xing
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Yingji Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Quanliang Wang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, China.
| | - Abdolhossein Sadrnia
- Department of Industrial Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ali Behmaneshfar
- Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld D. Mangeron No 73, 700050, Iasi, Romania.
| |
Collapse
|
15
|
Ingrassia EB, Lemos ES, Escudero LB. Treatment of textile wastewater using carbon-based nanomaterials as adsorbents: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91649-91675. [PMID: 37525081 DOI: 10.1007/s11356-023-28908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Waste derived from the textile industry can contain a wide variety of pollutants of organic and inorganic natures, such as dyes (e.g., acid, basic, reactive, mordant dyes) and toxic metals (e.g., lead, chromium, cadmium). The presence of pollutants at high concentrations in textile waste makes them relevant sources of pollution in the environment. To solve this problem, various technologies have been developed for the removal of pollutants from these matrices. Thus, adsorption emerges as an efficient alternative for textile waste remediation, providing advantages as simplicity of operation, economy, possibility of using different adsorbent materials, and developing on-line systems that allow the reuse of the adsorbent during several adsorption/desorption cycles. This review will initially propose an introduction to the adsorption world, its fundamentals, and aspects related to kinetics, equilibrium, and thermodynamics. The possible mechanisms through which a pollutant can be retained on an adsorbent will be explained. The analytical techniques that offer valuable information to characterize the solid phases as well as each adsorbate/adsorbent system will be also commented. The most common synthesis techniques to obtain carbon nano-adsorbents have been also presented. In addition, the latest advances about the use of these adsorbents for the removal of pollutants from textile waste will be presented and discussed. The contributions reported in this manuscript demonstrated the use of highly efficient carbon-based nano-adsorbents for the removal of both organic and inorganic pollutants, reaching removal percentages from 65 to 100%.
Collapse
Affiliation(s)
- Estefanía Belén Ingrassia
- Laboratory of Environmental Biotechnology (BioTA), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO - CONICET, Faculty of Natural and Exact Sciences, National University of Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina
| | - Eliana Soledad Lemos
- Laboratory of Environmental Biotechnology (BioTA), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO - CONICET, Faculty of Natural and Exact Sciences, National University of Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina
| | - Leticia Belén Escudero
- Laboratory of Environmental Biotechnology (BioTA), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO - CONICET, Faculty of Natural and Exact Sciences, National University of Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina.
| |
Collapse
|
16
|
Vakros J. Catalytic Processes for Water and Wastewater Treatment. Catalysts 2023. [DOI: 10.3390/catal13040677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Water and wastewater treatment still face significant challenges today [...]
Collapse
|
17
|
Wang H, Zang S, Teng H, Wang X, Xu J, Sheng L. Characteristic of KMnO 4-modified corn straw biochar and its application in constructed wetland to treat city tail water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49948-49962. [PMID: 36787063 DOI: 10.1007/s11356-023-25856-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Biochar prepared from straw as constructed wetland (CW) substrate reduces straw pollution and simultaneously promotes the wastewater treatment efficiency of CW. In order to further analyze the pollutant removal mechanism of KMnO4-modified biochar substrate, the KMnO4-modified biochar was characterized. The experiment on city tail water treatment by CW with biochar was analyzed. The research showed that the surface property improvement on KMnO4 (0.1 mol/L)-modified biochar was the most obvious. The biochar modified by 0.1 mol/L KMnO4 increased the SSA and the number of oxygen functional groups and alcohol hydroxyl. KMnO4-modified biochar improved the removal efficiency of NO3--N in CW. KMnO4-modified biochar substrate with plants improved the TP removal efficiency (about 45%). KMnO4 as modifier reduced the influence of biochar on electrical conductivity tracing experiment. This study will improve the utilization value of straw and the removal efficiency of CW.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Institute of Grassland Science, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.,Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Haowen Teng
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Xinyu Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Institute of Grassland Science, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Institute of Grassland Science, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Institute of Grassland Science, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| |
Collapse
|
18
|
Facile Synthesis of Metal-Impregnated Sugarcane-Derived Catalytic Biochar for Ozone Removal at Ambient Temperature. Catalysts 2023. [DOI: 10.3390/catal13020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
This study presents the first attempt at employing catalytic biochar to remove ground-level ozone at ambient temperature. With the increase in human activity, ozone has become a critical inorganic pollutant that needs to be addressed, using more sustainable methods. Fe- and Mn-impregnated catalytic biochars were prepared from a sugarcane feedstock via the wet impregnation method and pyrolysis at various temperatures, where the optimum value was determined to be 550 °C. The metal-impregnated biochar samples demonstrated enhanced surface areas and pore volumes compared with the pristine biochar (SCB550), resulting in improved ozone-adsorption capacity. SCB550-Fe exhibited an ozone-adsorption capacity of 52.1 mg/g at 20 ppm, which was approximately four times higher than that of SCB550. SCB550-Fe demonstrated superior ozone-removal performance compared to SCB550-Mn; 122 mg/g capacity as opposed to 116.2 mg/g at 80 ppm, respectively. Isothermal and kinetic modeling are also presented to suggest a plausible mechanism of ozone removal by catalytic biochar. This includes physical adsorption, complexation, electrostatic interaction, and electron transfer during the redox reaction between ozone and metals. Overall, this study should provide preliminary insights into ozone removal using biochar and promote further research regarding material optimization and kinetic studies.
Collapse
|
19
|
Diao Y, Shan R, Li M, Gu J, Yuan H, Chen Y. Efficient Adsorption of a Sulfonamide Antibiotic in Aqueous Solutions with N-doped Magnetic Biochar: Performance, Mechanism, and Reusability. ACS OMEGA 2023; 8:879-892. [PMID: 36643494 PMCID: PMC9835783 DOI: 10.1021/acsomega.2c06234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Conventional biochar has limited effectiveness in the adsorption of sulfonamide antibiotics, while modified biochar exhibits greater adsorption potential. Residues of sulfamethoxazole (SMX) in the aquatic environment can threaten the safety of microbial populations as well as humans. In this study, iron-nitrogen co-doped modified biochar (Fe-N-BC) was prepared from palm fibers and doped with Fe and urea via synthesis at 500 °C. Fe-N-BC has a richer surface functional group based on elemental content, X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The Brunauer-Emmett-Teller (BET) specific surface area test exhibited Fe-N-BC, which possessed a greater surface area (318.203 m2/g) and a better developed pore structure (0.149 cm3/g). The results of the hysteresis loop and the Raman spectrum show that Fe-N-BC has a higher degree of magnetization and graphitization. Fe-N-BC showed a remarkable adsorption capacity for SMX (42.9 mg/g), which could maintain 93.4% adsorption effect after four cycles, and 82.8% adsorption capacity in simulated piggery wastewater. The adsorption mechanism involves pore filling, surface complexation, electrostatic interactions, hydrogen bonding, and π-π EDA interactions. The results of this study show that Fe-N-BC prepared from palm fibers can be a stable, excellent adsorbent for SMX removal from wastewater and has promise in terms of practical applications.
Collapse
Affiliation(s)
- Yuan Diao
- School
of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong250000, China
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Rui Shan
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Mei Li
- School
of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong250000, China
| | - Jing Gu
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Haoran Yuan
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Yong Chen
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| |
Collapse
|
20
|
Zhang W, Huang W, Tan J, Huang D, Ma J, Wu B. Modeling, optimization and understanding of adsorption process for pollutant removal via machine learning: Recent progress and future perspectives. CHEMOSPHERE 2023; 311:137044. [PMID: 36330979 DOI: 10.1016/j.chemosphere.2022.137044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
It is crucial to reduce the concentration of pollutants in water environment to below safe levels. Some cost-effective pollutant removal technologies have been developed, among which adsorption technology is considered as a promising solution. However, the batch experiments and adsorption isotherms widely employed at present are inefficient and time-consuming to some extent, which limits the development of adsorption technology. As a new research paradigm, machine learning (ML) is expected to innovate traditional adsorption models. This reviews summarized the general workflow of ML and commonly employed ML algorithms for pollutant adsorption. Then, the latest progress of ML for pollutant adsorption was reviewed from the perspective of all-round regulation of adsorption process, including adsorption efficiency, operating conditions and adsorption mechanism. General guidelines of ML for pollutant adsorption were presented. Finally, the existing problems and future perspectives of ML for pollutant adsorption were put forward. We highly expect that this review will promote the application of ML in pollutant adsorption and improve the interpretability of ML.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Wenguang Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, Guangzhou, 510655, People's Republic of China.
| | - Jie Tan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, Guangzhou, 510655, People's Republic of China
| | - Dawei Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, Guangzhou, 510655, People's Republic of China
| | - Jun Ma
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, Guangzhou, 510655, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215002, People's Republic of China.
| |
Collapse
|
21
|
Haider FU, Wang X, Zulfiqar U, Farooq M, Hussain S, Mehmood T, Naveed M, Li Y, Liqun C, Saeed Q, Ahmad I, Mustafa A. Biochar application for remediation of organic toxic pollutants in contaminated soils; An update. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114322. [PMID: 36455351 DOI: 10.1016/j.ecoenv.2022.114322] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Bioremediation of organic contaminants has become a major environmental concern in the last few years, due to its bio-resistance and potential to accumulate in the environment. The use of diverse technologies, involving chemical and physical principles, and passive uptake utilizing sorption using ecofriendly substrates have drawn a lot of interest. Biochar has got attention mainly due to its simplicity of manufacturing, treatment, and disposal, as it is a less expensive and more efficient material, and has a lot of potential for the remediation of organic contaminants. This review highlighted the adverse impact of persistent organic pollutants on the environment and soil biota. The utilization of biochar to remediate soil and contaminated compounds i.e., pesticides, polycyclic aromatic hydrocarbons, antibiotics, and organic dyes has also been discussed. The soil application of biochar has a significant impact on the biodegradation, leaching, and sorption/desorption of organic contaminants. The sorption/desorption of organic contaminants is influenced by chemical composition and structure, porosity, surface area, pH, and elemental ratios, and surface functional groups of biochar. All the above biochar characteristics depend on the type of feedstock and pyrolysis conditions. However, the concentration and nature of organic pollutants significantly alters the sorption capability of biochar. Therefore, the physicochemical properties of biochar and soils/wastewater, and the nature of organic contaminants, should be evaluated before biochar application to soil and wastewater. Future initiatives, however, are needed to develop biochars with better adsorption capacity, and long-term sustainability for use in the xenobiotic/organic contaminant remediation strategy.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, China.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Saddam Hussain
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tariq Mehmood
- College of Environment, Hohai University, Nanjing, China
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China.
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Ishtiaq Ahmad
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
22
|
The Progress of Metal-Organic Framework for Boosting CO2 Conversion. Catalysts 2022. [DOI: 10.3390/catal12121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With the rapid development of modern society, environmental problems, including excessive amounts of CO2 released in the atmosphere, are becoming more and more serious. It is necessary to develop new materials and technologies to reduce pollution. Among them, metal–organic frameworks (MOFs) have shown potential for application in the area of catalysis due to their ultra-high specific surface area, structural versatility, and designability as well as ease of modification and post-synthesis. Herein, we summarize recent research advances by use of MOFs for boosting CO2 conversion. Furthermore, challenges and possible research directions related to further exploration are also discussed.
Collapse
|