1
|
Kim DH, Cha J, Woo Park G, Soo Kang I, Lee E, Hoon Jung Y, Min K. Biotechnological valorization of levulinic acid as a non-sugar feedstock: New paradigm in biorefineries. BIORESOURCE TECHNOLOGY 2024; 408:131178. [PMID: 39084536 DOI: 10.1016/j.biortech.2024.131178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Due to the severe climate crisis, biorefineries have been highlighted as replacements for fossil fuel-derived refineries. In traditional sugar-based biorefineries, levulinic acid (LA) is a byproduct. Nonetheless, in 2002, the US Department of Energy noted that LA is a significant building block obtained from biomass, and the biorefinery paradigm has shifted from being sugar-based to non-sugar-based. Accordingly, LA is of interest in this review since it can be converted into useful precursors and ultimately can broaden the product spectrum toward more valuable products (e.g., fuels, plastics, and pharmaceuticals), thereby enabling the construction of economically viable biorefineries. This study comprehensively reviews LA production techniques utilizing various bioresources. Recent progress in enzymatic and microbial routes for LA valorization and the LA-derived product spectrum and its versatility are discussed. Finally, challenges and future outlooks for LA-based non-sugar biorefineries are suggested.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Integrative Biology, Kyuongpook National University, Daegu 41556, Republic of Korea; School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jaehyun Cha
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Im Soo Kang
- Department of Integrative Biology, Kyuongpook National University, Daegu 41556, Republic of Korea
| | - Eunjin Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungseon Min
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|
2
|
Dutta S. Catalytic Transformation of Carbohydrates into Renewable Organic Chemicals by Revering the Principles of Green Chemistry. ACS OMEGA 2024; 9:26805-26825. [PMID: 38947803 PMCID: PMC11209912 DOI: 10.1021/acsomega.4c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
Adherence to the principles of green chemistry in a biorefinery setting ensures energy efficiency, reduces the consumption of materials, simplifies reactor design, and rationalizes the process parameters for synthesizing affordable organic chemicals of desired functional efficacy and ingrained sustainability. The green chemistry metrics facilitate assessing the relative merits and demerits of alternative synthetic pathways for the targeted product(s). This work elaborates on how green chemistry has emerged as a transformative framework and inspired innovations toward the catalytic conversion of biomass-derived carbohydrates into fuels, chemicals, and synthetic polymers. Specific discussions have been incorporated on the judicious selection of feedstock, reaction parameters, reagents (stoichiometric or catalytic), and other synthetic auxiliaries to obtain the targeted product(s) in desired selectivity and yield. The prospects of a carbohydrate-centric biorefinery have been emphasized and research avenues have been proposed to eliminate the remaining roadblocks. The analyses presented in this review will steer to developing superior synthetic strategies and processes for envisaging a sustainable bioeconomy centered on biomass-derived carbohydrates.
Collapse
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore-575025, Karnataka, India
| |
Collapse
|
3
|
Sahrawat AS, Polidori N, Kroutil W, Gruber K. Deciphering the Unconventional Reduction of C=N Bonds by Old Yellow Enzymes Using QM/MM. ACS Catal 2024; 14:1257-1266. [PMID: 38327643 PMCID: PMC10845114 DOI: 10.1021/acscatal.3c04362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/09/2024]
Abstract
The reduction of C=X (X = N, O) bonds is a cornerstone in both synthetic organic chemistry and biocatalysis. Conventional reduction mechanisms usually involve a hydride ion targeting the less electronegative carbon atom. In a departure from this paradigm, our investigation into Old Yellow Enzymes (OYEs) reveals a mechanism involving transfer of hydride to the formally more electronegative nitrogen atom within a C=N bond. Beyond their known ability to reduce electronically activated C=C double bonds, e.g., in α, β-unsaturated ketones, these enzymes have recently been shown to reduce α-oximo-β-ketoesters to the corresponding amines. It has been proposed that this transformation involves two successive reduction steps and proceeds via imine intermediates formed by the reductive dehydration of the oxime moieties. We employ advanced quantum mechanics/molecular mechanics (QM/MM) simulations, enriched by a two-tiered approach incorporating QM/MM (UB3LYP-6-31G*/OPLS2005) geometry optimization, QM/MM (B3LYP-6-31G*/amberff19sb) steered molecular dynamics simulations, and detailed natural-bond-orbital analyses to decipher the unconventional hydride transfer to nitrogen in both reduction steps and to delineate the role of active site residues as well as of substituents present in the substrates. Our computational results confirm the proposed mechanism and agree well with experimental mutagenesis and enzyme kinetics data. According to our model, the catalysis of OYE involves hydride transfer from the flavin cofactor to the nitrogen atom in oximoketoesters as well as iminoketoesters followed by protonation at the adjacent oxygen or carbon atoms by conserved tyrosine residues and active site water molecules. Two histidine residues play a key role in the polarization and activation of the C=N bond, and conformational changes of the substrate observed along the reaction coordinate underline the crucial importance of dynamic electron delocalization for efficient catalysis.
Collapse
Affiliation(s)
| | - Nakia Polidori
- Institute
of Molecular Biosciences, University of
Graz, Graz 8010, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, Graz 8010, Austria
- Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Karl Gruber
- Institute
of Molecular Biosciences, University of
Graz, Graz 8010, Austria
- Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| |
Collapse
|
4
|
Gundekari S, Karmee SK. Catalytic Conversion of Levulinic Acid into 2-Methyltetrahydrofuran: A Review. Molecules 2024; 29:242. [PMID: 38202825 PMCID: PMC10780552 DOI: 10.3390/molecules29010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Biomass-derived furanics play a pivotal role in chemical industries, with 2-methyltetrahydrofuran (2-MTHF), a hydrogenated product of levulinic acid (LA), being particularly significant. 2-MTHF finds valuable applications in the fuel, polymer, and chemical sectors, serving as a key component in P-series biofuel and acknowledged as a renewable solvent for various chemical processes. Numerous research groups have explored catalytic systems to efficiently and selectively convert LA to 2-MTHF, using diverse metal-supported catalysts in different solvents under batch or continuous process conditions. This comprehensive review delves into the impact of metal-supported catalysts, encompassing co-metals and co-catalysts, on the synthesis of 2-MTHF from LA. The article also elucidates the influence of different reaction parameters, such as temperature, type and quantity of hydrogen source, and time. Furthermore, the review provides insights into reaction mechanisms for all documented catalytic systems.
Collapse
Affiliation(s)
- Sreedhar Gundekari
- Department of Engineering Chemistry, Koneru Lakshmaiah Education Foundation, KL (Deemed to be) University, R.V.S Nagar, Moinabad-Chilkur Rd, Aziznagar 500075, Telangana, India
| | - Sanjib Kumar Karmee
- The Odisha Renewable Energy Research Institute (ORERI), Subarnapur 767018, Odisha, India
| |
Collapse
|
5
|
Fulignati S, Di Fidio N, Antonetti C, Raspolli Galletti AM, Licursi D. Challenges and Opportunities in the Catalytic Synthesis of Diphenolic Acid and Evaluation of Its Application Potential. Molecules 2023; 29:126. [PMID: 38202709 PMCID: PMC10779658 DOI: 10.3390/molecules29010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Diphenolic acid, or 4,4-bis(4-hydroxyphenyl)pentanoic acid, represents one of the potentially most interesting bio-products obtainable from the levulinic acid supply-chain. It represents a valuable candidate for the replacement of bisphenol A, which is strongly questioned for its toxicological issues. Diphenolic acid synthesis involves the condensation reaction between phenol and levulinic acid and requires the presence of a Brønsted acid as a catalyst. In this review, the state of the art related to the catalytic issues of its synthesis have been critically discussed, with particular attention to the heterogeneous systems, the reference benchmark being represented by the homogeneous acids. The main opportunities in the field of heterogeneous catalysis are deeply discussed, as well as the bottlenecks to be overcome to facilitate diphenolic acid production on an industrial scale. The regioselectivity of the reaction is a critical point because only the p,p'-isomer is of industrial interest; thus, several strategies aiming at the improvement of the selectivity towards this isomer are considered. The future potential of adopting alkyl levulinates, instead of levulinic acid, as starting materials for the synthesis of new classes of biopolymers, such as new epoxy and phenolic resins and polycarbonates, is also briefly considered.
Collapse
Affiliation(s)
- Sara Fulignati
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (S.F.); (N.D.F.); (C.A.); (D.L.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Nicola Di Fidio
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (S.F.); (N.D.F.); (C.A.); (D.L.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Claudia Antonetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (S.F.); (N.D.F.); (C.A.); (D.L.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Anna Maria Raspolli Galletti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (S.F.); (N.D.F.); (C.A.); (D.L.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Domenico Licursi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (S.F.); (N.D.F.); (C.A.); (D.L.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
6
|
Pfersich J, Arauzo PJ, Modugno P, Titirici M, Kruse A. Evaluation of the Char Formation During the Hydrothermal Treatment of Wooden Balls. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300169. [PMID: 38094867 PMCID: PMC10714026 DOI: 10.1002/gch2.202300169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/12/2023] [Indexed: 10/16/2024]
Abstract
With wooden balls, a visualization of the hydrothermal carbonization to show the progress of the conversion to char is presented. In the present study, the balls represent the particles of biomass to investigate the differences in conversion outside and inside of biomass particles, during hydrothermal carbonization. A special focus is on hydrochar and pyrochar formation. The wooden balls are treated in subcritical water at 220 °C for holding times between 0 and 960 min. Even after 960 min, hydrolysis of the original biomass is incomplete as cellulose and hemicellulose are linked by lignin, inhibiting the reaction with water. Moreover, two different pathways of char production can be observed. Inside of the wooden ball pyrochar is formed as any water got that deep in, on the surface hydrochar is fixed, originated from the surrounding liquid. On the ground of the HTC reactor, a thin, brittle precipitate of likely hydrochar or humins can be found either from the precipitation of loosely attached compounds on the surface of the biomass or direct precipitation from the liquid.
Collapse
Affiliation(s)
- Jens Pfersich
- Conversion Technologies of Biobased ResourcesUniversity of HohenheimGarbenstrasse 970599StuttgartGermany
| | - Pablo J. Arauzo
- Conversion Technologies of Biobased ResourcesUniversity of HohenheimGarbenstrasse 970599StuttgartGermany
| | - Pierpaolo Modugno
- School of Engineering and Materials ScienceQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | | | - Andrea Kruse
- Conversion Technologies of Biobased ResourcesUniversity of HohenheimGarbenstrasse 970599StuttgartGermany
| |
Collapse
|
7
|
Lokhande P, Dhepe PL. Selective and Robust Ru Catalyst for the Aqueous Phase Aerobic Oxidation of Furfural to 2-Furoic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47004-47015. [PMID: 37751496 DOI: 10.1021/acsami.3c09965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Synthesis of 2-furoic acid (FURA) via oxidation of furfural (FAL) is vital in evolving the biorefinery concept as FURA has numerous important applications in the pharmaceuticals and optic areas. Though few works on this reaction are done, those are marred with shortcomings such as the nonrecyclability of catalyst, dilute solutions, lower yields, or use of H2O2 as an oxidizing agent. Herein, we report catalytic aqueous phase oxidation of FAL to FURA using molecular oxygen as an oxidizing agent. For the synthesis of FURA, various catalysts with a combination of metal (Pt, Pd, Ru) and supports (carbon, Al2O3) were prepared and characterized by multiple techniques (X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS)). Oxidation of FAL carried out over 5 wt % Ru/C catalyst in the presence of Na2CO3 yielded 83% of FURA at 120 °C and 15 bar oxygen pressure. The catalyst could show potential for reusability as similar activity was achieved after subjecting the spent catalyst to mild reduction treatment (150 °C). Studies on the effects of temperature, pressure, and time could help accomplish enhanced yields of FURA. Additionally, learning about the effect of base (weak/strong/solid) revealed that due to the weak basicity of Na2CO3, higher yields could be achieved by maintaining approximately a pH of 11, which is optimal for suppressing side reactions. Under the given conditions, FURA is stable (>90%) and also adsorption studies divulge that it is immediately removed from the catalyst surface, and hence higher yields could be achieved in our catalytic system. Using the initial rates methodology, an activation energy of 21.91 kJ mol-1 was derived and also a high turn over frequency (TOF) (85.9 h-1) was observed under optimized conditions.
Collapse
Affiliation(s)
- Priya Lokhande
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Paresh L Dhepe
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Kopperi H, Venkata Mohan S. Catalytic hydrothermal deoxygenation of sugarcane bagasse for energy dense bio-oil and aqueous fraction acidogenesis for biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 379:128954. [PMID: 36963697 DOI: 10.1016/j.biortech.2023.128954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
The study focuses on the effective conversion of sugarcane bagasse (SCB) by catalytic deoxygenation using various alkali and metal-based catalysts under N2 pressure employing water as solvent. The specific influence of catalyst over bio-crude yields (bio-oil and aqueous fraction) including energy recovery ratio was explored. The optimum catalytic condition (Ru/C) resulted in ∼ 70% of bio-crude and 28% of bio-oil with an improved HHV (31.6 MJ/kg) having 11.6% of aliphatic/aromatic hydrocarbons (C10-C20) which can be further upgraded to drop-in fuels. The biocrude composed of 44% of aqueous soluble organic fraction (HTL-AF). Further, the carbon-rich HTL-AF was valorized through acidogenic fermentation to yield biohydrogen (Bio-H2). The maximum bio-H2 production of 201 mL/g of TOC conversion (K2CO3 catalyst) was observed with 7.7 g/L of VFA. The SCB was valorized in a biorefinery design with the production of fuels and chemical intermediates in a circular chemistry approach.
Collapse
Affiliation(s)
- Harishankar Kopperi
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Lenzi L, Degli Esposti M, Braccini S, Siracusa C, Quartinello F, Guebitz GM, Puppi D, Morselli D, Fabbri P. Further Step in the Transition from Conventional Plasticizers to Versatile Bioplasticizers Obtained by the Valorization of Levulinic Acid and Glycerol. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:9455-9469. [PMID: 37389191 PMCID: PMC10302884 DOI: 10.1021/acssuschemeng.3c01536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/24/2023] [Indexed: 07/01/2023]
Abstract
In the last two decades, the use of phthalates has been restricted worldwide due to their well-known toxicity. Nonetheless, phthalates are still widely used for their versatility, high plasticization effect, low cost, and lack of valuable alternatives. This study presents the fully bio-based and versatile glycerol trilevulinate plasticizer (GT) that was obtained by the valorization of glycerol and levulinic acid. The mild-conditions and solvent-free esterification used to synthesize GT was optimized by investigating the product by Fourier transform infrared and NMR spectroscopy. An increasing content of GT, from 10 to 40 parts by weight per hundred parts of resin (phr), was tested with poly(vinyl chloride), poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(lactic acid), and poly(caprolactone), which typically present complicated processability and/or mechanical properties. GT produced a significant plasticization effect on both amorphous and semicrystalline polymers, reducing their glass-transition temperature and stiffness, as observed by differential scanning calorimetry measurements and tensile tests. Remarkably, GT also decreased both the melting temperature and crystallinity degree of semicrystalline polymers. Furthermore, GT underwent enzyme-mediated hydrolysis to its initial constituents, envisioning a promising prospective for environmental safety and upcycling. Furthermore, 50% inhibitory concentration (IC50) tests, using mouse embryo fibroblasts, proved that GT is an unharmful alternative plasticizer, which makes it potentially applicable in the biomedical field.
Collapse
Affiliation(s)
- Luca Lenzi
- Department
of Civil, Chemical, Environmental, and Materials Engineering (DICAM), Università di Bologna, Via U. Terracini 28, 40131 Bologna, Italy
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Micaela Degli Esposti
- Department
of Civil, Chemical, Environmental, and Materials Engineering (DICAM), Università di Bologna, Via U. Terracini 28, 40131 Bologna, Italy
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Simona Braccini
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
- BIOLab
Research Group, Department of Chemistry and Industrial Chemistry, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Chiara Siracusa
- Institute
of Environmental Biotechnology University of Natural Resources and
Life Sciences Vienna, Department of Agrobiotechnology, IFA-Tulln, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Felice Quartinello
- Institute
of Environmental Biotechnology University of Natural Resources and
Life Sciences Vienna, Department of Agrobiotechnology, IFA-Tulln, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Georg M. Guebitz
- Institute
of Environmental Biotechnology University of Natural Resources and
Life Sciences Vienna, Department of Agrobiotechnology, IFA-Tulln, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Dario Puppi
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
- BIOLab
Research Group, Department of Chemistry and Industrial Chemistry, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Davide Morselli
- Department
of Civil, Chemical, Environmental, and Materials Engineering (DICAM), Università di Bologna, Via U. Terracini 28, 40131 Bologna, Italy
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Paola Fabbri
- Department
of Civil, Chemical, Environmental, and Materials Engineering (DICAM), Università di Bologna, Via U. Terracini 28, 40131 Bologna, Italy
- National
Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
10
|
Martin GD, Lara B, Bounoukta CE, Domínguez MI, Ammari F, Ivanova S, Centeno MÁ. Glucose Dehydration Reaction Over Metal Halides Supported on Activated Charcoal Catalysts. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Antunes MM, Silva AF, Fernandes A, Ribeiro F, Neves P, Pillinger M, Valente AA. Micro/mesoporous LTL derived materials for catalytic transfer hydrogenation and acid reactions of bio-based levulinic acid and furanics. Front Chem 2022; 10:1006981. [PMID: 36247668 PMCID: PMC9558274 DOI: 10.3389/fchem.2022.1006981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
The biomass-derived platform chemicals furfural and 5-(hydroxymethyl)furfural (HMF) may be converted to α-angelica lactone (AnL) and levulinic acid (LA). Presently, LA (synthesized from carbohydrates) has several multinational market players. Attractive biobased oxygenated fuel additives, solvents, etc., may be produced from AnL and LA via acid and reduction chemistry, namely alkyl levulinates and γ-valerolactone (GVL). In this work, hierarchical hafnium-containing multifunctional Linde type L (LTL) related zeotypes were prepared via top-down strategies, for the chemical valorization of LA, AnL and HMF via integrated catalytic transfer hydrogenation (CTH) and acid reactions in alcohol medium. This is the first report of CTH applications (in general) of LTL related materials. The influence of the post-synthesis treatments/conditions (desilication, dealumination, solid-state impregnation of Hf or Zr) on the material properties and catalytic performances was studied. AnL and LA were converted to 2-butyl levulinate (2BL) and GVL in high total yields of up to ca. 100%, at 200°C, and GVL/2BL molar ratios up to 10. HMF conversion gave mainly the furanic ethers 5-(sec-butoxymethyl)furfural and 2,5-bis(sec-butoxymethyl)furan (up to 63% total yield, in 2-butanol at 200°C/24 h). Mechanistic, reaction kinetics and material characterization studies indicated that the catalytic results depend on a complex interplay of different factors (material properties, type of substrate). The recovered-reused solids performed steadily.
Collapse
Affiliation(s)
- Margarida M. Antunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- *Correspondence: Margarida M. Antunes, ; Anabela A. Valente,
| | - Andreia F. Silva
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Auguste Fernandes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa Ribeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia Neves
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Martyn Pillinger
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Anabela A. Valente
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- *Correspondence: Margarida M. Antunes, ; Anabela A. Valente,
| |
Collapse
|
12
|
Kopperi H, Mohan SV. Comparative appraisal of nutrient recovery, bio-crude, and bio-hydrogen production using Coelestrella sp. in a closed-loop biorefinery. Front Bioeng Biotechnol 2022; 10:964070. [PMID: 36213054 PMCID: PMC9537770 DOI: 10.3389/fbioe.2022.964070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
A closed loop algal-biorefinery was designed based on a three-stage integration of dairy wastewater (DWW) treatment, hydrothermal liquefaction (HTL) of defatted algal biomass, and acidogenic process in a semi-synthetic framework. Initially, Coelestrella sp SVMIICT5 was grown in a 5 L photo-bioreactor and scaled up to a 50 L flat-panel photo-bioreactor using DWW. The microalgal growth showed higher photosynthetic efficiency, resulting in a biomass growth of 3.2 g/L of DCW with 87% treatment efficiency. The biomolecular composition showed 26% lipids with a good fatty acid profile (C12-C21) as well as carbohydrate (24.9%) and protein (31.8%) content. In the second stage, the de-oiled algal biomass was valorized via HTL at various temperatures (150°C, 200°, and 250°C) and reaction atmospheres (N2 and H2). Among these, the 250°C (H2) condition showed a 52% bio-crude fraction and an HHV of ∼29.47 MJ/kg (bio-oil) with a saturated hydrocarbon content of 64.3% that could be further upgraded to jet fuels. The energy recovery (73.01%) and elemental enrichment (carbon; 65.67%) were relatively greater in H2 compared to N2 conditions. Finally, dark fermentation of the complex-structured HTL-AF stream resulted in a total bio-H2 production of 231 ml/g of TOC with a 63% treatment efficiency. Life cycle analysis (LCA) was also performed for the mid-point and damage categories to assess the sustainability of the integrated process. Thus, the results of this study demonstrated comprehensive wastewater treatment and valorization of de-oiled algal biomass for chemical/fuel intermediates in the biorefinery context by low-carbon processes.
Collapse
Affiliation(s)
- Harishankar Kopperi
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- *Correspondence: S. Venkata Mohan,
| |
Collapse
|
13
|
Dutta S. Greening the Synthesis of Biorenewable Fuels and Chemicals by Stoichiometric Reagentless Organic Transformations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangaluru-575025, Karnataka, India
| |
Collapse
|
14
|
Investigation of solvent-free esterification of levulinic acid in the presence of tin(IV) complexes. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Ashby RD, Qureshi N, Strahan GD, Johnston DB, Msanne J, Lin X. Corn stover hydrolysate and levulinic acid: Mixed substrates for short-chain polyhydroxyalkanoate production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Dutta S, Zhang Q, Cao Y, Wu C, Moustakas K, Zhang S, Wong KH, Tsang DCW. Catalytic valorisation of various paper wastes into levulinic acid, hydroxymethylfurfural, and furfural: Influence of feedstock properties and ferric chloride. BIORESOURCE TECHNOLOGY 2022; 357:127376. [PMID: 35623603 DOI: 10.1016/j.biortech.2022.127376] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic paper waste constitutes a major waste stream globally, which should be valorised for chemical production. However, paper properties (e.g., feedstock composition, cellulosic crystallinity, and thermal stability/degradability) vary with raw materials and pulping processes. This study investigated levulinic acid (LA), hydroxymethylfurfural (HMF), and furfural production by H2SO4 and FeCl3 catalysed conversion of nine types of paper wastes in a green solvent system (1:1 γ-valerolactone/water). At 160-180 °C for 1-20 min, ∼23-27 wt% LA yield was achieved from sanitary papers, tracing/parchment paper, and paper food box mainly containing crystalline cellulose, while a lower LA yield (∼10-20 wt%) was obtained from other paper wastes with high contents of ash and lignin. A higher selectivity towards HMF (∼12 mol%) was achieved in the presence of FeCl3. A furfural yield of ∼ 4-7.5 wt% was also obtained from the hemicellulose content. This study elucidates crucial factors and desirable characteristics of paper waste for catalytic valorisation.
Collapse
Affiliation(s)
- Shanta Dutta
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queens University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zographou Campus, 15780 Athens, Greece
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Ka-Hing Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
17
|
Experimental and Kinetic Modeling of Galactose Valorization to Levulinic Acid. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.2.14032.451-465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Levulinic acid, a versatile chemical building block, was derived from C6-sugar galactose using sulfuric acid as the catalyst. Galactose is monosaccharide of polysaccharides constituent that is mostly contained in third generation biomass, macro-microalgae. It currently receives high attention to be a source of renewable feedstock. The effect of temperature, catalyst concentration and initial substrate loadings were studied for 60 min, in the temperature range of 150–190 °C, acid concentration of 0.25–0.75 M and initial substrate loading of 0.05–0.25 M. The highest levulinic acid yield of 40.08 wt% was achieved under the following conditions: 0.05 M galactose, 0.75 M acid concentration, 170 °C temperature, and 40 min reaction time. The kinetic model was developed by first order pseudo-irreversible reaction. The results showed that the proposed model could capture the experimental data well. These results suggested that galactose, derived from macro- and micro-algae, can potentially be converted and applied for platform chemicals. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
18
|
Gundekari S, Mani M, Mitra J, Srinivasan K. Selective preparation of renewable ketals from biomass-based carbonyl compounds with polyols using β-zeolite catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Computer-designed repurposing of chemical wastes into drugs. Nature 2022; 604:668-676. [PMID: 35478240 DOI: 10.1038/s41586-022-04503-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/03/2022] [Indexed: 01/30/2023]
Abstract
As the chemical industry continues to produce considerable quantities of waste chemicals1,2, it is essential to devise 'circular chemistry'3-8 schemes to productively back-convert at least a portion of these unwanted materials into useful products. Despite substantial progress in the degradation of some classes of harmful chemicals9, work on 'closing the circle'-transforming waste substrates into valuable products-remains fragmented and focused on well known areas10-15. Comprehensive analyses of which valuable products are synthesizable from diverse chemical wastes are difficult because even small sets of waste substrates can, within few steps, generate millions of putative products, each synthesizable by multiple routes forming densely connected networks. Tracing all such syntheses and selecting those that also meet criteria of process and 'green' chemistries is, arguably, beyond the cognition of human chemists. Here we show how computers equipped with broad synthetic knowledge can help address this challenge. Using the forward-synthesis Allchemy platform16, we generate giant synthetic networks emanating from approximately 200 waste chemicals recycled on commercial scales, retrieve from these networks tens of thousands of routes leading to approximately 300 important drugs and agrochemicals, and algorithmically rank these syntheses according to the accepted metrics of sustainable chemistry17-19. Several of these routes we validate by experiment, including an industrially realistic demonstration on a 'pharmacy on demand' flow-chemistry platform20. Wide adoption of computerized waste-to-valuable algorithms can accelerate productive reuse of chemicals that would otherwise incur storage or disposal costs, or even pose environmental hazards.
Collapse
|
20
|
Abstract
The presence of inorganic salts either as part of the substrate or added to the reaction medium are known to significantly affect the reaction pathways during hydrothermal carbonisation (HTC) of biomass. This work aims to understand the influence of salts on hydrothermal carbonisation by processing cellulose in the presence of one or more inorganic salts with different valency. Batch experiments and Differential Scanning Calorimetry were used to investigate the change in reaction pathways during hydrothermal conversion. The effect of salts on the rate of HTC of cellulose can be correlated with the Lewis acidity of the cation and the basicity of the anion. The effect of the anion was more pH-dependent than the cation because it can protonate during the HTC process as organic acids are produced. The introduction of salts with Lewis acidity increases the concentration of low molecular weight compounds in the process water. The addition of a second salt can influence the catalytic effect of the first salt resulting in greater levulinic acid yields at the expense of hydrochar formation. Salts also play an important role in cellulose dissolution and can be used to modify the yield and composition of the hydrochars.
Collapse
|
21
|
Ringgani R, Azis MM, Rochmadi, Budiman A. Kinetic Study of Levulinic Acid from Spirulina platensis Residue. Appl Biochem Biotechnol 2022; 194:2684-2699. [PMID: 35243560 DOI: 10.1007/s12010-022-03806-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 12/28/2022]
Abstract
Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid-liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous-irreversible-1st order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction.
Collapse
Affiliation(s)
- Retno Ringgani
- Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Kampus UGM, Yogyakarta, Indonesia.,Chemical Engineering Department, Faculty of Industrial Engineering, UPN Veteran Yogyakarta, Jalan SWK 104 (Lingkar Utara), Condongcatur, Yogyakarta, Indonesia
| | - Muhammad Mufti Azis
- Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Kampus UGM, Yogyakarta, Indonesia
| | - Rochmadi
- Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Kampus UGM, Yogyakarta, Indonesia
| | - Arief Budiman
- Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Kampus UGM, Yogyakarta, Indonesia. .,Center of Excellence for Microalgae Biorefinery, Universitas Gadjah Mada, Sekip K1A, Kampus UGM, Yogyakarta, Indonesia.
| |
Collapse
|
22
|
Catalytic Production of Levulinic and Formic Acids from Fructose over Superacid ZrO2–SiO2–SnO2 Catalyst. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Catalytic conversion of fructose to levulinic and formic acids over tin-containing superacid (H0 = −14.52) mixed oxide was studied. Mesoporous ZrO2–SiO2–SnO2 (Zr:Si:Sn = 1:2:0.4) was synthesized by the sol–gel method. The fructose transformation was carried out in a rotated autoclave at 160–190 °C for 1–5 h using a 20 wt.% aqueous solution. The results showed that doping ZrO2–SiO2 samples with Sn4+ ions improved both fructose conversion and selectivity toward levulinic and formic acids. Under optimal conditions of 180 °C, 3.5 h and fructose to catalyst weight ratio 20:1, levulinic and formic acids yields were 80% and 90%, respectively, at complete fructose conversion. At this, humic substances formed in the quantity of 10 wt.% based on the target products.
Collapse
|
23
|
Hedayati Marzbali M, Saberi A, Halder P, Paz-Ferreiro J, Dasappa S, Shah K. Mechanistic and kinetic study of the hydrothermal treatment of paunch waste. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Levulinic Acid Production from Macroalgae: Production and Promising Potential in Industry. SUSTAINABILITY 2021. [DOI: 10.3390/su132413919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of macroalgal biorefinery products as an alternative source of renewable fuels is an opportunity to solve the dependence on fossil fuels. Macroalgae is a potential biomass that can be developed as a raw material for producing platform chemicals such as levulinic acid (LA). In the industrial sector, LA is among the top 12 biomass-derived feedstocks designated by the U.S. Department of Energy as a high-value chemical. Several studies have been conducted on the production of LA from terrestrial-based biomass, however, there is still limited information on its production from macroalgae. The advantages of macroalgae over terrestrial and other biomasses include high carbohydrate and biomass production, less cultivation cost, and low lignin content. Therefore, this study aims to investigate the potential and challenge of producing LA from macroalgae in the industrial sector and determine its advantages and disadvantages compared with terrestrial biomass in LA production. In this study, various literature sources were examined using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) method to identify, screen, and analyze the data of the published paper. Despite its advantages, there are some challenges in making the production of levulinic acid from macroalgae feasible for development at the industrial scale. Some challenges such as sustainability of macroalgae, the efficiency of pretreatment, and hydrolysis technology are often encountered during the production of levulinic acid from macroalgae on an industrial scale.
Collapse
|
25
|
Tian Y, Zhang F, Wang J, Cao L, Han Q. A review on solid acid catalysis for sustainable production of levulinic acid and levulinate esters from biomass derivatives. BIORESOURCE TECHNOLOGY 2021; 342:125977. [PMID: 34852443 DOI: 10.1016/j.biortech.2021.125977] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Biomass is a kind of renewable and abundant resource that can be seen as an important candidate to solve the energy crisis. Levulinic acid (LA) and levulinate esters (LEs) have been widely researched as biomass-based platform compounds. In recent years, efficient, green, and environment-friendly solid acid catalysts have been developed for the fast production and resolution of the problems, such as low yield, high equipmental requirements, and difficulty in product separation, in the preparation of LA and LE from biomass. In this paper, the preparation routes of LA and LEs from various raw materials are introduced, and the solid acid catalysts involved in their production are emphatically reviewed. The challenges and prospects in LA and LE production from biomass are proposed to achieve a more economical and energy efficient process with the concept of sustainable development in the future.
Collapse
Affiliation(s)
- Yijun Tian
- School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China; Miami College, Henan University, Kaifeng 475004, PR China
| | - Fangfang Zhang
- School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China; Miami College, Henan University, Kaifeng 475004, PR China
| | - Jieni Wang
- School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng 475004, PR China.
| | - Qiuxia Han
- School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China; Miami College, Henan University, Kaifeng 475004, PR China
| |
Collapse
|
26
|
|
27
|
Djakovitch L, Essayem N, Eternot M, Rataboul F. A Landscape of Lignocellulosic Biopolymer Transformations into Valuable Molecules by Heterogeneous Catalysis in C'Durable Team at IRCELYON. Molecules 2021; 26:molecules26226796. [PMID: 34833888 PMCID: PMC8621028 DOI: 10.3390/molecules26226796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
This review article highlights part of the research activity of the C’Durable team at IRCELYON in the field of sustainable chemistry. This review presents a landscape of the work performed on the valorization of lignocellulosic biopolymers. These studies intend to transform cellulose, hemicellulose and lignin into valuable molecules. The methodology usually consists in evaluating the behavior of the biopolymers in the absence of catalyst under various conditions (solvent, temperature), and then to assess the influence of a catalyst, most often a heterogeneous catalyst, on the reactivity. The most significant results obtained on the upgrading of cellulose and lignin, which have been mainly investigated in the team, will be presented with an opening on studies involving raw lignocellulose.
Collapse
|
28
|
Uhliariková I, Matulová M, Capek P. Optimizing acid hydrolysis for monosaccharide compositional analysis of Nostoc cf. linckia acidic exopolysaccharide. Carbohydr Res 2021; 508:108400. [PMID: 34280803 DOI: 10.1016/j.carres.2021.108400] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022]
Abstract
The exact estimation of monosaccharide composition is important in the primary structure elucidation of polysaccharides. An acid hydrolysis is usually performed for glycosidic bonds cleavage and releasing of monosaccharides. In this study, optimal conditions of total acid hydrolysis using trifluoroacetic acid (TFA) of acidic lactylated Nostoc cf. linckia exopolysaccharide (EPS) were investigated by NMR spectroscopy. Results of a series of experiments with modified acid concentration, temperature and time of hydrolysis, have shown 2 M TFA, 110 °C, 3 h as the most optimal. The stability of EPS monosaccharide components was also explored. Low stability was found at all tested conditions already during the first hour of hydrolysis; all neutral monosaccharides were degraded from 25% to 40% and glucuronic acid to 75%. NMR, contrary to standard techniques used in monosaccharide compositional analysis (HPLC, HPAEC), allowed simultaneous quantification of all GlcA forms; the free one, that one linked in oligosaccharides, as well as GlcA degradation product γ-lactone. NMR as detection method improves information about uronic acid content in EPS.
Collapse
Affiliation(s)
- Iveta Uhliariková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská Cesta, 9, 84538, Bratislava, Slovakia.
| | - Mária Matulová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská Cesta, 9, 84538, Bratislava, Slovakia
| | - Peter Capek
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská Cesta, 9, 84538, Bratislava, Slovakia
| |
Collapse
|
29
|
Kumar A, Shende D, Wasewar K. Central Composite Design Approach for Optimization of Levulinic Acid Separation by Reactive Components. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anuj Kumar
- Advanced Separation and Analytical Laboratory (ASAL), Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India
| | - Diwakar Shende
- Advanced Separation and Analytical Laboratory (ASAL), Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India
| | - Kailas Wasewar
- Advanced Separation and Analytical Laboratory (ASAL), Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India
| |
Collapse
|
30
|
Sustainable Exploitation of Residual Cynara cardunculus L. to Levulinic Acid and n-Butyl Levulinate. Catalysts 2021. [DOI: 10.3390/catal11091082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrolysis and butanolysis of lignocellulosic biomass are efficient routes to produce two valuable bio-based platform chemicals, levulinic acid and n-butyl levulinate, which find increasing applications in the field of biofuels and for the synthesis of intermediates for chemical and pharmaceutical industries, food additives, surfactants, solvents and polymers. In this research, the acid-catalyzed hydrolysis of the waste residue of Cynara cardunculus L. (cardoon), remaining after seed removal for oil exploitation, was investigated. The cardoon residue was employed as-received and after a steam-explosion treatment which causes an enrichment in cellulose. The effects of the main reaction parameters, such as catalyst type and loading, reaction time, temperature and heating methodology, on the hydrolysis process were assessed. Levulinic acid molar yields up to about 50 mol % with levulinic acid concentrations of 62.1 g/L were reached. Moreover, the one-pot butanolysis of the steam-exploded cardoon with the bio-alcohol n-butanol was investigated, demonstrating the direct production of n-butyl levulinate with good yield, up to 42.5 mol %. These results demonstrate that such residual biomass represent a promising feedstock for the sustainable production of levulinic acid and n-butyl levulinate, opening the way to the complete exploitation of this crop.
Collapse
|
31
|
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021; 26:3463. [PMID: 34200447 PMCID: PMC8201374 DOI: 10.3390/molecules26113463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.
Collapse
Affiliation(s)
- Dattatray K. Bedade
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Cody B. Edson
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| |
Collapse
|
32
|
Ehnert S, Seehase J, Müller-Renno C, Hannig M, Ziegler C. Simultaneous quantification of total carbohydrate and protein amounts from aqueous solutions by the sulfuric acid ultraviolet absorption method (SA-UV method). Anal Chim Acta 2021; 1174:338712. [PMID: 34247739 DOI: 10.1016/j.aca.2021.338712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Based on the sulfuric acid-ultraviolet assay (SA-UV, developed by Albalasmeh et al., 2013), we have further expanded this method for the simultaneous quantification of saccharides (carbohydrates) and proteins by ultraviolet spectrophotometry. The absorbance of saccharides depends on the formation of furfurals by dehydration in the presence of concentrated sulfuric acid, whereas proteins are unaffected and can be quantified by UV active peptide bonds and aromatic amino acid residues. In saccharide/protein mixtures the SA-UV assay offers a good alternative and substitutes the need for two different methods, like the phenol-sulfuric acid (PSA, developed by DuBois et al., 1951) and bicinchoninic acid (BCA, developed by Smith et al., 1985) assays. For the development of this method, we used glucose and BSA as model substrates and performed a method validation in terms of linearity, LOD, LOQ, accuracy, and precision. Simultaneous quantification in glucose/BSA mixtures is possible down to 20 mg/L from 30 μL sample volumes, and even low content mixtures with concentrations down to 2 mg/L can appropriately be quantified from higher volumes by an evaporation technique.
Collapse
Affiliation(s)
- Swen Ehnert
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jürgen Seehase
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Christine Müller-Renno
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, 66421 Homburg, Germany
| | - Christiane Ziegler
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
33
|
Cascade conversion of glucose to 5-hydroxymethylfurfural over Brönsted-Lewis bi-acidic SnAl-beta zeolites. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0752-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Dutta S, Bhat NS. Recent Advances in the Value Addition of Biomass‐Derived Levulinic Acid: A Review Focusing on its Chemical Reactivity Patterns. ChemCatChem 2021. [DOI: 10.1002/cctc.202100032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| | - Navya Subray Bhat
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| |
Collapse
|
35
|
Synergistic Catalytic Effect of Sulphated Zirconia—HCl System for Levulinic Acid and Solid Residue Production Using Microwave Irradiation. ENERGIES 2021. [DOI: 10.3390/en14061582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synergistic conversion of Miscanthus xGiganteous with sulphated zirconia and dilute hydrochloric acid was investigated. The sulphated zirconia was prepared using H2SO4 impregnation and characterised using X-ray Diffraction (XRD), Energy-dispersive X-ray (EDX), Scanning Electron Miscroscope (SEM) spectroscopy and nitrogen adsorption–desorption measurements. The microwave-assisted reaction was evaluated at various temperatures, reaction times and catalyst-to-biomass ratios, with and without the presence of trace HCl in the solution medium for the conversion of Miscanthus xGiganteous to levulinic acid. The highest levulinic acid yield of 63.8% was achieved at 160 °C, 80 min and a 2:1 catalyst-to-biomass ratio, with 10 mM HCl. The catalyst recyclability was investigated with and without calcination, finding that significant humin deposition on the catalyst surface likely caused catalyst deactivation. The post-reaction solid residue was also characterised using SEM, EDX, XRD, elemental composition and nitrogen adsorption–desorption measurements. Findings indicate that this residue could potentially be used as a soil amendment or as a fuel source. The synergistic conversion of real lignocellulosic biomass with sulphated zirconia and trace hydrochloric acid showed remarkable promise and should be investigated further.
Collapse
|
36
|
Meramo
Hurtado SI, Puello P, Cabarcas A. Technical Evaluation of a Levulinic Acid Plant Based on Biomass Transformation under Techno-Economic and Exergy Analyses. ACS OMEGA 2021; 6:5627-5641. [PMID: 33681602 PMCID: PMC7931420 DOI: 10.1021/acsomega.0c06088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Levulinic acid (LA) recently has attracted much attention as a promising biorefinery platform due to its potential to be economical and sustainable. This paper addresses technical, techno-economic, and exergetic analyses of an industrial LA production via acid-catalyzed dehydration. The process was simulated through Aspen Plus, considering a processing capacity of 15,175.60 kg/h of banana empty fruit bunches. The global productivity yield was 25.56%, producing 3883.13 kg/h of LA. The techno-economic analysis evidenced that this process may be an attractive alternative for biomass valorization, considering the obtained financial results. This process's total production cost was 0.178 $USD per kilogram of biomass and a total annualized cost of $USD 29,163,638.95. Exergy analysis revealed that this process had an irreversibility rate of 1.48 × 105 MJ/h. The pretreatment stage presented the lowest exergetic efficiency. Globally, the exergy efficiency was 53.76%, which is within the reported results for analogous biomass transformation processes.
Collapse
Affiliation(s)
- Samir Isaac Meramo
Hurtado
- Samir
I. Meramo-Hurtado, Research Group on Information Technology, Modeling,
and Simulation (GITEMOS), Systems Engineering Program, Universidad de Cartagena, 30th Street #39b-192, 130001 Cartagena, Colombia
| | - Plinio Puello
- Plinio
Puello, Research Group on Information Technology, Modeling, and Simulation
(GITEMOS), Systems Engineering Program, Universidad de Cartagena, 30th Street #39b-192, 130001 Cartagena, Colombia
| | - Amaury Cabarcas
- Amaury
Cabarcas, Research Group in Communication Technologies and Informatics
(GIMATICA), Systems Engineering Program, University of Cartagena, 30th Street #39b-192, 130001 Cartagena, Colombia
| |
Collapse
|
37
|
Supercritical CO2–subcritical H2O system: A green reactive separation medium for selective conversion of glucose to 5-hydroxymethylfurfural. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Muldoon JA, Harvey BG. Bio-Based Cycloalkanes: The Missing Link to High-Performance Sustainable Jet Fuels. CHEMSUSCHEM 2020; 13:5777-5807. [PMID: 32810345 DOI: 10.1002/cssc.202001641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/14/2020] [Indexed: 05/12/2023]
Abstract
The development of sustainable energy solutions that reduce global carbon emissions, while maintaining high living standards, is one of the grand challenges of the current century. Transportation fuels are critical to economic development, globalization, and the advancement of society. Although ground vehicles and small aircraft are beginning a slow transition toward electric propulsion with energy sourced from solar radiation or wind, the extreme power requirements of jet aircraft require a more concentrated source of energy that is conveniently provided by liquid hydrocarbon fuels. This Review describes recent efforts to develop efficient routes for the conversion of crude biomass sources (e. g., lignocellulose) to cycloalkanes. These cycloalkanes impart advantageous properties to jet fuels, including increased density, higher volumetric heat of combustion, and enhanced operability. The combination of bio-based cycloalkanes and synthetic paraffinic kerosenes allows for the preparation of 100 % bio-based fuels that can outperform conventional petroleum-based fuels. In this Review methods are described that convert biomass-derived small molecules, including furfural, furfuryl alcohol, 5-hydroxymethylfurfural, cyclic ketones, phenolics, acyclic ketones, cyclic alcohols, furans, esters, and alkenes to high-density cycloalkanes. In addition to describing the chemical transformations and catalysts that have been developed to efficiently produce various cycloalkanes, this Review includes summaries of key fuel properties, which highlight the ability to generate fuels with customized performance metrics. This work is intended to inspire other researchers to study the conversion of sustainable feedstocks to full-performance aviation fuels. An acceleration of this research is critical to reducing the carbon footprint of commercial and military aviation on a timescale that will help blunt the impacts of global warming.
Collapse
Affiliation(s)
- Jake A Muldoon
- US NAVY, NAWCWD, Research Department, Chemistry Branch, China Lake, California, 93555, USA
| | - Benjamin G Harvey
- US NAVY, NAWCWD, Research Department, Chemistry Branch, China Lake, California, 93555, USA
| |
Collapse
|
39
|
Direct Alcoholysis of Carbohydrate Precursors and Real Cellulosic Biomasses to Alkyl Levulinates: A Critical Review. Catalysts 2020. [DOI: 10.3390/catal10101221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alkyl levulinates (ALs) represent outstanding bio-fuels and strategic bio-products within the context of the marketing of levulinic acid derivatives. However, their synthesis by acid-catalyzed esterification of pure levulinic acid, or by acid-catalyzed alcoholysis of furfuryl alcohol, although relatively simple, is still economically disadvantageous, due to the high costs of the pure precursors. The direct one-pot alcoholysis of model C6 carbohydrates and raw biomass represents an alternative approach for the one-step synthesis of ALs. In order to promote the market for these bio-products and, concurrently, the immediate development of new applications, it is necessary to speed up the intensification of their production processes, and this important achievement is onlypossible by using low-cost or, even better, waste biomasses, as starting feedstocks. This review provides an overview of the most recent and promising advances on the one-pot production of ALs from model C6 carbohydrates and real biomasses, in the presence of homogeneous or heterogeneous acid catalysts. The use of model C6 carbohydrates allows for the identification of the best obtainable ALs yields, resulting in being strategic for the development of new smart catalysts, whose chemical properties must be properly tuned, taking into account the involved reaction mechanism. On the other hand, the transition to the real biomass now represents a necessary choice for allowing the next ALs production on a larger scale. The improvement of the available synthetic strategies, the use of raw materials and the development of new applications for ALs will contribute to develop more intensified, greener, and sustainable processes.
Collapse
|
40
|
Jeong GT, Kim SK. Valorization of thermochemical conversion of lipid-extracted microalgae to levulinic acid. BIORESOURCE TECHNOLOGY 2020; 313:123684. [PMID: 32562965 DOI: 10.1016/j.biortech.2020.123684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Scenedesmus obliquus, a green microalga of the class Chlorophyceae, has been used to produce biofuels. However, limited research has been reported on platform chemicals that use microalgae as biomass to replace fossil sources. This paper reports on the investigation of levulinic acid (LA) production from lipid-extracted S. obliquus with an acid-catalyzed thermochemical conversion using a statistical experimental approach. For the reaction factors, the highest effect on LA yield resulted from catalyst concentration. The optimized LA yield of 45.63 wt% (70.7 mol%) was achieved with 5 wt% lipid-extracted microalgae and reaction factors of 0.85 M HCl as a catalyst at 180 °C for 10 min. Also, the LA yield as a function of the combined severity factor followed a sigmoid curve. High LA yield resulted from combined severity factors greater than 3.4. These results indicate that the production of platform chemicals may be possible using microalgae feedstocks and thermochemical conversion.
Collapse
Affiliation(s)
- Gwi-Taek Jeong
- Department of Biotechnology, School of Marine and Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Sung-Koo Kim
- Department of Biotechnology, School of Marine and Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
41
|
Agutaya JKCN, Inoue R, Vin Tsie SS, Quitain AT, de la Peña-García J, Pérez-Sánchez H, Sasaki M, Kida T. Metal-Free Synthesis of HMF from Glucose Using the Supercritical CO 2–Subcritical H 2O–Isopropanol System. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Ryuto Inoue
- Graduate School of Science and Technology, Kumamoto University, 2 Chōme-39-1 Kurokami, Chūō
Ward, Kumamoto 860-8555, Japan
| | | | - Armando T. Quitain
- Center for International Education, Kumamoto University, 2 Chōme-40-1 Kurokami, Chūō
Ward, Kumamoto 860-8555, Japan
| | - Jorge de la Peña-García
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain
| | - Horacio Pérez-Sánchez
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain
| | - Mitsuru Sasaki
- Institute of Industrial Nanomaterials, Kumamoto University, 2 Chōme-40-1 Kurokami, Chūō
Ward, Kumamoto 860-8555, Japan
| | - Tetsuya Kida
- Faculty of Advanced Science and Technology, Kumamoto University, 2 Chōme-40-1 Kurokami, Chūō
Ward, Kumamoto 860-8555, Japan
| |
Collapse
|
42
|
Sunwoo IY, Sukwong P, Park YR, Jeong DY, Kim SR, Jeong GT, Kim SK. Enhancement of Galactose Uptake from Kappaphycus alvarezii Hydrolysate Using Saccharomyces cerevisiae Through Overexpression of Leloir Pathway Genes. Appl Biochem Biotechnol 2020; 193:335-348. [PMID: 32959326 DOI: 10.1007/s12010-020-03422-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
A total 42.68 g/L monosaccharide with 0.10 g/L HMF was obtained from 10% (w/v) Kappaphycus alvarezii with thermal acid hydrolysis using 350 mM HNO3 at 121 °C for 60 min and enzymatic saccharification with a 1:1 mixture of Viscozyme L and Celluclast 1.5 L for 72 h. To enhance the galactose utilization rate, fermentation was performed with overexpression of GAL1 (galactokinase), GAL7 (galactose-1-phosphate uridyltransferase), GAL10 (UDP-glucose-4-epimerase), and PGM2 (phosphoglucomutase 2) in Saccharomyces cerevisiae CEN.PK2 using CCW12 as a strong promoter. Among the strains, the overexpression of PGM2 showed twofold high galactose utilization rate (URgal) and produced ethanol 1.4-fold more than that of the control. Transcriptional analysis revealed the increase of PGM2 transcription level leading to enhance glucose-6-phosphate and fructose-6-phosphate and plays a key role in ensuring a higher glycolytic flux in the PGM2 strain. This finding shows particular importance in biofuel production from seaweed because galactose is one of the major monosaccharides in seaweeds such as K. alvarezii.
Collapse
Affiliation(s)
- In Yung Sunwoo
- Division of Marine, Fisheries, and Life Science, Pukyong National University, Busan, 48513, South Korea
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Pailin Sukwong
- Division of Marine, Fisheries, and Life Science, Pukyong National University, Busan, 48513, South Korea
| | - Yu Rim Park
- Division of Marine, Fisheries, and Life Science, Pukyong National University, Busan, 48513, South Korea
| | - Deok Yeol Jeong
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, South Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, South Korea
| | - Gwi-Teak Jeong
- Division of Marine, Fisheries, and Life Science, Pukyong National University, Busan, 48513, South Korea
| | - Sung-Koo Kim
- Division of Marine, Fisheries, and Life Science, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
43
|
Production of Levulinic Acid from Cellulose and Cellulosic Biomass in Different Catalytic Systems. Catalysts 2020. [DOI: 10.3390/catal10091006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The reasonable and effective use of lignocellulosic biomass is an important way to solve the current energy crisis. Cellulose is abundant in nature and can be hydrolyzed to a variety of important energy substances and platform compounds—for instance, glucose, 5-hydroxymethylfurfural (HMF), levulinic acid (LA), etc. As a chemical linker between biomass and petroleum processing, LA has become an ideal feedstock for the formation of liquid fuels. At present, some problems such as low yield, high equipment requirements, difficult separation, and serious environmental pollution in the production of LA from cellulose have still not been solved. Thus, a more efficient and green catalytic system of this process for industrial production is highly desired. Herein, we focus on the reaction mechanism, pretreatment, and catalytic systems of LA from cellulose and cellulosic biomass, and a series of existing technologies for producing LA are reviewed. On the other hand, the industrial production of LA is discussed in depth to improve the yield of LA and make the process economical and energy efficient. Additionally, practical suggestions for the enhancement of the stability and efficiency of the catalysts are also proposed. The use of cellulose to produce LA is consistent with the concept of sustainable development, and the dependence on fossil resources will be greatly reduced through the realization of this process route.
Collapse
|
44
|
Katakojwala R, Kopperi H, Kumar S, Venkata Mohan S. Hydrothermal liquefaction of biogenic municipal solid waste under reduced H 2 atmosphere in biorefinery format. BIORESOURCE TECHNOLOGY 2020; 310:123369. [PMID: 32335345 DOI: 10.1016/j.biortech.2020.123369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Municipal solid waste (MSW), an inexorable by-product of anthropogenic activities composes of nearly 50% of the organic (biogenic) fraction. Hydrothermal liquefaction (HTL) was studied to facilitate thermal depolymerization of organic fraction of MSW to biocrude at sub-critical region of water (200 °C; 100 bar pressure) employing H2 induced reducing conditions. Food, vegetable, and composite wastes were evaluated as feedstocks to produce HTL derivatives in the form of liquor (biocrude and aqueous phase), biochar and bio-gas. The biocrude (HTLOF) showed middle oil as major fraction along with C6-C22 compounds. Composite waste resulted in relatively higher yield of biocrude fraction. The aqueous phase (HTLAF) documented the presence of reducing sugars, sotolon and furfurals as major fraction. Biochar (HTLBC) composition showed maximum carbon fraction followed by hydrogen and oxygen. H2 induced reduced condition facilitated conversion of the biogenic MSW at relatively lower input conditions to various biobased fractions cohesively addressing the basic biorefinery requirement.
Collapse
Affiliation(s)
- Ranaprathap Katakojwala
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500 007, India
| | - Harishankar Kopperi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500 007, India.
| |
Collapse
|
45
|
2-Methyloxolane (2-MeOx) as Sustainable Lipophilic Solvent to Substitute Hexane for Green Extraction of Natural Products. Properties, Applications, and Perspectives. Molecules 2020; 25:molecules25153417. [PMID: 32731508 PMCID: PMC7435942 DOI: 10.3390/molecules25153417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/01/2022] Open
Abstract
This review presents a complete picture of current knowledge on 2-methyloxolane (2-MeOx), a bio-based solvent for the extraction of natural products and food ingredients. It provides the necessary background about the properties of 2-MeOx, not only its solvent power and extraction efficiency, but its detailed toxicological profile and environmental impacts are discussed. We compared 2-MeOx with hexane which is the most used petroleum-based solvent for extraction of lipophilic natural products. The final part focuses on successful industrial transfer, including technologic, economic, and safety impacts. The replacement of petroleum-based solvents is a hot research topic, which affects several fields of modern plant-based chemistry. All the reported applications have shown that 2-MeOx is an environmentally and economically viable alternative to conventional petroleum-based solvents for extraction of lipophilic foodstuff and natural products.
Collapse
|
46
|
One-Pot Alcoholysis of the Lignocellulosic Eucalyptus nitens Biomass to n-Butyl Levulinate, a Valuable Additive for Diesel Motor Fuel. Catalysts 2020. [DOI: 10.3390/catal10050509] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The present investigation represents a concrete example of complete valorization of Eucalyptus nitens biomass, in the framework of the circular economy. Autohydrolyzed-delignified Eucalyptus nitens was employed as a cheap cellulose-rich feedstock in the direct alcoholysis to n-butyl levulinate, adopting n-butanol as green reagent/reaction medium, very dilute sulfuric acid as a homogeneous catalyst, and different heating systems. The effect of the main reaction parameters to give n-butyl levulinate was investigated to check the feasibility of this reaction and identify the coarse ranges of the main operating variables of greater relevance. High n-butyl levulinate molar yields (35–40 mol%) were achieved under microwave and traditional heating, even using a very high biomass loading (20 wt%), an eligible aspect from the perspective of the high gravity approach. The possibility of reprocessing the reaction mixture deriving from the optimized experiment by the addition of fresh biomass was evaluated, achieving the maximum n-butyl levulinate concentration of about 85 g/L after only one microwave reprocessing of the mother liquor, the highest value hitherto reported starting from real biomass. The alcoholysis reaction was further optimized by Response Surface Methodology, setting a Face-Centered Central Composite Design, which was experimentally validated at the optimal operating conditions for the n-butyl levulinate production. Finally, a preliminary study of diesel engine performances and emissions for a model mixture with analogous composition to that produced from the butanolysis reaction was performed, confirming its potential application as an additive for diesel fuel, without separation of each component.
Collapse
|
47
|
Meramo-Hurtado SI, Sanchez-Tuiran E, Ponce-Ortega JM, El-Halwagi MM, Ojeda-Delgado KA. Synthesis and Sustainability Evaluation of a Lignocellulosic Multifeedstock Biorefinery Considering Technical Performance Indicators. ACS OMEGA 2020; 5:9259-9275. [PMID: 32363277 PMCID: PMC7191568 DOI: 10.1021/acsomega.0c00114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/02/2020] [Indexed: 05/27/2023]
Abstract
Nowadays, green-chemistry principles offer an approach that fits to ensure chemical process sustainability by the use of low-cost renewable raw materials, waste prevention, inherent safer designs, among others. Based on this motivation, this study presents a novel methodology for sustainable process design that comprises the synthesis of a multifeedstock optimal biorefinery under simultaneous optimization of economic and environmental targets and further sustainability evaluation using the sustainability weighted return on investment metric (SWROIM). The first step of the proposed method is the formulation of an optimization model to generate the most suitable process alternatives. The model took into account various biomasses as available raw materials for production of ethanol, butanol, succinic acid, among others. Process technologies such as fermentation, anaerobic digestion, gasification, among others, were considered for biorefinery design. Once the model synthesizes the optimal biorefinery, we used environmental, safety, economic, and energy analyses to assess the process, which is a case study for north Colombia. Process simulation generated the data needed (extended mass and energy balances, property estimation, and modeling of downstream) to develop the process analysis stage via the Aspen Plus software. Results for the environmental and economic analyses showed that the assumption considered to solve the optimization problem was adequate, yielding promising environmental and economic outcomes. Finally, the overall sustainability evaluation showed a SWROIM of 27.29%, indicating that the case study showed higher weighted performance compared to the return on investment (ROI) metric of 14.33%.
Collapse
Affiliation(s)
- Samir I. Meramo-Hurtado
- Industrial
Engineering Program, Fundación Universitaria
Colombo Internacional, Av. Pedro Heredia Sector
Cuatro Vientos #31-50, Cartagena 13000, Colombia
| | - Eduardo Sanchez-Tuiran
- Process
Design and Biomass Utilization Research Group (IDAB), Chemical Engineering
Program, University of Cartagena, Campus Piedra de Bolívar,
Street 30 #48-152, Cartagena 13000, Colombia
| | - José María Ponce-Ortega
- Department
of Chemical Engineering, Universidad Michoacana
de San Nicolas de Hidalgo, Morelia, Michoacán 58060, México
| | - Mahmoud M. El-Halwagi
- Department
of Chemical Engineering, Texas A&M University, 3122 College Station, Texas 77843-3122, United States
| | - Karina Angélica Ojeda-Delgado
- Process
Design and Biomass Utilization Research Group (IDAB), Chemical Engineering
Program, University of Cartagena, Campus Piedra de Bolívar,
Street 30 #48-152, Cartagena 13000, Colombia
| |
Collapse
|
48
|
Dutta S, Yu IKM, Tsang DCW, Su Z, Hu C, Wu KCW, Yip ACK, Ok YS, Poon CS. Influence of green solvent on levulinic acid production from lignocellulosic paper waste. BIORESOURCE TECHNOLOGY 2020; 298:122544. [PMID: 31838242 DOI: 10.1016/j.biortech.2019.122544] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Lignocellulosic wastes constitute a significant portion of the municipal solid waste, which should be valorised for the synthesis of value-added chemicals to achieve circular bioeconomy. This study evaluates the use of γ-valerolactone (GVL) and acetone as green co-solvents to produce levulinic acid (LA) from lignocellulosic paper towel waste at different temperatures using dilute H2SO4. At the highest reaction temperature (200 °C), H2O-only system achieved ~15 Cmol% of LA at maximum. while GVL/H2O and acetone/H2O co-solvent systems enhanced the depolymerisation of paper towel waste and the subsequent conversion to LA, with the highest yield amounted to ~32 Cmol%. Acetone/H2O solvent system generated ~17 Cmol% LA at a lower temperature (180 °C), while higher temperature induced polymerisation of soluble sugars and intermediates, hindering further conversion to LA. In contrast, the availability of soluble sugars was higher in the GVL/H2O system, which favoured the production of LA at higher temperatures.
Collapse
Affiliation(s)
- Shanta Dutta
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Iris K M Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Kevin C W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Alex C K Yip
- Energy and Environmental Catalysis Group, Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
49
|
Meimoun J, Bernhard Y, Pelinski L, Bousquet T, Pellegrini S, Raquez JM, De Winter J, Gerbaux P, Cazaux F, Tahon JF, Gaucher V, Chenal T, Favrelle-Huret A, Zinck P. Lipase-catalysed polycondensation of levulinic acid derived diol-diamide monomers: access to new poly(ester- co-amide)s. Polym Chem 2020. [DOI: 10.1039/d0py01301c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A new family of biobased poly(ester-co-amide)s is reported from the enzymatic polycondensation of a library of levulinic acid derived diol-diamide monomers with diesters.
Collapse
|
50
|
Conversion of levulinic acid to ethyl levulinate using tin modified silicotungstic acid supported on Ta2O5. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105864] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|