1
|
Thuriot-Roukos J, Ferraz CP, K. Al Rawas H, Heyte S, Paul S, Itabaiana Jr I, Pietrowski M, Zieliński M, Ghazzal MN, Dumeignil F, Wojcieszak R. Supported Gold Catalysts for Base-Free Furfural Oxidation: The State of the Art and Machine-Learning-Enabled Optimization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6357. [PMID: 37834493 PMCID: PMC10573714 DOI: 10.3390/ma16196357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Supported gold nanoparticles have proven to be highly effective catalysts for the base-free oxidation of furfural, a compound derived from biomass. Their small size enables a high surface-area-to-volume ratio, providing abundant active sites for the reaction to take place. These gold nanoparticles serve as catalysts by providing surfaces for furfural molecules to adsorb onto and facilitating electron transfer between the substrate and the oxidizing agent. The role of the support in this reaction has been widely studied, and gold-support interactions have been found to be beneficial. However, the exact mechanism of furfural oxidation under base-free conditions remains an active area of research and is not yet fully understood. In this review, we delve into the essential factors that influence the selectivity of furfural oxidation. We present an optimization process that highlights the significant role of machine learning in identifying the best catalyst for this reaction. The principal objective of this study is to provide a comprehensive review of research conducted over the past five years concerning the catalytic oxidation of furfural under base-free conditions. By conducting tree decision making on experimental data from recent articles, a total of 93 gold-based catalysts are compared. The relative variable importance chart analysis reveals that the support preparation method and the pH of the solution are the most crucial factors determining the yield of furoic acid in this oxidation process.
Collapse
Affiliation(s)
- Joëlle Thuriot-Roukos
- Université de Lille, CNRS, Centrale Lille, Université d’Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000 Lille, France; (J.T.-R.); (H.K.A.R.); (S.H.); (S.P.); (F.D.)
| | - Camila Palombo Ferraz
- Department of Inorganic Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 221941-910, Brazil;
| | - Hisham K. Al Rawas
- Université de Lille, CNRS, Centrale Lille, Université d’Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000 Lille, France; (J.T.-R.); (H.K.A.R.); (S.H.); (S.P.); (F.D.)
| | - Svetlana Heyte
- Université de Lille, CNRS, Centrale Lille, Université d’Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000 Lille, France; (J.T.-R.); (H.K.A.R.); (S.H.); (S.P.); (F.D.)
| | - Sébastien Paul
- Université de Lille, CNRS, Centrale Lille, Université d’Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000 Lille, France; (J.T.-R.); (H.K.A.R.); (S.H.); (S.P.); (F.D.)
| | - Ivaldo Itabaiana Jr
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-910, Brazil;
| | - Mariusz Pietrowski
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.P.); (M.Z.)
| | - Michal Zieliński
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.P.); (M.Z.)
| | - Mohammed N. Ghazzal
- Institut de Chimie Physique (ICP), UMR 8000 CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | - Franck Dumeignil
- Université de Lille, CNRS, Centrale Lille, Université d’Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000 Lille, France; (J.T.-R.); (H.K.A.R.); (S.H.); (S.P.); (F.D.)
| | - Robert Wojcieszak
- Université de Lille, CNRS, Centrale Lille, Université d’Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000 Lille, France; (J.T.-R.); (H.K.A.R.); (S.H.); (S.P.); (F.D.)
| |
Collapse
|
2
|
Gidi L, Amalraj J, Tenreiro C, Ramírez G. Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF). RSC Adv 2023; 13:28307-28336. [PMID: 37753399 PMCID: PMC10519153 DOI: 10.1039/d3ra05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The production of clean electrical energy and the correct use of waste materials are two topics that currently concern humanity. In order to face both problems, extensive work has been done on the electrolytic production of green H2 coupled with the electrooxidative upgrading of biomass platform molecules. 5-Hydroxymethylfurfural (HMF) is obtained from forest waste biomass and can be selectively oxidized to 2,5-furandicarboxylic acid (FDCA) by electrochemical pathways. FDCA is an attractive precursor to polyethylene furanoate (PEF), with the potential to replace petroleum-based polyethylene terephthalate (PET). An integrated electrochemical system can simultaneously produce H2 and FDCA at a lower energy cost than that required for electrolytic water splitting. Here, the benefits of the electrochemical production of H2 and FDCA over other production methods are presented, as well as the innovative applications of each reaction product and the advantages of carrying out both reactions in a coupled system. The recently reported progress is disclosed, through an exploration of electrocatalyst materials used in simultaneous production, including the use of nickel foams (NF) as modification substrates, noble and non-noble metals, metal non-oxides, metal oxides, spinel oxides and the introduction of oxygen vacancies. Based on the latest trends, the next challenges associated with its large-scale production are proposed for its implementation in the industrial world. This work can offer a guideline for the detailed understanding of the electrooxidation of HMF towards FDCA with the production of H2, as well as the design of advanced electrocatalysts for the sustainable use of renewable resources.
Collapse
Affiliation(s)
- Leyla Gidi
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - John Amalraj
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - Claudio Tenreiro
- Industrial Technologies Department, Faculty of Engineering, Universidad de Talca Curicó 3340000 Chile
| | - Galo Ramírez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Santiago 7820436 Chile
- Millenium Institute on Green Ammonia as Energy Vector (MIGA) Av. Vicuña Mackenna 4860, Macul Santiago 7820436 Chile
| |
Collapse
|
3
|
Chen J, Liu X, Zheng G, Feng W, Wang P, Gao J, Liu J, Wang M, Wang Q. Detection of Glucose Based on Noble Metal Nanozymes: Mechanism, Activity Regulation, and Enantioselective Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205924. [PMID: 36509680 DOI: 10.1002/smll.202205924] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Glucose monitoring is essential to evaluate the degree of glucose metabolism disorders. The enzymatic determination has been the most widely used method in glucose detection because of its high efficiency, accuracy, and sensitivity. Noble metal nanomaterials (NMs, i.e., Au, Ag, Pt, and Pd), inheriting their excellent electronic, optical, and enzyme-like properties, are classified as noble metal nanozymes (NMNZs). As the NMNZs are often involved in two series of reactions, the oxidation of glucose and the chromogenic reaction of peroxide, here the chemical mechanism by employing NMNZs with glucose oxidase (GOx) and peroxidase (POD) mimicking activities is briefly summarized first. Subsequently, the regulation strategies of the GOx-like, POD-like and tandem enzyme-like activities of NMNZs are presented in detail, including the materials, size, morphology, composition, and the reaction condition of the representative NMs. In addition, in order to further mimic the enantioselectivity of enzyme, the design of NMNZs with enantioselective recognition of d-glucose and l-glucose by using different chiral compounds (DNA, amino acids, and cyclodextrins) and molecular imprinting is further described in this review. Finally, the feasible solutions to the existing challenges and a vision for future development possibilities are discussed.
Collapse
Affiliation(s)
- Jiaqi Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Xiaoyang Liu
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jian Gao
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jianbo Liu
- College of Opto-electronic Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Mingzhe Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qingyuan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
4
|
Guo M, Lu X, Xiong J, Zhang R, Li X, Qiao Y, Ji N, Yu Z. Alloy-Driven Efficient Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural towards 2,5-Furandicarboxylic Acid: A Review. CHEMSUSCHEM 2022; 15:e202201074. [PMID: 35790081 DOI: 10.1002/cssc.202201074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, electrocatalysis was progressively developed to facilitate the selective oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) towards the value-added chemical 2,5-furandicarboxylic acid (FDCA). Among reported electrocatalysts, alloy materials have demonstrated superior electrocatalytic properties due to their tunable electronic and geometric properties. However, a specific discussion of the potential impacts of alloy structures on the electrocatalytic HMF oxidation performance has not yet been presented in available Reviews. In this regard, this Review introduces the most recent perspectives on the alloy-driven electrocatalysis for HMF oxidation towards FDCA, including oxidation mechanism, alloy nanostructure modulation, and external conditions control. Particularly, modulation strategies for electronic and geometric structures of alloy electrocatalysts have been discussed. Challenges and suggestions are also provided for the rational design of alloy electrocatalysts. The viewpoints presented herein are anticipated to potentially contribute to a further development of alloy-driven electrocatalytic oxidation of HMF towards FDCA and to help boost a more sustainable and efficient biomass refining system.
Collapse
Affiliation(s)
- Mengyan Guo
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University Guangzhou, Guangdong, 510275, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
5
|
Xu H, Li X, Hu W, Yu Z, Zhou H, Zhu Y, Lu L, Si C. Research Progress of Highly Efficient Noble Metal Catalysts for the Oxidation of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202200352. [PMID: 35575041 DOI: 10.1002/cssc.202200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
5-hydroxymethylfurfural (HMF) is considered to be one of the most pivotal multifunctional biomass platform chemicals. This Review discusses recent advances in catalytic oxidation of HMF towards high-value products. The reaction mechanism of different noble metals and the path of HMF oxidation to high-value products have been deeply investigated in the noble metal catalytic system. The reaction mechanisms of different noble metals and HMF conversion paths were compared in detail. Moreover, the factors affecting the performance of different noble metal catalysts were summarized. Finally, effective strategies were put forward to improve the catalytic performance of noble metal catalysts. The purpose is to provide a valuable reference for the academic research on the preparation of oxidation products from biomass-based HMF and the industrial application of noble metal catalysts.
Collapse
Affiliation(s)
- Haocheng Xu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wenxuan Hu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhihao Yu
- Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa, 850000, P. R. China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Huanran Zhou
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yameng Zhu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Lefu Lu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
6
|
Ayoub N, Toufaily J, Guénin E, Enderlin G. Metal vs. Metal-Free Catalysts for Oxidation of 5-Hydroxymethylfurfural and Levoglucosenone to Biosourced Chemicals. CHEMSUSCHEM 2022; 15:e202102606. [PMID: 35073445 DOI: 10.1002/cssc.202102606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic feedstocks, such as forestry biomass and agricultural crop residues, can be utilized to generate biofuels and biochemicals. Converting these organic waste materials into biochemicals is widely regarded as a remedial approach to develop a sustainable, clean, and green energy source. Nevertheless, are these methods sustainable and clean? Prior studies have shown that most such conversions use metals - including heavy metals or noble metals - as catalysts. In addition to the fact that many metals (e. g., aluminum, cobalt, titanium, platinum) have been listed as critical minerals, these methods suffer from high cost, deactivation, and leakage problems and the release of toxic wastes. This Review summarizes catalytic methods using metal and metal-free catalysts for the oxidation of the platform molecules 5-hydroxymethylfurfural and levoglucosenone and demonstrates the potential and effectiveness of metal-free catalysts.
Collapse
Affiliation(s)
- Nadim Ayoub
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203, Compiègne Cedex
| | - Joumana Toufaily
- Laboratoire de Matériaux, Catalyse, Environnement et Méthodes analytiques (MCEMA-CHAMSI), EDST Université Libanaise, Campus Rafic Hariri, Hadath, Beyrouth, Lebanon
| | - Erwann Guénin
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203, Compiègne Cedex
| | - Gérald Enderlin
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203, Compiègne Cedex
| |
Collapse
|
7
|
Araque-Marin M, Bellot Noronha F, Capron M, Dumeignil F, Friend M, Heuson E, Itabaiana I, Jalowiecki-Duhamel L, Katryniok B, Löfberg A, Paul S, Wojcieszak R. Strengthening the Connection between Science, Society and Environment to Develop Future French and European Bioeconomies: Cutting-Edge Research of VAALBIO Team at UCCS. Molecules 2022; 27:3889. [PMID: 35745022 PMCID: PMC9231048 DOI: 10.3390/molecules27123889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
The development of the future French and European bioeconomies will involve developing new green chemical processes in which catalytic transformations are key. The VAALBIO team (valorization of alkanes and biomass) of the UCCS laboratory (Unité de Catalyse et Chimie du Solide) are working on various catalytic processes, either developing new catalysts and/or designing the whole catalytic processes. Our research is focused on both the fundamental and applied aspects of the processes. Through this review paper, we demonstrate the main topics developed by our team focusing mostly on oxygen- and hydrogen-related processes as well as on green hydrogen production and hybrid catalysis. The social impacts of the bioeconomy are also discussed applying the concept of the institutional compass.
Collapse
Affiliation(s)
- Marcia Araque-Marin
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Fabio Bellot Noronha
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
- Catalysis, Biocatalysis and Chemical Processes Division, National Institute of Technology, Rio de Janeiro 20081-312, Brazil
| | - Mickäel Capron
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Franck Dumeignil
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Michèle Friend
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
- Department of Philosophy, George Washington University, Washington, DC 20052, USA
| | - Egon Heuson
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Ivaldo Itabaiana
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-910, Brazil
| | - Louise Jalowiecki-Duhamel
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Benjamin Katryniok
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Axel Löfberg
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Sébastien Paul
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; (M.A.-M.); (F.B.N.); (M.C.); (F.D.); (M.F.); (E.H.); (I.I.J.); (L.J.-D.); (A.L.); (R.W.)
| |
Collapse
|
8
|
Sobczak I, Kowalska TC, Nowicka M, Ziolek M. Microwave-Assisted Base-Free Oxidation of Glucose with H 2O 2 on Gold- and Manganese-Containing SBA-15-Insight into Factors Affecting the Reaction Pathway. Int J Mol Sci 2022; 23:ijms23094639. [PMID: 35563036 PMCID: PMC9102529 DOI: 10.3390/ijms23094639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023] Open
Abstract
The aim of this work was to gain insights into the role of manganese in MnSBA-15 support for gold in the base-free glucose oxidation with H2O2 using a microwave reactor. MnSBA-15 (manganese-acidity source) and SBA-15 (for comparison) were modified with Au (2.2 wt. %) and Cu (for comparison). The physicochemical properties of the catalysts were investigated by XRD, N2 ads/des, TEM, UV-vis, XPS, pyridine adsorption combined with FTIR, ATR-FTIR, and 2-propanol decomposition. The effects of the Mn presence in the support, Au NPs size that determines the number of active Au centers, and the Fermi energy (EF), together with the effects of the pore size, reaction temperature, and time on the activity and selectivity of the applied catalysts were assessed and discussed. It has been demonstrated that the presence of Mn generated Lewis acid centers which did not participate in glucose and H2O2 adsorption, and thus, were not directly involved in the reaction pathway. Both reagents were adsorbed on gold nanoparticles. H2O2 was decomposed to molecular oxygen which oxidized glucose to gluconic acid (50-90% of glucose conversion depending on the reaction time and ~100% selectivity). The presence of manganese in MnSBA-15 was responsible for increased Au NPs size and only slightly influenced the negative charge on gold particles. To achieve effective activity a compromise between the number of active gold species and the level of EF has to be reached (for 5.7 nm Au NPs).
Collapse
|
9
|
Verma AM, Laverdure L, Melander MM, Honkala K. Mechanistic Origins of the pH Dependency in Au-Catalyzed Glycerol Electro-oxidation: Insight from First-Principles Calculations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anand M. Verma
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Laura Laverdure
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Marko M. Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Karoliina Honkala
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
10
|
Wolska J, Walkowiak A, Sobczak I, Wolski L, Ziolek M. Gold-containing Beta zeolite in base-free glucose oxidation – The role of Au deposition procedure and zeolite dopants. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Pandey S, Dumont MJ, Orsat V, Rodrigue D. Biobased 2,5-furandicarboxylic acid (FDCA) and its emerging copolyesters’ properties for packaging applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Walkowiak A, Wolska J, Wojtaszek-Gurdak A, Sobczak I, Wolski L, Ziolek M. Modification of Gold Zeolitic Supports for Catalytic Oxidation of Glucose to Gluconic Acid. MATERIALS 2021; 14:ma14185250. [PMID: 34576474 PMCID: PMC8467280 DOI: 10.3390/ma14185250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023]
Abstract
Activity of gold supported catalysts strongly depends on the type and composition of support, which determine the size of Au nanoparticles (Au NPs), gold-support interaction influencing gold properties, interaction with the reactants and, in this way, the reaction pathway. The aim of this study was to use two types of zeolites: the three dimensional HBeta and the layered two-dimensional MCM-36 as supports for gold, and modification of their properties towards the achievement of different properties in oxidation of glucose to gluconic acid with molecular oxygen and hydrogen peroxide. Such an approach allowed establishment of relationships between the activity of gold catalysts and different parameters such as Au NPs size, electronic properties of gold, structure and acidity of the supports. The zeolites were modified with (3-aminopropyl)-trimethoxysilane (APMS), which affected the support features and Au NPs properties. Moreover, the modification of the zeolite lattice with boron was applied to change the strength of the zeolite acidity. All modifications resulted in changes in glucose conversion, while maintaining high selectivity to gluconic acid. The most important findings include the differences in the reaction steps limiting the reaction rate depending on the nature of the oxidant applied (oxygen vs. H2O2), the important role of porosity of the zeolite supports, and accumulation of negative charge on Au NPs in catalytic oxidation of glucose.
Collapse
Affiliation(s)
| | - Joanna Wolska
- Correspondence: (A.W.); (J.W.); Tel.: +48-618-291-794 (A.W.)
| | | | | | | | | |
Collapse
|
13
|
Lancien A, Wojcieszak R, Cuvelier E, Duban M, Dhulster P, Paul S, Dumeignil F, Froidevaux R, Heuson E. Hybrid Conversion of
5
‐Hydroxymethylfurfural to
5
‐Aminomethyl‐
2
‐furancarboxylic acid: Toward New Bio‐sourced Polymers. ChemCatChem 2020. [DOI: 10.1002/cctc.202001446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Antoine Lancien
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS – Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Eric Cuvelier
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS – Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Matthieu Duban
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| | - Pascal Dhulster
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| | - Sébastien Paul
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS – Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Franck Dumeignil
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS – Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Renato Froidevaux
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| | - Egon Heuson
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| |
Collapse
|
14
|
Photocatalytic Oxidation of HMF under Solar Irradiation: Coupling of Microemulsion and Lyophilization to Obtain Innovative TiO 2-Based Materials. Molecules 2020; 25:molecules25225225. [PMID: 33182578 PMCID: PMC7696902 DOI: 10.3390/molecules25225225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 11/17/2022] Open
Abstract
The photocatalytic oxidation of biomass-derived building blocks such as 5-hydroxymethylfurfural (HMF) is a promising reaction for obtaining valuable chemicals and the efficient long-term storage of solar radiation. In this work, we developed innovative TiO2-based materials capable of base-free HMF photo-oxidation in water using simulated solar irradiation. The materials were prepared by combining microemulsion and spray-freeze drying (SFD), resulting in highly porous systems with a large surface area. The effect of titania/silica composition and the presence of gold-copper alloy nanoparticles on the properties of materials as well as photocatalytic performance were evaluated. Among the lab-synthesized photocatalysts, Ti15Si85 SFD and Au3Cu1/Ti15Si85 SFD achieved the higher conversions, while the best selectivity was observed for Au3Cu1/Ti15Si85 SFD. The tests with radical scavengers for both TiO2-m and Au3Cu1/Ti15Si85 SFD suggested that primary species responsible for the selective photo-oxidation of HMF are photo-generated electrons and/or superoxide radicals.
Collapse
|
15
|
|
16
|
Thuriot-Roukos J, Khadraoui R, Paul S, Wojcieszak R. Raman Spectroscopy Applied to Monitor Furfural Liquid-Phase Oxidation Catalyzed by Supported Gold Nanoparticles. ACS OMEGA 2020; 5:14283-14290. [PMID: 32596565 PMCID: PMC7315432 DOI: 10.1021/acsomega.0c00091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/07/2020] [Indexed: 05/13/2023]
Abstract
In this paper, Raman spectroscopy is used as a tool to study the mechanism of furfural oxidation using H2O2 as a reagent on gold nanoparticles (NPs) supported on hydrotalcites (HTs). This reaction was repeated, under the same conditions, but with different reaction times in a parallel multireactor system. The reaction media were analyzed using a macro device associated with a multipass cell permitting us to enhance the Raman signal by reflecting the laser beam 3 times. The Raman spectra showed the conversion of furfural to furoic acid without any chemical intermediates, thus privileging a direct pathway. Combining the results of the catalytic tests with those of the Raman study, the mechanism of furfural oxidation to furoic acid using gold NPs supported on HTs is proposed. The key points of this mechanism were found to be as follows: (i) the in situ formation of a base, originating from the Mg leaching from the HT support, initiates the oxidation of furfural by deprotonation; (ii) H2O2 used as a reagent in the solution increases the catalytic activity by its dissociation to form hydroxide ions; and (iii) the oxidation of furfural occurs on the surface of gold NPs and leads to higher furoic acid yield.
Collapse
|
17
|
Efficient Oxidative Esterification of Furfural Using Au Nanoparticles Supported on Group 2 Alkaline Earth Metal Oxides. Catalysts 2020. [DOI: 10.3390/catal10040430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Furfural (FF) is a strategic product for the development of highly valued chemicals from biomass. The oxidation product of FF, furoic acid (FA), is an important precursor for the synthesis of green esters, such as methyl furoate. Taking into account issues with the direct furfural oxidation, furfural derivatives, such as alkyl furoates, can be easily prepared via oxidative esterification. Here, Au nanoparticles that were immobilized on alkaline-earth metal oxide supports were studied for the oxidative esterification of furfural while using alcohol as both reactant and solvent. The formation of esters is favored by the presence of basic sites on catalyst surface, resulting in high selectivity, preventing the formation of the acetal as a by-product. The Au/MgO sample provided up to 95% methyl furoate (MF) yield, a fast reaction rate, and high performance for furfural:Au molar ratios between 50 and 300. Furthermore, this catalyst was stable during reuse, since both the selectivity and the activity were maintained after four cycles. Oxidative esterification products were achieved in the presence of other alcohols, leading to the formation of esters of up to C5 (isopentyl furoate) with high selectivity (>99%). Linear and branched esters were formed, but the long-chain linear alcohols resulted in higher yields, such as n-butyl furoate in 94% yield.
Collapse
|
18
|
Sun W, Gao T, Zhu G, Cao Q, Fang W. Influence of Support Properties and Particle Size on the Gold‐Catalyzed Base‐Free Aerobic Oxidation of 5‐Hydroxymethylfurfural. ChemistrySelect 2020. [DOI: 10.1002/slct.201904497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weixiao Sun
- School of Chemical Science and Technology Key Laboratory of Medicinal Chemistry for Natural Resource - Ministry of Education Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan ProvinceYunnan University 2 North Cuihu Road 650091 Kunming China
| | - Tianqi Gao
- School of Chemical Science and Technology Key Laboratory of Medicinal Chemistry for Natural Resource - Ministry of Education Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan ProvinceYunnan University 2 North Cuihu Road 650091 Kunming China
| | - Guanghui Zhu
- School of Chemical Science and Technology Key Laboratory of Medicinal Chemistry for Natural Resource - Ministry of Education Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan ProvinceYunnan University 2 North Cuihu Road 650091 Kunming China
| | - Qiue Cao
- School of Chemical Science and Technology Key Laboratory of Medicinal Chemistry for Natural Resource - Ministry of Education Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan ProvinceYunnan University 2 North Cuihu Road 650091 Kunming China
- National Demonstration Center for Experimental Chemistry and Chemical Engineering EducationYunnan University China
| | - Wenhao Fang
- School of Chemical Science and Technology Key Laboratory of Medicinal Chemistry for Natural Resource - Ministry of Education Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan ProvinceYunnan University 2 North Cuihu Road 650091 Kunming China
- National Demonstration Center for Experimental Chemistry and Chemical Engineering EducationYunnan University China
| |
Collapse
|
19
|
5-Hydroxymethylfurfural and Furfural Base-Free Oxidation over AuPd Embedded Bimetallic Nanoparticles. Catalysts 2020. [DOI: 10.3390/catal10010075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The heterogeneous catalytic partial oxidation of alcohols and aldehydes in the liquid phase usually needs the addition of a homogeneous base, which in turn makes the products’ recovery cumbersome, and can further induce undesired side reactions. In the present work, we propose the use of novel catalysts based on metallic Au, Pd and bimetallic AuPd nanoparticles embedded in a titanosilicate matrix. The as-prepared catalysts showed good efficiency in the base-free partial oxidation of furfural and 5-hydroxymethylfurfural. Au4Pd1@SiTi catalyst showed high selectivity (78%) to monoacids (namely, 5-formyl-2-furancarboxylic acid and 5-hydroxymethyl-2-furancarboxylic acid) at 50% 5-hydroxymethylfurfural (HMF) conversion. The selectivity even reached 83% in the case of furfural oxidation to furoic acid (at 50% furfural conversion). The performances of the catalysts strongly depended on the Au–Pd ratio, with an optimal value of 4:1. The pH of the solution was always below 3.5 and no leaching of metals was observed, confirming the stabilization of the metal nanoparticles within the titanosilicate host matrix.
Collapse
|
20
|
Liquid Phase Furfural Oxidation under Uncontrolled pH in Batch and Flow Conditions: The Role of In Situ Formed Base. Catalysts 2020. [DOI: 10.3390/catal10010073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Selective oxidation of furfural to furoic acid was performed with pure oxygen in aqueous phase under mild conditions and uncontrolled pH using hydrotalcite-supported gold nanoparticles as catalyst. Hydrotalcites with different Mg: Al ratios were tested as support. The effects of reaction time, temperature and furfural/catalyst ratio were evaluated. The catalyst Au/HT 4:1 showed the highest activity and selectivity to the desired product, achieving a complete conversion of furfural to furoic acid after 2 h at 110 °C. Further, stability tests were carried out in a continuous stirred-tank reactor and a progressive deactivation of the catalyst due to the leaching of Mg2+ cations from the support inducing changes in the pH of the reaction medium was observed.
Collapse
|
21
|
Synthesis of a Novel Magnetically Retrievable Nanocomposite with Au Nanocatalysts for Hydration Reaction. Catalysts 2019. [DOI: 10.3390/catal9100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Developing efficient catalysts with good recyclability is of great importance for its practical applications. In this study, a novel magnetically retrievable nanocomposite (Au-SiO2@Fe3O4-RGO) was synthesized for catalyzing hydration reaction. Active Au nanoparticles are deposited on core-shell SiO2@Fe3O4, which are further supported by a two-dimensional reduced graphene oxide (RGO) platform. The prepared Au-SiO2@Fe3O4-RGO was proven to be efficient as well as recyclable. An excellent catalytic performance, with 97% yield towards the hydration of phenylacetylene, was achieved for the catalyst in dioxane. Remarkably, the catalyst can be readily recycled through magnetic separation and achieved superior catalyst recovery and stability after seven cycles without any metal leaching. This work provides a strategy to fabricate recyclable and durable catalysts for industrial applications.
Collapse
|
22
|
Ayude MA, Doumic LI, Cassanello MC, Nigam KDP. Clean Catalytic Oxidation for Derivatization of Key Biobased Platform Chemicals: Ethanol, Glycerol, and Hydroxymethyl Furfural. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00977] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María Alejandra Ayude
- INTEMA, Facultad de Ingeniería, UNMdP, Av. Juan B. Justo 4302, Mar del Plata, B7608FDQ, Argentina
| | - Lucila I. Doumic
- INTEMA, Facultad de Ingeniería, UNMdP, Av. Juan B. Justo 4302, Mar del Plata, B7608FDQ, Argentina
| | - Miryan C. Cassanello
- Departamento de Industrias and ITAPROQ, Universidad de Buenos Aires, Int. Güiraldes 2620, Buenos Aires, C1428BGA, Argentina
| | - Krishna D. P. Nigam
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey Avenida, Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, México
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, Delhi 110016, India
| |
Collapse
|
23
|
Sha J, Paul S, Dumeignil F, Wojcieszak R. Au-based bimetallic catalysts: how the synergy between two metals affects their catalytic activity. RSC Adv 2019; 9:29888-29901. [PMID: 35531527 PMCID: PMC9071902 DOI: 10.1039/c9ra06001d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/16/2019] [Indexed: 01/18/2023] Open
Abstract
Supported bimetallic nanoparticles are particularly attractive catalysts due to increased activity and stability compared to their monometallic counterparts. In this work, gold-based catalysts have been studied as catalysts for the selective base-free oxidation of glucose. TiO2-supported Au–Pd and Au–Cu series prepared by the sol-immobilization and precipitation-reduction methods, respectively, showed a significant synergistic effect, particularly when the theoretical weight ratio of the two metals was close to 1 : 1 (with an actual experimental bulk Au/Pd molar ratio of ca. 0.8 and ca. 0.4 for Au/Cu) in both cases. XPS analysis showed that the presence of Auδ+, Pd2+ and CuOH species played an important role in the base-free glucose oxidation. Supported bimetallic nanoparticles are particularly attractive catalysts due to increased activity and stability compared to their monometallic counterparts.![]()
Collapse
Affiliation(s)
- Jin Sha
- Univ. Lille
- CNRS
- Centrale Lille
- ENSCL
- Univ. Artois
| | | | | | | |
Collapse
|
24
|
Mounguengui-Diallo M, Sadier A, Da Silva Perez D, Nikitine C, Puchot L, Habibi Y, Pinel C, Perret N, Besson M. Aerobic oxidation of C4–C6 α,ω-diols to the diacids in base-free medium over zirconia-supported (bi)metallic catalysts. NEW J CHEM 2019. [DOI: 10.1039/c9nj01695c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aerobic oxidation of (C4–C6) α,ω-diols in water produces the corresponding α,ω-diacids in high 83–96% yields over a Au–Pt/ZrO2 catalyst.
Collapse
Affiliation(s)
| | | | | | | | - Laura Puchot
- Luxembourg Institute of Science and Technology (LIST)
- L-4362 Esch-sur-Alzette
- Luxembourg
| | - Youssef Habibi
- Luxembourg Institute of Science and Technology (LIST)
- L-4362 Esch-sur-Alzette
- Luxembourg
| | | | | | | |
Collapse
|
25
|
Gao T, Chen J, Fang W, Cao Q, Su W, Dumeignil F. Ru/Mn Ce1O catalysts with enhanced oxygen mobility and strong metal-support interaction: Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation. J Catal 2018. [DOI: 10.1016/j.jcat.2018.09.034] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Shi H, Thapa PS, Subramaniam B, Chaudhari RV. Oxidation of Glucose Using Mono- and Bimetallic Catalysts under Base-Free Conditions. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Honghong Shi
- Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66045, United States
| | - Prem S. Thapa
- Microscopy and Analytical Imaging Laboratory, University of Kansas, Haworth Hall, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | - Bala Subramaniam
- Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66045, United States
| | - Raghunath V. Chaudhari
- Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
27
|
da Silva AG, Rodrigues TS, Candido EG, de Freitas IC, da Silva AH, Fajardo HV, Balzer R, Gomes JF, Assaf JM, de Oliveira DC, Oger N, Paul S, Wojcieszak R, Camargo PH. Combining active phase and support optimization in MnO2-Au nanoflowers: Enabling high activities towards green oxidations. J Colloid Interface Sci 2018; 530:282-291. [DOI: 10.1016/j.jcis.2018.06.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 02/01/2023]
|
28
|
Lolli A, Maslova V, Bonincontro D, Basile F, Ortelli S, Albonetti S. Selective Oxidation of HMF via Catalytic and Photocatalytic Processes Using Metal-Supported Catalysts. Molecules 2018; 23:molecules23112792. [PMID: 30373265 PMCID: PMC6278393 DOI: 10.3390/molecules23112792] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 11/30/2022] Open
Abstract
In this study, 5-hydroxymethylfurfural (HMF) oxidation was carried out via both the catalytic and the photocatalytic approach. Special attention was devoted to the preparation of the TiO2-based catalysts, since this oxide has been widely used for catalytic and photocatalytic application in alcohol oxidation reactions. Thus, in the catalytic process, the colloidal heterocoagulation of very stable sols, followed by the spray-freeze-drying (SFD) approach, was successfully applied for the preparation of nanostructured porous TiO2-SiO2 mixed-oxides with high surface areas. The versatility of the process made it possible to encapsulate Pt particles and use this material in the liquid-phase oxidation of HMF. The photocatalytic activity of a commercial titania and a homemade oxide prepared with the microemulsion technique was then compared. The influence of gold, base addition, and oxygen content on product distribution in the photocatalytic process was evaluated.
Collapse
Affiliation(s)
- Alice Lolli
- Department of Industrial Chemistry "Toso Montanari", Bologna University, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Valeriia Maslova
- Department of Industrial Chemistry "Toso Montanari", Bologna University, Viale Risorgimento 4, 40136 Bologna, Italy.
- C2P2, UMR 5265, CNRS⁻Univeristé de Lyon1 UCBL⁻CPE Lyon, Université de Lyon, 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Danilo Bonincontro
- Department of Industrial Chemistry "Toso Montanari", Bologna University, Viale Risorgimento 4, 40136 Bologna, Italy.
- C2P2, UMR 5265, CNRS⁻Univeristé de Lyon1 UCBL⁻CPE Lyon, Université de Lyon, 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Francesco Basile
- Department of Industrial Chemistry "Toso Montanari", Bologna University, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Simona Ortelli
- ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018 Faenza, Italy.
| | - Stefania Albonetti
- Department of Industrial Chemistry "Toso Montanari", Bologna University, Viale Risorgimento 4, 40136 Bologna, Italy.
- ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018 Faenza, Italy.
| |
Collapse
|
29
|
Buonerba A, Impemba S, Litta AD, Capacchione C, Milione S, Grassi A. Aerobic Oxidation and Oxidative Esterification of 5-Hydroxymethylfurfural by Gold Nanoparticles Supported on Nanoporous Polymer Host Matrix. CHEMSUSCHEM 2018; 11:3139-3149. [PMID: 30047572 DOI: 10.1002/cssc.201801560] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 06/08/2023]
Abstract
The aerobic oxidation and oxidative esterification of 5-hydroxymethylfurfural (HMF) catalyzed by gold nanoparticles (AuNPs) supported on a semicrystalline nanoporous multiblock copolymer matrix consisting of syndiotactic poly(styrene)-cis-1,4-poly(butadiene) (sPSB) have been investigated. Depending on the reaction parameters (support nanoporosity, presence of water, solvent, temperature, cocatalyst, oxygen pressure), the conversion of HMF can be finely addressed to the formation of the desired oxidation product, such as 2,5-diformylfuran (DFF), 5-formylfuran-2-carboxylic acid (FFCA), methyl 5-(hydroxymethyl)furan-2-carboxylate (MHMFC), dimethyl furan-2,5-dicarboxylate (DMFC), and furan-2,5-dicarboxylic acid (FDCA), under optimized reaction conditions. The AuNP-sPSB catalyst is highly effective and selective because the polymer support acts as a conveyor and concentrator of the reactants toward the catalytic sites.
Collapse
Affiliation(s)
- Antonio Buonerba
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 84084, Fisciano (SA), Italy
- Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126 (BA), Italy
| | - Salvatore Impemba
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 84084, Fisciano (SA), Italy
| | - Antonella Dentoni Litta
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 84084, Fisciano (SA), Italy
| | - Carmine Capacchione
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 84084, Fisciano (SA), Italy
- Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126 (BA), Italy
| | - Stefano Milione
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 84084, Fisciano (SA), Italy
- Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126 (BA), Italy
| | - Alfonso Grassi
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 84084, Fisciano (SA), Italy
- Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126 (BA), Italy
| |
Collapse
|
30
|
In-Situ Deposition of Plasmonic Gold Nanotriangles and Nanoprisms onto Layered Hydroxides for Full-Range Photocatalytic Response towards the Selective Reduction of p-Nitrophenol. Catalysts 2018. [DOI: 10.3390/catal8090354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, we present photocatalysis as a greener alternative to conventional catalysis where harsh reaction conditions, temperature and/or pressure are needed. Photodegradation of organic pollutants is a cost-effective, eco-friendly solution for the decontamination of water and air, and is a field that has been continuously growing over the last decade. Plasmonic metal nanoparticles absorb light irradiation that is transferred to the chemical reaction in a different fashion. Furthermore, plasmonic nanostructures can be combined with other materials, such as semiconductors or a basic support, to create hybrid systems capable of overcoming certain challenges that photocatalysis is facing nowadays and to expand the photocatalytic response towards the whole visible-near infrared (Vis-NIR) ranges. The main objective of this work has been to in-situ synthesize plasmonic anisotropic gold nanoparticles onto hydrotalcite (HT) and calcined hydrotalcite (CHT) supports by way of a sequential deposition-reduction (DR) process and to evaluate their efficiency as heterogeneous catalysts towards the selective oxidation of p-nitrophenol (hereafter 4-NP), a well-known model contaminant, either in the absence or the presence of full-range light irradiation sources (LEDs) spanning the whole UV-Vis-NIR range. Special attention has been paid to the optimization of the catalyst preparation parameters, including the pH and the concentration of reducing and stabilizing agents. Interestingly, the use of thermally modified hydrotalcites has enabled a strong metal-support interaction to induce the preferential formation of triangular-shaped Au nanoparticles with ca. 0.8 wt.% loading while increasing the colloidal stability and surface area of the catalyst with respect to the commercial untreated HT supports.
Collapse
|
31
|
Furfural Oxidation on Gold Supported on MnO2: Influence of the Support Structure on the Catalytic Performances. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8081246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of catalysts consisting of gold nanoparticles supported on MnO2 presenting different morphologies were synthesized and tested in the base-free oxidation of furfural. Ultra-small Au particles (less than 3 nm) were deposited on low (commercial MnO2) and high (NF, nanoflowers and NW, nanowires MnO2) surface area supports. High activity was observed for Au/MnO2-NF material with very high selectivity to furoic acid. The X-ray photoelectron spectroscopy (XPS) study confirmed the presence of a significant amount of highly active Auδ+ species on the surface of the Au/MnO2-NF catalyst. These species seem to be responsible for the high activity in oxidation of furfural under mild conditions (air as oxidant, 110 °C).
Collapse
|
32
|
Gao T, Yin Y, Fang W, Cao Q. Highly dispersed ruthenium nanoparticles on hydroxyapatite as selective and reusable catalyst for aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under base-free conditions. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|