1
|
Godwin J, Njimou JR, Abdus-Salam N, Adegoke HI, Panda PK, Tripathy BC, Maicaneanu SA. Nanosorbent based on coprecipitation of ZnO in goethite for competitive sorption of Cd(II)-Pb(II) and Cd(II)-Pb(II)-Ni(II) systems. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:149-165. [PMID: 38887757 PMCID: PMC11180079 DOI: 10.1007/s40201-023-00882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/25/2023] [Indexed: 06/20/2024]
Abstract
Amongst the various water pollutants, heavy metal ions require special attention because of their toxic nature and effects on humans and the environment. Preserving natural resources will have positive impacts on living conditions by reducing diseases and water treatment by nanotechnology is effective in solving this problem owing to the properties of nanomaterials. In this study, a goethite nanoparticle was prepared by hydrothermal method, while ZnO/goethite nanocomposite by co-precipitation was developed. The nanoparticles were characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Transform Electron Microscopy (TEM), Thermogravimetric Differential Thermal Analysis (TGA-DTA), Dynamic Light Scattering (DLS), and Breunner-Emmet-Teller (BET) surface area analysis. The adsorption of Cd(II)-Pb(II) and Cd(II)-Pb(II)-Ni(II) ions systems on ZnO/goethite nanocomposite was investigated in a batch mode. The findings of the study showed that nanoparticles ZnO/goethite composite were mixed of spherical and rod-like shapes. The BET results revealed average particle sizes of 41.11 nm for nanoparticles for ZnO/goethite while TGA/DTA confirmed the stability of the adsorbents. The optimum adsorption capacities of the nanocomposite for Pb(II), Cd(II), and Ni(II) ions from the Pb-Cd-Ni ternary system were 415.5, 195.3, and 87.13 mg g-1, respectively. The adsorption isotherm data fitted well with the Langmuir isotherm model. The study concluded that the nanoparticle adsorbents are efficient for the remediation of toxic pollutants and are, therefore, recommended for wastewater treatment.
Collapse
Affiliation(s)
- John Godwin
- Department of Chemistry, Kogi State College of Education (Technical), P.O.B 242, Kabba, Nigeria
- Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
- Hydro & Electrometallurgy Department, Institute of Minerals and Materials Technology, Bhubaneswar, 751 013 India
| | - Jacques Romain Njimou
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, P. O Box 454, Ngaoundere, Cameroon
- Madia Department of Chemistry, Biochemistry, Physics, and Engineering, Kopchick College of Natural Science and Mathematics, Indiana University of Pennsylvania, Indiana, PA 15705 USA
| | | | | | - Prasanna Kumar Panda
- Hydro & Electrometallurgy Department, Institute of Minerals and Materials Technology, Bhubaneswar, 751 013 India
| | - Bankim Chandra Tripathy
- Hydro & Electrometallurgy Department, Institute of Minerals and Materials Technology, Bhubaneswar, 751 013 India
| | - Sanda Andrada Maicaneanu
- Madia Department of Chemistry, Biochemistry, Physics, and Engineering, Kopchick College of Natural Science and Mathematics, Indiana University of Pennsylvania, Indiana, PA 15705 USA
| |
Collapse
|
2
|
Bavani T, Selvi A, Madhavan J, Selvaraj M, Vinesh V, Neppolian B, Vijayanand S, Murugesan S. One-pot synthesis of bismuth yttrium tungstate nanosheet decorated 3D-BiOBr nanoflower heterostructure with enhanced visible light photocatalytic activity. CHEMOSPHERE 2022; 297:133993. [PMID: 35189197 DOI: 10.1016/j.chemosphere.2022.133993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
A visible light driven BiOBr/BixY1-xWO6 nanocomposite photocatalyst of various compositions are prepared by the addition of different amounts of KBr (0.5, 1.0, 1.5, 2.0 mmol) in BixY1-xWO6 by a one-pot hydrothermal method. Furthermore, the photocatalytic properties of the as-prepared materials are analyzed by the decomposition of methylene blue under visible light illumination. In particular, the BiOBr/BixY1-xWO6 nanocomposite prepared by taking 1.5 mmol of KBr present a superior photocatalytic ability (78.3%) with the rate constant value 0.016 min-1, a low bandgap (Eg = 2.51 eV) as well as photoluminescence emission intensity than other photocatalysts prepared in this study. The radical scavenging studies revealed that OH and h+ performed an imperative role in the decomposition of methylene blue. Furthermore, the optimized photocatalyst is stable even after four cycles, which exposes the excellent photostability and reusability properties of the photocatalyst. In addition, a plausible mechanism of decomposition of methylene blue under visible light irradiation is also proposed.
Collapse
Affiliation(s)
- Thirungnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Adikesavan Selvi
- Department of Biotechnology, Thiruvalluvar University, Vellore, 632115, India
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Vasudevan Vinesh
- Department of Physics and Nanotechnology, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India
| | - Bernaurdshaw Neppolian
- Department of Physics and Nanotechnology, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India
| | - Selvaraj Vijayanand
- Department of Biotechnology, Thiruvalluvar University, Vellore, 632115, India
| | | |
Collapse
|
3
|
Wu X, Liu T, Ni W, Yang H, Huang H, He S, Li C, Ning H, Wu W, Zhao Q, Wu M. Engineering controllable oxygen vacancy defects in iron hydroxide oxide immobilized on reduced graphene oxide for boosting visible light-driven photo-Fenton-like oxidation. J Colloid Interface Sci 2022; 623:9-20. [PMID: 35561576 DOI: 10.1016/j.jcis.2022.04.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
Abstract
Visible light-driven photo-Fenton-like technology is a promising advanced oxidation process for water remediation, while the construction of effective synergetic system remains a great challenge. Herein, iron hydroxide oxide (α-FeOOH) with controllable oxygen vacancy defects were engineered on reduced graphene oxide (rGO) nanosheets (named as OVs-FeOOH/rGO) through an in-situ redox method for boosting visible light-driven photo-Fenton-like oxidation. By adjusting the pH environment to modulate the redox reaction kinetics between graphene oxide (GO) and ferrous salt precursors, the oxygen vacancy concentration in α-FeOOH could be precisely controlled. With optimized oxygen vacancy defects obtained at pH 5, the OVs-FeOOH/rGO displayed superior photo-Fenton-like performance for Rhodamine B degradation (99% within 40 mins, rate constant of 0.2278 mg-1 L min-1) with low H2O2 dosage (5 mM), standing out among the reported photo-Fenton-like catalysts. The catalyst also showed excellent reusability, general applicability, and tolerance ability of realistic environmental conditions, which demonstrates great potential for practical applications. The results reveal that moderate oxygen vacancy defects can not only strengthen absorption of visible light and organic pollutants, but also promote the charge transfer to simultaneously accelerate the photogenerated electron-hole separation and Fe(III)/Fe(II) Fenton cycle, leading to the remarkable photo-Fenton-like oxidation performance. This work sheds light on the controllable synthesis and mechanism of oxygen vacancy defects to develop efficient photo-Fenton-like catalysts for wastewater treatment.
Collapse
Affiliation(s)
- Xiaocui Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Tengfei Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Wanxin Ni
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Shuwei He
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Cuiyu Li
- Advanced Computing East China Sub-Center, Suma Technology Co., Ltd., Kunshan 215330, China
| | - Hui Ning
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenting Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Qingshan Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
4
|
Huang H, Zhang T, Cai X, Guo Z, Fan S, Zhang Y, Lin C, Gan T, Hu H, Huang Z. In Situ One-Pot Synthesis of C-Decorated and Cl-Doped Sea-Urchin-like Rutile Titanium Dioxide with Highly Efficient Visible-Light Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60337-60350. [PMID: 34889099 DOI: 10.1021/acsami.1c17081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Titanium dioxide (TiO2) that offers high light-harvesting capacity and efficient charge separation holds great promise in photocatalysis. In this work, an in situ one-pot hydrothermal synthesis was explored to prepare a C-decorated and Cl-doped sea-urchin-like rutile TiO2 (Cl-TiO2/C). The growth of sea-urchin-like 3D hierarchical nanostructures was governed by a mechanism of nucleation and nuclei growth-dissolution-recrystallization growth from time-dependent morphology evolution. The crystal morphology and the content of Cl and C could be controlled by the volume ratio of HCl to TBOT. Systematic studies indicated that the 0.4Cl-TiO2/C sample (the volume ratio of HCl to TBOT was 0.4) exhibited the highest visible-light photocatalytic activity for the degradation of rhodamine B, with kinetic rate constant (k) of 0.0221 min-1, being 6.5 and 3.75 times higher than that of TiO2 and Cl-TiO2. The enhanced photocatalytic performance could be attributed to the high charge separation and transfer efficiency induced by Cl-doping and C decoration and the excellent light-harvesting capacity caused by its sea-urchin-like nanostructure. Moreover, the 0.4Cl-TiO2/C sample exhibited good reusability and excellent structural stability for five cycles. This facile one-pot approach provides new insight for the preparation of a TiO2-based photocatalyst with excellent photocatalytic performance for potential application in practical wastewater treatment.
Collapse
Affiliation(s)
- Hongmiao Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Tongtong Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiunan Cai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhanjing Guo
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Songlin Fan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Cuiwu Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Designing of highly active g-C3N4/Sn doped ZnO heterostructure as a photocatalyst for the disinfection and degradation of the organic pollutants under visible light irradiation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113393] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Pelalak R, Heidari Z, Alizadeh R, Ghareshabani E, Nasseh N, Marjani A, Albadarin AB, Shirazian S. Efficient oxidation/mineralization of pharmaceutical pollutants using a novel Iron (III) oxyhydroxide nanostructure prepared via plasma technology: Experimental, modeling and DFT studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125074. [PMID: 33461011 DOI: 10.1016/j.jhazmat.2021.125074] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
High-performance novel iron oxyhydroxide (limonite) nanostructure, with improved surface reactive sites, was prepared via one-pot, eco-friendly, free precursor and cold glow discharge N2-plasma technique. Natural and plasma treated (PTNL/N2) limonite samples were characterized by FESEM, XPS, XRD, FTIR, AAS, EDX, BET/BJH and pHpzc to confirm the successful synthesis. Central composite design (CCD) and artificial neural network (ANN, topology of 4:8:1) methods were utilized to study the oxidation/mineralization of phenazopyridine (PhP) as a hazardous contaminant by heterogeneous catalytic ozonation process (HCOP). The obtained results indicated that PTNL/N2 had the highest catalytic performance in PhP degradation (98.6% in 40 min) and mineralization (80.4% in 120 min). The degradation mechanism in different processes was investigated by dissolved ozone concentration, various organic scavengers (BQ and TBA) and inorganic salts (NaNO3, NaCl, Na2CO3 and NaH2PO4). Moreover, reusability-stability, Fe and nitrogen (NO3- and NH4+) ions release were assessed during different AOPs. Furthermore, toxicity tests indicated that the HCOP using PTNL/N2 was able to detoxify the PhP solutions efficiently. Finally, Density Functional Theory (DFT) studies were employed to introduce the most plausible contaminant degradation pathway, reactive sites and byproducts. This research provided a new insight into the improvement of wastewater treatment studies by a combination of experiment and computer simulation.
Collapse
Affiliation(s)
- Rasool Pelalak
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - Zahra Heidari
- Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz 51335-1996, Iran
| | - Reza Alizadeh
- Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz 51335-1996, Iran
| | - Eslam Ghareshabani
- Physics Faculty, Sahand University of Technology, Sahand New Town, Tabriz 51335-1996, Iran
| | - Negin Nasseh
- Social Determinants of Health Research Center, Faculty of Health, Environmental Health Engineering Department, Birjand University of Medical Sciences, Birjand, Iran
| | - Azam Marjani
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Ahmad B Albadarin
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Saeed Shirazian
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland; Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin prospekt, Chelyabinsk 454080, Russia
| |
Collapse
|
7
|
Talreja N, Ashfaq M, Chauhan D, Mera AC, Rodríguez CA. Strategic Doping Approach of the Fe-BiOI Microstructure: An Improved Photodegradation Efficiency of Tetracycline. ACS OMEGA 2021; 6:1575-1583. [PMID: 33490817 PMCID: PMC7818580 DOI: 10.1021/acsomega.0c05398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The present study describes the strategic doping of Fe metal ions into a BiOI microstructure using ex situ and in situ processes to synthesize a Fe-BiOI microstructure and their effect on photocatalytic degradation of tetracycline (TC). The data suggested that in situ Fe-BiOI (Fe-BiOI-In) has superior performance compared to ex situ Fe-BiOI (Fe-BiOI-Ex) due to the uniform dispersion of Fe within the Fe-BiOI material. Calculated bandgaps ∼1.8, ∼1.5, and 2.4 eV were observed for BiOI (without Fe), Fe-BiOI-In, and Fe-BiOI-Ex, respectively. Interestingly, Fe incorporation within BiOI might decrease the bandgap in Fe-BiOI-In due to the uniform distribution of metal ions, whereas increasing the bandgap in Fe-BiOI-Ex attributed to nonuniform distribution or agglomeration of metal ions. The uniform dispersion of Fe within Fe-BiOI modulates electronic properties as well as increases the exposure of Fe ions with TC, thereby higher degradation efficiency of TC. The in situ Fe-BiOI material shows 67 and 100% degradation of TC at 10 and 1 mg/L, respectively. The TC degradation was also found to be pH-dependent; when increasing the pH value up to 10, 94% degradation was achieved at 10 mg/L within 60 min of solar irradiation. The analysis was also performed over BiOI, which proves that Fe has a profound effect on TC degradation as Fe(II) tends to trigger oxidation-reduction by utilizing the chelate formation tendency of TC. Therefore, the prepared Fe-BiOI-In has the potential ability to degrade pharmaceutical compounds, especially, TC from wastewater.
Collapse
Affiliation(s)
- Neetu Talreja
- Multidisciplinary
Research Institute for Science and Technology, IIMCT, University of La Serena, La Serena 1700000, Chile
- Advanced
Ceramics and Nanotechnology Laboratory, Department of Materials Engineering,
Faculty of Engineering, University of Concepción, Concepción 4070409, Chile
| | - Mohammad Ashfaq
- Multidisciplinary
Research Institute for Science and Technology, IIMCT, University of La Serena, La Serena 1700000, Chile
- Advanced
Ceramics and Nanotechnology Laboratory, Department of Materials Engineering,
Faculty of Engineering, University of Concepción, Concepción 4070409, Chile
- School
of Life Science, BS AbdurRahaman Crescent
Institute of Science and Technology, Chennai 600048, India
| | - Divya Chauhan
- Department
of Chemical and Biomedical Engineering, University of South Florida, Tampa 33620, Florida, United States
| | - Adriana C. Mera
- Multidisciplinary
Research Institute for Science and Technology, IIMCT, University of La Serena, La Serena 1700000, Chile
| | - C. A. Rodríguez
- Multidisciplinary
Research Institute for Science and Technology, IIMCT, University of La Serena, La Serena 1700000, Chile
- Department
of Chemistry, Faculty of Sciences, University of La Serena, La Serena 1700000, Chile
| |
Collapse
|
8
|
Bavani T, Madhavan J, Prasad S, AlSalhi MS, AlJaafreh MJ. A straightforward synthesis of visible light driven BiFeO 3/AgVO 3 nanocomposites with improved photocatalytic activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116067. [PMID: 33316499 DOI: 10.1016/j.envpol.2020.116067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Herein, an efficient visible-light-driven BiFeO3/AgVO3 nanocomposite was effectively fabricated via a facile co-precipitation procedure. The physicochemical properties of BiFeO3/AgVO3 nanocomposites were investigated via Fourier transform-infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), UV visible diffuse reflectance spectroscopy (DRS) and photoelectrochemical studies (PEC). The photocatalytic activity (PCA) of BiFeO3/AgVO3 nanocomposites was assessed with regard to the photocatalytic degradation of Rhodamine-B (RhB) when subjected to visible light irradiation (VLI). Upon 90 min of illumination, the optimal 3%-BiFeO3/AgVO3 nanocomposite showed a greater photocatalytic degradation, which was ∼3 times higher than the bare AgVO3. The lower PL intensity of 3%-BiFeO3/AgVO3 nanocomposite exposed the low recombination rate, which improved the photo-excited charge carriers separation efficiency. The experimental outcomes showed that the BiFeO3/AgVO3 nanocomposite might be an encouraging material for treatment of industrial and metropolitan wastewater. Moreover, a plausible RhB degradation mechanism was proposed proving the participation of the generated OH and O2- radicals in the degradation over BiFeO3/AgVO3 nanocomposite.
Collapse
Affiliation(s)
- Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| | - Saradh Prasad
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Mamduh J AlJaafreh
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Zhang J, Wang J, Zhu Q, Zhang B, Xu H, Duan J, Hou B. Fabrication of a Novel AgBr/Ag 2MoO 4@InVO 4 Composite with Excellent Visible Light Photocatalytic Property for Antibacterial Use. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1541. [PMID: 32781592 PMCID: PMC7466578 DOI: 10.3390/nano10081541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 01/10/2023]
Abstract
A novel AgBr/Ag2MoO4@InVO4 composite photocatalyst with different heterojunction structures was successfully constructed by compounding InVO4 with Ag2MoO4 and AgBr. According to the degradation, antibacterial and free radical trapping data, the photocatalytic antibacterial and antifouling activities of AgBr/Ag2MoO4@InVO4 composite were evaluated, and the corresponding photocatalytic reaction mechanism was proposed. Adding AgBr/Ag2MoO4@InVO4 composite, the degradation rate of ciprofloxacin (CIP) achieved 95.5% within 120 min. At the same time, the antibacterial rates of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) achieved 99.99%. The AgBr/Ag2MoO4@InVO4 composite photocatalyst showed promising usage in photocatalytic antibacterial and purification areas.
Collapse
Affiliation(s)
- Jie Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jia Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qingjun Zhu
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Binbin Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Huihui Xu
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Baorong Hou
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
10
|
Arumugam Senthil R, Khan A, Pan J, Osman S, Yang V, Kumar TR, Sun Y, Liu X. A facile single-pot synthesis of visible-light-driven AgBr/Ag2CO3 composite as efficient photocatalytic material for water purification. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Senthil RA, Osman S, Pan J, Khan A, Yang V, Kumar TR, Sun Y, Lin Y, Liu X, Manikandan A. One-pot preparation of AgBr/α-Ag2WO4 composite with superior photocatalytic activity under visible-light irradiation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124079] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Zhang Y, Shi L, Geng Z, Ren T, Yang Z. The improvement of photocatalysis O 2 production over BiVO 4 with amorphous FeOOH shell modification. Sci Rep 2019; 9:19090. [PMID: 31836725 PMCID: PMC6911067 DOI: 10.1038/s41598-019-54940-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
A novel amorphous FeOOH modified BiVO4 photocatalyst (A-FeOOH/BiVO4) was successfully produced and characterized by various techniques. The results showed that amorphous FeOOH with about 2 nm thickness evenly covered on BiVO4 surface, which caused resultant A-FeOOH/BiVO4 exhibiting higher visible light photocatalytic performance for producing O2 from water than BiVO4. When the covered amount of amorphous FeOOH was 8%, the resultant photocatalyst possessed the best photocatalytic performance. To find the reasons for the improvement of photocatalytic property, electrochemical experiments, DRS, PL and BET, were also measured, the experimental results indicated that interface effect between amorphous FeOOH and BiVO4 could conduce to migration of photogenerated charge, and exhibit stronger light responded capacity. These positive factors promoted A-FeOOH/BiVO4 presenting improved the photocatalytic performance. In a word, the combination of amorphous FeOOH with BiVO4 is an effective strategy to conquer important challenges in photocatalysis field.
Collapse
Affiliation(s)
- Ying Zhang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, 113001, China
| | - Lei Shi
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, 113001, China.
| | - Zhongxing Geng
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, 113001, China
| | - Tieqiang Ren
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, 113001, China
| | - Zhanxu Yang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, 113001, China.
| |
Collapse
|
13
|
Synthesis of WO3 nanofibers decorated with BiOCl nanosheets for photocatalytic degradation of organic pollutants under visible light. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123752] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Vali A, Sarker HP, Jee H, Kormányos A, Firouzan F, Myung N, Paeng K, Huda MN, Janáky C, Rajeshwar K. Electrodeposition of Silver Vanadate Films: A Tale of Two Polymorphs. Chemphyschem 2019; 20:2635-2646. [DOI: 10.1002/cphc.201900558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/11/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Abbas Vali
- Department of Chemistry and Biochemistry The University of Texas at Arlington Arlington, Texas 76019 USA
| | - Hori P. Sarker
- Department of Physics The University of Texas at Arlington Arlington, Texas 76019 USA
| | - Hyung‐Woo Jee
- Department of Chemistry Yonsei University Wonju, Kangwon 26493 Korea
| | - Attila Kormányos
- Department of Physical Chemistry and Materials Science University of Szeged Rerrich Square 1 Szeged H-6720 Hungary
- MTA-SZTE Lendület Photoelectrochemistry Research Group Szeged H-6720 Hungary
| | - Farinaz Firouzan
- Department of Chemistry and Biochemistry The University of Texas at Arlington Arlington, Texas 76019 USA
| | - Noseung Myung
- Department of Energy & Materials Konkuk University Glocal Campus Chungju, Chungbuk 26493 Korea
| | - Ki‐Jung Paeng
- Department of Chemistry Yonsei University Wonju, Kangwon 26493 Korea
| | - Muhammad N. Huda
- Department of Physics The University of Texas at Arlington Arlington, Texas 76019 USA
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science University of Szeged Rerrich Square 1 Szeged H-6720 Hungary
- MTA-SZTE Lendület Photoelectrochemistry Research Group Szeged H-6720 Hungary
| | - Krishnan Rajeshwar
- Department of Chemistry and Biochemistry The University of Texas at Arlington Arlington, Texas 76019 USA
| |
Collapse
|
15
|
A C-Doped TiO2/Fe3O4 Nanocomposite for Photocatalytic Dye Degradation under Natural Sunlight Irradiation. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3030075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetically recyclable C-doped TiO2/Fe3O4 (C-TiO2/Fe3O4) nanocomposite was successfully synthesized via a sol–gel method. The synthesized samples were characterized using SEM, energy-dispersive X-ray spectroscopy (EDS), FTIR, and UV-VIS diffuse reflectance spectroscopy (DRS) techniques. The results clearly showed that a C-TiO2/Fe3O4 nanocomposite was produced. The photocatalytic activities of the prepared pristine (TiO2), C-doped TiO2 (C-TiO2) and C-TiO2/Fe3O4 were evaluated by the photodegradation of methyl orange (MO) under natural sunlight. The effect of catalyst loading and MO concentration were studied and optimized. The C-TiO2/Fe3O4 nanocomposite exhibited an excellent photocatalytic activity (99.68%) that was higher than the TiO2 (55.41%) and C-TiO2 (70%) photocatalysts within 150 min. The magnetic nanocomposite could be easily recovered from the treated solution by applying external magnetic field. The C-TiO2/Fe3O4 composite showed excellent photocatalytic performance for four consecutive photocatalytic reactions. Thus, this work could provide a simple method for the mass production of highly photoactive and stable C-TiO2/Fe3O4 photocatalyst for environmental remediation.
Collapse
|
16
|
Fabrication of Polymer@α-FeOOH Core–Shell Particles for the Photocatalytic Degradation of Organic Pollutant. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01211-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Zhang S, Su C, Ren H, Li M, Zhu L, Ge S, Wang M, Zhang Z, Li L, Cao X. In-Situ Fabrication of g-C₃N₄/ZnO Nanocomposites for Photocatalytic Degradation of Methylene Blue: Synthesis Procedure Does Matter. NANOMATERIALS 2019; 9:nano9020215. [PMID: 30736333 PMCID: PMC6409917 DOI: 10.3390/nano9020215] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 11/19/2022]
Abstract
The nanocomposite preparation procedure plays an important role in achieving a well-established heterostructured junction, and hence, an optimized photocatalytic activity. In this study, a series of g-C3N4/ZnO nanocomposites were prepared through two distinct procedures of a low-cost, environmentally-friendly, in-situ fabrication process, with urea and zinc acetate being the only precursor materials. The physicochemical properties of synthesized g-C3N4/ZnO composites were mainly characterized by XRD, UV–VIS diffuse reflectance spectroscopy (DRS), N2 adsorption-desorption, FTIR, TEM, and SEM. These nanocomposites’ photocatalytic properties were evaluated in methylene blue (MB) dye photodecomposition under UV and sunlight irradiation. Interestingly, compared with ZnO nanorods, g-C3N4/ZnO nanocomposites (x:1, obtained from urea and ZnO nanorods) exhibited weak photocatalytic activity likely due to a “shading effect”, while nanocomposites (x:1 CN, made from g-C3N4 and zinc acetate) showed enhanced photocatalytic activity that can be ascribed to the effective establishment of heterojunctions. A kinetics study showed that a maximum reaction rate constant of 0.1862 min-1 can be achieved under solar light illumination, which is two times higher than that of bare ZnO nanorods. The photocatalytic mechanism was revealed by determining reactive species through adding a series of scavengers. It suggested that reactive ●O2− and h+ radicals played a major role in promoting dye photodegradation.
Collapse
Affiliation(s)
- Shengqiang Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
| | - Changsheng Su
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA.
| | - Hang Ren
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
| | - Mengli Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
| | - Longfeng Zhu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
| | - Shuang Ge
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
| | - Min Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China.
| | - Zulei Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
| | - Xuebo Cao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China.
| |
Collapse
|