1
|
Liu H, Li Y, Yang Z, Ge Q, Wu Z, Zhang W. Pd‐Catalyzed Aerobic Intermolecular 1,2‐Diamination of Conjugated Dienes: Regio‐ and Chemoselective Synthesis of Piperazines and 2‐Piperazinones. Chemistry 2022; 28:e202201808. [DOI: 10.1002/chem.202201808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Huikang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yunyi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Institute of Pharmacy & Pharmacology School of Pharmaceutical Science Hengyang Medical School University of South China Hengyang Hunan 421001 P. R. China
| | - Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Institute of Pharmacy & Pharmacology School of Pharmaceutical Science Hengyang Medical School University of South China Hengyang Hunan 421001 P. R. China
| | - Zhengxing Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
2
|
Turksoy A, Bouayad‐Gervais S, Schoenebeck F. N
‐CF
3
Imidazolidin‐2‐one Derivatives via Photocatalytic and Silver‐Catalyzed Cyclizations. Chemistry 2022; 28:e202201435. [DOI: 10.1002/chem.202201435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Abdurrahman Turksoy
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Samir Bouayad‐Gervais
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
3
|
Li Q, Fang X, Pan R, Yao H, Lin A. Palladium-Catalyzed Asymmetric Sequential Hydroamination of 1,3-Enynes: Enantioselective Syntheses of Chiral Imidazolidinones. J Am Chem Soc 2022; 144:11364-11376. [PMID: 35687857 DOI: 10.1021/jacs.2c03620] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pd-catalyzed sequential hydroamination of readily available 1,3-enynes is reported. The redox-neutral process provides an efficient route to synthesize a broad scope of imidazolidinones, thiadiazolidines, and imidazolidines. Asymmetric sequential hydroamination generates a series of synthetically valuable, enantioenriched imidazolidinones. Mechanistic studies revealed that the transformation occurred via an intermolecular enyne hydroamination pathway to give an allene intermediate. Subsequent intramolecular hydroamination of the allene intermediate proceeded under the Curtin-Hammett principle to provide enantioenriched imidazolidinone products.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinxin Fang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Rui Pan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
4
|
Methods for substitution of the thioxo group with the oxo group in imidazolidine-2-thione derivatives. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Matsuo H, Choi JC, Fujitani T, Fujita KI. Carbonylation of o-phenylenediamines with CO2 to 2-benzimidazolones catalyzed by alumina. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Siow A, Tasma Z, Walker CS, Brimble MA, Harris PWR. Synthesis and development of seven-membered constrained cyclic urea based PSMA inhibitors via RCM. NEW J CHEM 2022. [DOI: 10.1039/d2nj01016j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular ring-closing metathesis on an N,N-diallyl Glu-urea-Gly substrate affords 7-membered cyclic ureas as inhibitors of prostrate specific membrane antigen (PMSA).
Collapse
Affiliation(s)
- Andrew Siow
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Paul. W. R. Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
7
|
Peng J, Tamura M, Yabushita M, Fujii R, Nakagawa Y, Tomishige K. CeO 2-Catalyzed Synthesis of 2-Imidazolidinone from Ethylenediamine Carbamate. ACS OMEGA 2021; 6:27527-27535. [PMID: 34693173 PMCID: PMC8529688 DOI: 10.1021/acsomega.1c04516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
CeO2 acted as an effective and reusable heterogeneous catalyst for the direct synthesis of 2-imidazolidinone from ethylenediamine carbamate (EDA-CA) without further addition of CO2 in the reaction system. 2-Propanol was the best solvent among the solvents tested from the viewpoint of selectivity to 2-imidazolidinone, and the use of an adequate amount of 2-propanol provided high conversion and selectivity for the reaction. This positive effect of 2-propanol on the catalytic reaction can be explained by the solubility of EDA-CA in 2-propanol under the reaction conditions and no formation of solvent-derived byproducts. This catalytic system using the combination of the CeO2 catalyst and the 2-propanol solvent provided 2-imidazolidinone in up to 83% yield on the EDA-CA basis at 413 K under Ar. The reaction conducted under Ar showed a higher reaction rate than that with pressured CO2, which clearly demonstrated the advantage of the catalytic system operated at low CO2 pressure or even without CO2.
Collapse
Affiliation(s)
- Jie Peng
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Masazumi Tamura
- Research
Center for Artificial Photosynthesis, Advanced Research Institute
for Natural Science and Technology, Osaka
City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Mizuho Yabushita
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Ryotaro Fujii
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Organic
Materials Research Laboratory, Tosoh Corporation, 4560, Kaisei-cho, Shunan 746-8501, Yamaguchi, Japan
| | - Yoshinao Nakagawa
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Keiichi Tomishige
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
8
|
Li Y, Chen F, Zhu S, Chu L. Photoinduced triiodide-mediated [3 + 2] cycloaddition of N-tosyl aziridines and alkenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00102g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A photoinduced triiodide-mediated [3 + 2] cycloaddition of N-Ts aziridines and alkenes is described herein. This operationally simple protocol enables regioselective access to a wide range of substituted pyrrolidines under mild-free conditions.
Collapse
Affiliation(s)
- Yuanbo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
9
|
Duangjan C, Rukachaisirikul V, Kaeobamrung J. Synthesis of imidazolidin-2-ones via the cascade reactions of α-chloroaldoxime O-methanesulfonates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Li J, Yang P, Xie X, Jiang S, Tao L, Li Z, Lu C, Liu W. Catalyst‐Free Electrosynthesis of Benzimidazolones through Intramolecular Oxidative C−N Coupling. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jiang‐Sheng Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Pan‐Pan Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Xin‐Yun Xie
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Si Jiang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Li Tao
- State Grid Hunan Electric Power Company Limited Research Institute Changsha 410004 People's Republic of China
| | - Zhi‐Wei Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Cui‐Hong Lu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Wei‐Dong Liu
- National Engineering Research Center for AgrochemicalsHunan Research Institute of Chemical Industry Changsha 410007 People's Republic of China
| |
Collapse
|
11
|
Taily IM, Saha D, Banerjee P. Palladium-catalyzed regio- and stereoselective access to allyl ureas/carbamates: facile synthesis of imidazolidinones and oxazepinones. Org Biomol Chem 2020; 18:6564-6570. [PMID: 32789352 DOI: 10.1039/d0ob01514h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Typically, transition metal catalysis enforces the stereodefined outcome of a reaction. Here we disclose the palladium-catalyzed regio- and stereoselective access to allylic ureas/carbamates and their further exploitation to diverse cyclic structures under operationally simple reaction conditions. This protocol features palladium-catalyzed decarboxylative amidation of highly modular VECs with good to excellent yield, minimal waste production, wide substrate scope, and low catalyst loading. In follow-up chemistry, we demonstrated the debenzylation of vinylic imidazolidinones to N-hydroxycyclic ureas and regioselective derivatization towards the facile synthesis of halohydrins and oxiranes under mild reaction conditions in good to excellent yields.
Collapse
Affiliation(s)
- Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Debarshi Saha
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
12
|
Aghapoor K, Mohsenzadeh F, Darabi HR, Sayahi H, Jalali MR. ZnCl
2
/Urea Eutectic Solvent as Stable Carbonylation Source for Benign Synthesis of 2–Benzimidazolones and 2–Imidazolones: An Effective Strategy for Preventing NH
3
Gas Evolution. ChemistrySelect 2019. [DOI: 10.1002/slct.201902706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kioumars Aghapoor
- Applied Chemicals Synthesis Lab.Chemistry & Chemical Engineering Research Center of Iran Pajoohesh Blvd., km 17, Karaj Hwy Tehran 14968-13151 Iran
| | - Farshid Mohsenzadeh
- Applied Chemicals Synthesis Lab.Chemistry & Chemical Engineering Research Center of Iran Pajoohesh Blvd., km 17, Karaj Hwy Tehran 14968-13151 Iran
| | - Hossein Reza Darabi
- Applied Chemicals Synthesis Lab.Chemistry & Chemical Engineering Research Center of Iran Pajoohesh Blvd., km 17, Karaj Hwy Tehran 14968-13151 Iran
| | - Hani Sayahi
- Applied Chemicals Synthesis Lab.Chemistry & Chemical Engineering Research Center of Iran Pajoohesh Blvd., km 17, Karaj Hwy Tehran 14968-13151 Iran
| | - Mohammad Reza Jalali
- Applied Chemicals Synthesis Lab.Chemistry & Chemical Engineering Research Center of Iran Pajoohesh Blvd., km 17, Karaj Hwy Tehran 14968-13151 Iran
| |
Collapse
|
13
|
Hulla M, Dyson PJ. Pivotal Role of the Basic Character of Organic and Salt Catalysts in C−N Bond Forming Reactions of Amines with CO
2. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Martin Hulla
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
14
|
Hulla M, Dyson PJ. Pivotal Role of the Basic Character of Organic and Salt Catalysts in C-N Bond Forming Reactions of Amines with CO 2. Angew Chem Int Ed Engl 2019; 59:1002-1017. [PMID: 31364789 DOI: 10.1002/anie.201906942] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Indexed: 01/12/2023]
Abstract
Organocatalysts promote a range of C-N bond forming reactions of amines with CO2 . Herein, we review these reactions and attempt to identify the unifying features of the catalysts that allows them to promote a multitude of seemingly unrelated reactions. Analysis of the literature shows that these reactions predominantly proceed by carbamate salt formation in the form [BaseH][RR'NCOO]. The anion of the carbamate salt acts as a nucleophile in hydrosilane reductions of CO2 , internal cyclization reactions or after dehydration as an electrophile in the synthesis of urea derivatives. The reactions are enhanced by polar aprotic solvents and can be either promoted or hindered by H-bonding interactions. The predominant role of all types of organic and salt catalysts (including ionic liquids, ILs) is the stabilization of the carbamate salt, mostly by acting as a base. Catalytic enhancement depends on the combination of the amine, the base strength, the solvent, steric factors, ion pairing and H-bonding. A linear relationship between the base strength and the reaction yield has been demonstrated with IL catalysts in the synthesis of formamides and quinazoline-2,4-diones. The role of organocatalysts in the reactions indicates that all bases of sufficient strength should be able to catalyze the reactions. However, a physical limit to the extent of a purely base catalyzed reaction mechanism should exist, which needs to be identified, understood and overcome by synergistic or alternative methods.
Collapse
Affiliation(s)
- Martin Hulla
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
15
|
Mostarda S, Gür Maz T, Piccinno A, Cerra B, Banoglu E. Optimisation by Design of Experiment of Benzimidazol-2-One Synthesis under Flow Conditions. Molecules 2019; 24:molecules24132447. [PMID: 31277341 PMCID: PMC6651037 DOI: 10.3390/molecules24132447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/19/2023] Open
Abstract
A novel flow-based approach for the preparation of benzimidazol-2-one (1) scaffold by the 1,1′-carbonyldiimidazole (CDI)-promoted cyclocarbonylation of o-phenylenediamine (2) is reported. Starting from a preliminary batch screening, the model reaction was successfully translated under flow conditions and optimised by means of design of experiment (DoE). The method allowed the efficient preparation of this privileged scaffold and to set up a general protocol for the multigram-scale preparation in high yield, purity, and productivity, and was successfully applied for the multigram flow synthesis of N-(2-chlorobenzyl)-5-cyano-benzimidazol-2-one, which is a key synthon for hit-to-lead explorations in our anti-inflammatory drug discovery program.
Collapse
Affiliation(s)
- Serena Mostarda
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
- Current affiliation: Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Tugçe Gür Maz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06560 Ankara, Turkey
| | - Alessandro Piccinno
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Bruno Cerra
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06560 Ankara, Turkey.
| |
Collapse
|
16
|
Pal K, Sontakke GS, Volla CMR. Rh(II)-Catalyzed Highly Diastereoselective Cascade Transannulation of N-Sulfonyl-1,2,3-triazoles and Vinyl Benzoxazinanones. Org Lett 2019; 21:3716-3720. [DOI: 10.1021/acs.orglett.9b01174] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Geetanjali S. Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
17
|
Casnati A, Perrone A, Mazzeo PP, Bacchi A, Mancuso R, Gabriele B, Maggi R, Maestri G, Motti E, Stirling A, Ca' ND. Synthesis of Imidazolidin-2-ones and Imidazol-2-ones via Base-Catalyzed Intramolecular Hydroamidation of Propargylic Ureas under Ambient Conditions. J Org Chem 2019; 84:3477-3490. [PMID: 30788963 DOI: 10.1021/acs.joc.9b00064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first organo-catalyzed synthesis of imidazolidin-2-ones and imidazol-2-ones via intramolecular hydroamidation of propargylic ureas is reported. The phosphazene base BEMP turned out to be the most active organo-catalyst compared with guanidine and amidine bases. Excellent chemo- and regioselectivities to five-membered cyclic ureas have been achieved under ambient conditions, with a wide substrate scope and exceptionally short reaction times (down to 1 min). A base-mediated isomerization step to an allenamide intermediate is the most feasible reaction pathway to give imidazol-2-ones, as suggested by DFT studies.
Collapse
Affiliation(s)
- Alessandra Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - Antonio Perrone
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - Paolo P Mazzeo
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy.,Biopharmanet-tec , Parco delle Scienze, 27/A , 43124 Parma , Italy
| | - Alessia Bacchi
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy.,Biopharmanet-tec , Parco delle Scienze, 27/A , 43124 Parma , Italy
| | - Raffaella Mancuso
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Arcavacata di Rende, Cosenza , Italy
| | - Bartolo Gabriele
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Arcavacata di Rende, Cosenza , Italy
| | - Raimondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - Elena Motti
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| | - András Stirling
- Theoretical Chemistry Research Group, Institute of Organic Chemistry , Research Centre for Natural Sciences , Budapest , Hungary
| | - Nicola Della Ca'
- Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , 43124 Parma , Italy
| |
Collapse
|