1
|
Montà-González G, Martínez-Máñez R, Martí-Centelles V. Synthesis of a Pd 2L 4 Hydrazone Molecular Cage Through Multiple Reaction Pathways. Int J Mol Sci 2024; 25:11861. [PMID: 39595930 PMCID: PMC11593401 DOI: 10.3390/ijms252211861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Molecular cages are preorganized molecules with a central cavity, typically formed through the reaction of their building blocks through chemical bonds. This requires, in most cases, forming and breaking reversible bonds during the cage formation reaction pathway for error correction to drive the reaction to the cage product. In this work, we focus on both Pd-ligand and hydrazone bonds implemented in the structure of a Pd2L4 hydrazone molecular cage. As the cage contains two different types of reversible bonds, we envisaged a cage formation comparative study by performing the synthesis of the cage through three different reaction pathways involving the formation of Pd-ligand bonds, hydrazone bonds, or a combination of both. The three reaction pathways produce the cage with yields ranging from 73% to 79%. Despite the complexity of the reaction, the cage is formed in a high yield, even for the reaction pathway that involves the formation of 16 bonds. This research paves the way for more sophisticated cage designs through complex reaction pathways.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain;
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain;
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Avenida Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain;
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Steinmetz M, Schurhammer R, Gourlaouen C, Sémeril D. Hydrogenation Versus Hydrosilylation: The Substantial Impact of a Palladium Capsule on the Catalytic Outcome. Molecules 2024; 29:4910. [PMID: 39459278 PMCID: PMC11510042 DOI: 10.3390/molecules29204910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
A palladium capsule, made of three cavitands, namely P,P-dichlorido{5,17-bis[5-(diphenylphosphanyl)-4(24),6(10),12(16),18(22)-tetramethylenedioxy-2,8,14,20-tetrapentylresorcin[4]arenyl-17-oxymthyl]-4(24),6(10),12(16),18(22)-tetramethylenedioxy-2,8,14,20-tetrapentylresorcin[4]arene}palladium(II) (1), was synthetized by coordination of the corresponding diphosphinated ligand and the palladium precursor [PdCl2(PhCN)2] in 27% yield. The obtained P,P-chelate complex was fully characterized by elemental analysis, NMR and mass spectrometry. Molecular dynamics simulations carried out on the metallo-capsule showed the structure made by the three cavitands was slightly distorted over the 1 μs of the simulation. The evaluation of the palladium capsule 1 in the reaction between arylacetylenes and Et3SiH in undried conditions unequivocally demonstrates a drastic change in chemoselectivity, with the formation of the partially hydrogenation product rather than the hydrosilylation products observed with complexes whose active center is more accessible, for instance [PdCl2(PPh3)2].
Collapse
Affiliation(s)
- Maxime Steinmetz
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177, Institut de Chimie de Strasbourg, Strasbourg University, 67008 Strasbourg, France
| | - Rachel Schurhammer
- Laboratoire de Modélisation et Simulations Moléculaires, UMR-CNRS 7140, Chimie de la Matière Complexe, Strasbourg University, 67008 Strasbourg, France
| | - Christophe Gourlaouen
- Laboratoire de Modélisation et Simulations Moléculaires, UMR-CNRS 7140, Chimie de la Matière Complexe, Strasbourg University, 67008 Strasbourg, France
| | - David Sémeril
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177, Institut de Chimie de Strasbourg, Strasbourg University, 67008 Strasbourg, France
| |
Collapse
|
3
|
Montà-González G, Bastante-Rodríguez D, García-Fernández A, Lusby PJ, Martínez-Máñez R, Martí-Centelles V. Comparing organic and metallo-organic hydrazone molecular cages as potential carriers for doxorubicin delivery. Chem Sci 2024; 15:10010-10017. [PMID: 38966373 PMCID: PMC11220577 DOI: 10.1039/d4sc02294g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Molecular cages are three-dimensional supramolecular structures that completely wrap guest molecules by encapsulation. We describe a rare comparative study between a metallo-organic cage and a fully organic analogous system, obtained by hydrazone bond formation self-assembly. Both cages are able to encapsulate the anticancer drug doxorubicin, with the organic cage forming a 1 : 1 inclusion complex with μM affinity, whereas the metallo-organic host experiences disassembly by interaction with the drug. Stability experiments reveal that the ligands of the metallo-organic cage are displaced in buffer at neutral, acidic, and basic pH, while the organic cage only disassembles under acidic conditions. Notably, the organic cage also shows minimal cell toxicity, even at high doses, whilst the doxorubicin-cage complex shows in vitro anti-cancer activity. Collectively, these results show that the attributes of the pure organic molecular cage are suitable for the future challenges of in vivo drug delivery using molecular cages.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- Departamento de Química, Universitat Politècnica de València Camí de Vera s/n 46022 Valencia Spain
- EaStCHEM, School of Chemistry Joseph Black Building, David Brewster Road EH93FJ Edinburgh UK
| | - David Bastante-Rodríguez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe Avenida Eduardo Primo Yúfera, 3 46012 Valencia Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe Avenida Eduardo Primo Yúfera, 3 46012 Valencia Spain
| | - Paul J Lusby
- EaStCHEM, School of Chemistry Joseph Black Building, David Brewster Road EH93FJ Edinburgh UK
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe Avenida Eduardo Primo Yúfera, 3 46012 Valencia Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE) Avenida Fernando Abril Martorell, 106 46026 Valencia Spain
- Departamento de Química, Universitat Politècnica de València Camí de Vera s/n 46022 Valencia Spain
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III 28029 Madrid Spain
- Departamento de Química, Universitat Politècnica de València Camí de Vera s/n 46022 Valencia Spain
| |
Collapse
|
4
|
Andrews KG, Horton PN, Coles SJ. Programmable synthesis of organic cages with reduced symmetry. Chem Sci 2024; 15:6536-6543. [PMID: 38699263 PMCID: PMC11062111 DOI: 10.1039/d4sc00889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
Integrating symmetry-reducing methods into self-assembly methodology is desirable to efficiently realise the full potential of molecular cages as hosts and catalysts. Although techniques have been explored for metal organic (coordination) cages, rational strategies to develop low symmetry organic cages remain limited. In this article, we describe rules to program the shape and symmetry of organic cage cavities by designing edge pieces that bias the orientation of the amide linkages. We apply the rules to synthesise cages with well-defined cavities, supported by evidence from crystallography, spectroscopy and modelling. Access to low-symmetry, self-assembled organic cages such as those presented, will widen the current bottleneck preventing study of organic enzyme mimics, and provide synthetic tools for novel functional material design.
Collapse
Affiliation(s)
- Keith G Andrews
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
- Department of Chemistry, Durham University Lower Mount Joy, South Rd Durham DH1 3LE UK
| | - Peter N Horton
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
| | - Simon J Coles
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
| |
Collapse
|
5
|
Montà-González G, Ortiz-Gómez E, López-Lima R, Fiorini G, Martínez-Máñez R, Martí-Centelles V. Water-Soluble Molecular Cages for Biological Applications. Molecules 2024; 29:1621. [PMID: 38611902 PMCID: PMC11013847 DOI: 10.3390/molecules29071621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The field of molecular cages has attracted increasing interest in relation to the development of biological applications, as evidenced by the remarkable examples published in recent years. Two key factors have contributed to this achievement: First, the remarkable and adjustable host-guest chemical properties of molecular cages make them highly suitable for biological applications. This allows encapsulating therapeutic molecules to improve their properties. Second, significant advances have been made in synthetic methods to create water-soluble molecular cages. Achieving the necessary water solubility is a significant challenge, which in most cases requires specific chemical groups to overcome the inherent hydrophobic nature of the molecular cages which feature the organic components of the cage. This can be achieved by either incorporating water-solubilizing groups with negative/positive charges, polyethylene glycol chains, etc.; or by introducing charges directly into the cage structure itself. These synthetic strategies allow preparing water-soluble molecular cages for diverse biological applications, including cages' anticancer activity, anticancer drug delivery, photodynamic therapy, and molecular recognition of biological molecules. In the review we describe selected examples that show the main concepts to achieve water solubility in molecular cages and some selected recent biological applications.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Eduardo Ortiz-Gómez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Rocío López-Lima
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
| | - Guillermo Fiorini
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 46022 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, Avenida Fernando Abril Martorell, 106, 46026 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, Avenida Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 46022 Valencia, Spain
| |
Collapse
|
6
|
Müller C, Scholten K, Engelage E, Merten C. Synthesis and VCD Spectroscopic Characterization of a Series of Azacryptands from a Chiral Valine-Based Derivative of Tris(2-aminoethyl)amine (TREN). Chemistry 2023; 29:e202302126. [PMID: 37556200 DOI: 10.1002/chem.202302126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Utilizing experimental and computational vibrational circular dichroism (VCD) spectroscopy, we explored the conformational preferences of a series of chiral C3 -symmetric octaazacryptands with tris(2-aminoethyl)-amine head groups derived from valine. While the spectra of the smallest azacryptand with p-phenyl linkers and its elongated derivative with p-biphenyls linker were found to match well with the computed spectra, the computed conformational preferences of the m-biphenyl-based azacryptand did not seem to reflect the conformations dominating in chloroform solution. A detailed analysis revealed that structural changes resulting in a collapsed cage structure gave a notably better match with the experiment. It could subsequently be concluded from the VCD analysis, that the octaazacryptands prefer a collapsed structure, which is not predicted by density functional theory (DFT) calculations as the global minimum structures. These findings are expected to have consequences also for future studies on inclusion complexes of such azacryptands.
Collapse
Affiliation(s)
- Clemens Müller
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Kevin Scholten
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Elric Engelage
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Christian Merten
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
7
|
Piskorz TK, Martí-Centelles V, Spicer RL, Duarte F, Lusby PJ. Picking the lock of coordination cage catalysis. Chem Sci 2023; 14:11300-11331. [PMID: 37886081 PMCID: PMC10599471 DOI: 10.1039/d3sc02586a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/29/2023] [Indexed: 10/28/2023] Open
Abstract
The design principles of metallo-organic assembly reactions have facilitated access to hundreds of coordination cages of varying size and shape. Many of these assemblies possess a well-defined cavity capable of hosting a guest, pictorially mimicking the action of a substrate binding to the active site of an enzyme. While there are now a growing collection of coordination cages that show highly proficient catalysis, exhibiting both excellent activity and efficient turnover, this number is still small compared to the vast library of metal-organic structures that are known. In this review, we will attempt to unpick and discuss the key features that make an effective coordination cage catalyst, linking structure to activity (and selectivity) using lessons learnt from both experimental and computational analysis of the most notable exemplars. We will also provide an outlook for this area, reasoning why coordination cages have the potential to become the gold-standard in (synthetic) non-covalent catalysis.
Collapse
Affiliation(s)
- Tomasz K Piskorz
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
| | - Rebecca L Spicer
- Department of Chemistry, Lancaster University Lancaster LA14YB UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Paul J Lusby
- EaStCHEM School of Chemistry, University of Edinburgh Edinburgh Scotland EH9 3FJ UK
| |
Collapse
|
8
|
Kanagaraj K, Wang R, Zhao MK, Ballester P, Rebek J, Yu Y. Selective Binding and Isomerization of Oximes in a Self-Assembled Capsule. J Am Chem Soc 2023; 145:5816-5823. [PMID: 36857099 DOI: 10.1021/jacs.2c12907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A series of straight-chain (C7-C13) alkyl-O-methyl aldoximes (R-C(H)═NOMe) were synthesized with various functional groups at the remote ends (alkenes, halogen, -COOH, and NH2). Their isomers about the C═N bond showed ∼60-40% E-Z-ratio in organic solutions. Surprisingly, their confinement in a water-soluble capsule with benzoselenodiazole walls shows high selectivity for the cis-/Z-isomer. Their relative affinities for the chalcogen-bonded capsule at room temperature depend mainly on the guest chain length and functional groups. A chain length of 14 heavy atoms showed especially high E- to Z-isomer selectivity (>99%) and was used in separation. The E-Z isomerization occurred only in the capsular cavity at room temperature and was accelerated 10-fold by sonication. The Z-isomer selective binding, separation, and E-Z isomerization are supported by NMR, DOSY, and computational studies.
Collapse
Affiliation(s)
- Kuppusamy Kanagaraj
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Rui Wang
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Ming-Kai Zhao
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Julius Rebek
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.,Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
10
|
Wang ZC, Tan YZ, Yu H, Bao WH, Tang LL, Zeng F. A Benzothiadiazole-Based Self-Assembled Cage for Cadmium Detection. Molecules 2023; 28:molecules28041841. [PMID: 36838835 PMCID: PMC9967857 DOI: 10.3390/molecules28041841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
A turn-on fluorescent probe, cage 1, was efficiently self-assembled by condensing 4,4'-(benzothiadiazole-4,7-diyl)dibenzaldehyde and TREN in chloroform. The formation of cage 1 was characterized and confirmed by NMR spectroscopy, mass spectrometry, and theoretical calculations. The yield of cage 1 could be controlled by tuning the reaction conditions, such as the precursor concentration. Interestingly, the addition of 10 equiv of Cd2+ relative to cage 1 could increase the fluorescence almost seven-fold. 1H NMR and fluorescence experiments indicating fluorescence enhancement may be caused by the decomposition of cage 1. Such a high selectivity toward Cd2+ implies that the cage could potentially be employed in cadmium detection.
Collapse
|
11
|
Lisboa LS, Riisom M, Dunne HJ, Preston D, Jamieson SMF, Wright LJ, Hartinger CG, Crowley JD. Hydrazone- and imine-containing [PdPtL 4] 4+ cages: a comparative study of the stability and host-guest chemistry. Dalton Trans 2022; 51:18438-18445. [PMID: 36416449 DOI: 10.1039/d2dt02720h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new [PdPtL4]4+ heterobimetallic cage containing hydrazone linkages has been synthesised using the sub-component self-assembly approach. 1H and DOSY nuclear magnetic resonance (NMR) spectroscopy and electrospray ionisation mass spectrometry (ESIMS) data were consistent with the formation of the [PdPtL4]4+ architecture. The cage was stimulus-responsive and could be partially disassembled and reassembled by the addition of dimethylaminopyridine (DMAP) and p-tolenesulfonic acid (TsOH), respectively. Additionally, the stability of the hydrazone cage against hydrolysis in the presence of water and nucleophilic decomposition in the presence of guest molecules was compared to a previously synthesised imine-containing [PdPtL4]4+ cage. It was established that the hydrazone linkage was more resistant to hydrolysis. Furthermore, the host-guest (HG) chemistry with a series of drug and drug-like molecules was examined. The hydrazone cage was shown to interact with cisplatin while the smaller imine cage was shown to interact with 5-fluorouracil and oxaliplatin in CD3CN. No HG interactions were observed in the more polar d6-DMSO. In vitro antiproliferative activity studies demonstrated both cages were active against the cancer cell lines tested and displayed half-maximal inhibitory (IC50) values in the range of 25-35 μM. Most [PdPtL4]4+-drug mixtures tested had higher IC50 values than the hosts. However, the [PdPtL4]4+ cages, and [PdPtL4]4+:drug mixtures were less cytotoxic than the well established anticancer drugs cisplatin, oxaliplatin and 5-fluorouracil.
Collapse
Affiliation(s)
- Lynn S Lisboa
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Mie Riisom
- School of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Henry J Dunne
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Dan Preston
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - L James Wright
- School of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
12
|
Ziganshina AY, Mansurova EE, Antipin IS. Colloids Based on Calixresorcins for the Adsorption, Conversion, and Delivery of Bioactive Substances. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Montà-González G, Sancenón F, Martínez-Máñez R, Martí-Centelles V. Purely Covalent Molecular Cages and Containers for Guest Encapsulation. Chem Rev 2022; 122:13636-13708. [PMID: 35867555 PMCID: PMC9413269 DOI: 10.1021/acs.chemrev.2c00198] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cage compounds offer unique binding pockets similar to enzyme-binding sites, which can be customized in terms of size, shape, and functional groups to point toward the cavity and many other parameters. Different synthetic strategies have been developed to create a toolkit of methods that allow preparing tailor-made organic cages for a number of distinct applications, such as gas separation, molecular recognition, molecular encapsulation, hosts for catalysis, etc. These examples show the versatility and high selectivity that can be achieved using cages, which is impossible by employing other molecular systems. This review explores the progress made in the field of fully organic molecular cages and containers by focusing on the properties of the cavity and their application to encapsulate guests.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain,R.M.-M.: email,
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,V.M.-C.:
email,
| |
Collapse
|
14
|
Hkiri S, Steinmetz M, Schurhammer R, Sémeril D. Encapsulated Neutral Ruthenium Catalyst for Substrate‐Selective Oxidation of Alcohols. Chemistry 2022; 28:e202201887. [DOI: 10.1002/chem.202201887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shaima Hkiri
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - Maxime Steinmetz
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - Rachel Schurhammer
- Laboratoire de Modélisation et Simulations Moléculaires, UMR-CNRS 7140-Chimie de la Matière Complexe Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - David Sémeril
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| |
Collapse
|
15
|
saleh DI, Mahmoud SF, Etaiw SEH. Ultrasound-assisted synthesis and biological activity of nanosized supramolecular coordination polymers of silver(I) with chloride, thiocyanate, and 4,4′-bipyridine ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Payne DT, Labuta J, Futera Z, Březina V, Hanyková L, Chahal MK, Hill JP. Molecular rotor based on an oxidized resorcinarene. Org Chem Front 2022. [DOI: 10.1039/d1qo01479j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rate of rotation of substituents in a molecular single stator-double rotor based on an oxidized resorcinarene with unsaturated hemiquinonoid groups at its meso positions (i.e., a fuchsonarene) has been controlled according to solvent polarity and acidity.
Collapse
Affiliation(s)
- Daniel T. Payne
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
- International Center for Young Scientists, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Jan Labuta
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Zdeněk Futera
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic
| | - Václav Březina
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Lenka Hanyková
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Mandeep K. Chahal
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
17
|
Jacob C, Maes BUW, Evano G. Transient Directing Groups in Metal-Organic Cooperative Catalysis. Chemistry 2021; 27:13899-13952. [PMID: 34286873 DOI: 10.1002/chem.202101598] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 12/13/2022]
Abstract
The direct functionalization of C-H bonds is among the most fundamental chemical transformations in organic synthesis. However, when the innate reactivity of the substrate cannot be utilized for the functionalization of a given single C-H bond, this selective C-H bond functionalization mostly relies on the use of directing groups that allow bringing the catalyst in close proximity to the C-H bond to be activated and these directing groups need to be installed before and cleaved after the transformation, which involves two additional undesired synthetic operations. These additional steps dramatically reduce the overall impact and the attractiveness of C-H bond functionalization techniques since classical approaches based on substrate pre-functionalization are sometimes still more straightforward and appealing. During the past decade, a different approach involving both the in situ installation and removal of the directing group, which can then often be used in a catalytic manner, has emerged: the transient directing group strategy. In addition to its innovative character, this strategy has brought C-H bond functionalization to an unprecedented level of usefulness and has enabled the development of remarkably efficient processes for the direct and selective introduction of functional groups onto both aromatic and aliphatic substrates. The processes unlocked by the development of these transient directing groups will be comprehensively overviewed in this review article.
Collapse
Affiliation(s)
- Clément Jacob
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium
| |
Collapse
|
18
|
Hoy R, Grell T, Lönnecke P, Hey-Hawkins E. Selective formation of a supramolecular coordination complex in the nanometre scale with a ferrocene-based phospholane ligand. Chem Commun (Camb) 2021; 57:9200-9203. [PMID: 35225989 DOI: 10.1039/d1cc03755b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A straightforward synthesis of the tetradentate phospholane ligand 1 is reported. The 2 : 1 [M : L] reaction of 1 with [AuCl(tht)] (tht = tetrahydrothiophene) resulted in the 4 : 2 [M : L] supramolecular coordination complex 2 where two ligands 1 are bridging four gold(I) cations. The formation of 2 can be rationalised via a geometrical analysis of the ligand. The coordination mode of the gold atoms was evaluated based on a CSD search, revealing the geometrical changes for a transition from linear to trigonal planar coordination environment.
Collapse
Affiliation(s)
- Reinhard Hoy
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany.
| | - Toni Grell
- Dipartimento di Chimica, Università degli Studi di Milano, Via Camillo Golgi 19, Milano 20133, Italy
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany.
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany.
| |
Collapse
|
19
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Li WL, Head-Gordon T. Catalytic Principles from Natural Enzymes and Translational Design Strategies for Synthetic Catalysts. ACS CENTRAL SCIENCE 2021; 7:72-80. [PMID: 33532570 PMCID: PMC7844850 DOI: 10.1021/acscentsci.0c01556] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 05/19/2023]
Abstract
As biocatalysts, enzymes are characterized by their high catalytic efficiency and strong specificity but are relatively fragile by requiring narrow and specific reactive conditions for activity. Synthetic catalysts offer an opportunity for more chemical versatility operating over a wider range of conditions but currently do not reach the remarkable performance of natural enzymes. Here we consider some new design strategies based on the contributions of nonlocal electric fields and thermodynamic fluctuations to both improve the catalytic step and turnover for rate acceleration in arbitrary synthetic catalysts through bioinspired studies of natural enzymes. With a focus on the enzyme as a whole catalytic construct, we illustrate the translational impact of natural enzyme principles to synthetic enzymes, supramolecular capsules, and electrocatalytic surfaces.
Collapse
Affiliation(s)
- Wan-Lu Li
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Department of
Bioengineering, University of California
Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi Hiroshima 739-8526 Japan
| | - Takeharu Haino
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi Hiroshima 739-8526 Japan
| |
Collapse
|
22
|
Daver H, Rebek J, Himo F. Modeling the Reaction of Carboxylic Acids and Isonitriles in a Self-Assembled Capsule. Chemistry 2020; 26:10861-10870. [PMID: 32428333 PMCID: PMC7522688 DOI: 10.1002/chem.202001735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Indexed: 11/10/2022]
Abstract
Quantum chemical calculations were used to study the reaction of carboxylic acids with isonitriles inside a resorcinarene-based self-assembled capsule. Experimentally, it has been shown that the reactions between p-tolylacetic acid and n-butyl isonitrile or isopropyl isonitrile behave differently in the presence of the capsule compared both with each other and also with their solution counterparts. Herein, the reasons for these divergent behaviors are addressed by comparing the detailed energy profiles for the reactions of the two isonitriles inside and outside the capsule. An energy decomposition analysis was conducted to quantify the different factors affecting the reactivity. The calculations reproduce the experimental findings very well. Thus, encapsulation leads to lowering of the energy barrier for the first step of the reaction, the concerted α-addition and proton transfer, which in solution is rate-determining, and this explains the rate acceleration observed in the presence of the capsule. The barrier for the final step of the reaction, the 1,3 O→N acyl transfer, is calculated to be higher with the isopropyl substituent inside the capsule compared with n-butyl. With the isopropyl substituent, the transition state and the product of this step are significantly shorter than the preceding intermediate, and this results in energetically unfavorable empty spaces inside the capsule, which cause a higher barrier. With the n-butyl substituent, on the other hand, the carbon chain can untwine and hence uphold an appropriate guest length.
Collapse
Affiliation(s)
- Henrik Daver
- Department of Organic ChemistryArrhenius LaboratoryStockholm University106 91StockholmSweden
- Present address: Department of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Julius Rebek
- The Skaggs Institute for Chemical Biology and Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCalifornia92037USA
- Center for Supramolecular Chemistry and CatalysisShanghai UniversityShanghai200444P.R. China
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm University106 91StockholmSweden
| |
Collapse
|
23
|
Facile synthesis, X-ray diffraction studies, photophysical properties and DFT-D based conformational analysis of octa and dodecacyanomethoxycalix[4]resorcinarenes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Sharafi M, McKay KT, Ivancic M, McCarthy DR, Dudkina N, Murphy KE, Rajappan SC, Campbell JP, Shen Y, Badireddy AR, Li J, Schneebeli ST. Size-selective Catalytic Polymer Acylation with a Molecular Tetrahedron. Chem 2020; 6:1469-1494. [PMID: 32728651 PMCID: PMC7388586 DOI: 10.1016/j.chempr.2020.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Selective catalysis at the molecular level represents a cornerstone of chemical synthesis. However, it still remains an open question how to elevate tunable catalysis to larger length scales to functionalize whole polymer chains in a selective manner. We now report a hydrazone-linked tetrahedron with wide openings, which acts as a catalyst to size-selectively functionalize polydisperse polymer mixtures. Our experimental and computational evidence supports a dual role of the hydrazone-linked tetrahedron. To accelerate functionalization of the polymer substrates, the tetrahedron (i) unfolds the polymer substrates and/or breaks the polymer aggregates as well as (ii) enables target sites (amino groups) on the polymers to coordinate with catalytic units (triglyme) attached to the tetrahedron. With the tetrahedron as the catalyst, we find that the reactivity of the shorter polymers increases selectively. Our findings enable the possibility to engineer hydrolytically stable molecular polyhedra as organocatalysts for size-selective polymer modification.
Collapse
Affiliation(s)
- Mona Sharafi
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Kyle T McKay
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Monika Ivancic
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Dillon R McCarthy
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Natavan Dudkina
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Kyle E Murphy
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Sinu C Rajappan
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Joseph P Campbell
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Yuxiang Shen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT 05405
| | - Appala Raju Badireddy
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT 05405
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Severin T Schneebeli
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
- Lead Contact
| |
Collapse
|
25
|
Szafraniec A, Iwanek W. Synthesis of a coumarin derivative of resorcin[4]arene with solvent-controlled chirality. RSC Adv 2020; 10:12747-12753. [PMID: 35492126 PMCID: PMC9051107 DOI: 10.1039/d0ra00368a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/13/2020] [Indexed: 01/23/2023] Open
Abstract
This paper presents the synthesis of a coumarin derivative of resorcin[4]arene (1) using a cascade thermolysis/Michael reaction. The influence of the hydrogen bonding system on the conformational rigidity and cyclochirality of the coumarin derivative of resorcin[4]arene was discussed; these properties depended on the proton-donor–acceptor properties of the solvent. Significant differences, which depended on the environment, in the coumarin derivative of resorcin[4]arene fluorescence were observed and discussed. This paper presents the synthesis of a coumarin derivative of resorcin[4]arene (1) using a cascade thermolysis/Michael reaction.![]()
Collapse
Affiliation(s)
- Anna Szafraniec
- Faculty of Chemistry, Adam Mickiewicz University Uniwersytetu Poznańskiego 8 60-614 Poznań Poland
| | - Waldemar Iwanek
- Faculty of Chemical Technology and Engineering, UTP, University of Science and Technology Seminaryjna 3 85-326 Bydgoszcz Poland
| |
Collapse
|