1
|
Du Y, Liu Y, Chen K, Zhang Y, Zhang X, Liu S, Wang T, Wang F. Type II photoinitiators with collagen-based cyanine for cell encapsulation under green-red LED. Int J Biol Macromol 2024; 278:134589. [PMID: 39127295 DOI: 10.1016/j.ijbiomac.2024.134589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
3D bioprinting with cell-laden materials is an emerging technique for fabricating functional tissue constructs. However, current cell-laden bioinks often lack sufficient cytocompatibility with commonly used UV-light sources. In this study, green to red photoinduced hydrogel crosslinking was obtained by introducing synthesized biosafety photoinitiators and used in light-based direct ink writing (DIW) 3D printing for enabling cell encapsulation successfully. The novel type II photointiators contain iodonium (ONI) and synthesized cyanine dyes CZBIN, TDPABIN, Col-SH-CZ, and Col-SH-TD with strong absorption in the range of 400-600 nm. Collagen-based macromolecule dyes Col-SH-CZ and Col-SH-TD showed excellent cytocompatibility. The photochemistry of these photoinitiators revealed an efficient photoinduced electron transfer (PET) process from the singlet excited states of the dyes to iodonium (ONI), facilitating the crosslinking of the biogels. L929 cells were encapsulated in Gel-MA hydrogels containing various photoinitiating systems and exposed to near-ultraviolet, green, or red LED irradiation. DIW-type 3D printing of Gel-MA bioink with L929 cells was also evaluated. The cell viability achieved with green light encapsulation reached 90 %. This novel approach offers promising prospects for bioprinting functional tissues with enhanced cytocompatibility under visible light conditions.
Collapse
Affiliation(s)
- Yao Du
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Yimei Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Kai Chen
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, PR China
| | - Yating Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Xiwang Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Shitao Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Tao Wang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China.
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun, PR China.
| |
Collapse
|
2
|
Hammecke H, Fritzler D, Vashistha N, Jin P, Dietzek-Ivanšić B, Wang C. 100 μs Luminescence Lifetime Boosts the Excited State Reactivity of a Ruthenium(II)-Anthracene Complex in Photon Upconversion and Photocatalytic Polymerizations with Red Light. Chemistry 2024:e202402679. [PMID: 39298687 DOI: 10.1002/chem.202402679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
The triplet excited state lifetime of a photosensitizer is an essential parameter for diffusion-controlled energy- and electron-transfer, which occurs usually in a competitive manner to the intrinsic decay of a triplet excited state. Here we show the decisive role of luminescence lifetime in the triplet excited state reactivity toward energy- and electron transfer. Anchoring two phenyl anthracene chromophores to a ruthenium(II) polypyridyl complex (RuII ref) leads to a RuII triad with a luminescence lifetime above 100 μs, which is more than 40 times longer than that of the prototypical complex. The obtained RuII triad sensitizes energy transfer to anthracene-based annihilators more efficiently than RuII ref and enables red-to-blue photon upconversion with a pseudo anti-Stokes shift of 0.94 eV and a moderate upconversion efficiency near 1 % in aerated solution. Particularly, RuII triad allows rapid photoredox catalytic polymerizations of acrylate and acrylamide monomers under aerobic condition with red light, which are kinetically hindered for RuII ref. Our work shows that excited state lifetime of a photosensitizer governs the dynamics of the excited state reactions, which seems an overlooked but important aspect for photochemistry.
Collapse
Affiliation(s)
- Heinrich Hammecke
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Dennis Fritzler
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Nikita Vashistha
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Pengyue Jin
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Benjamin Dietzek-Ivanšić
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Cui Wang
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| |
Collapse
|
3
|
Troß J, Arias-Martinez JE, Carter-Fenk K, Cole-Filipiak NC, Schrader P, McCaslin LM, Head-Gordon M, Ramasesha K. Femtosecond Core-Level Spectroscopy Reveals Involvement of Triplet States in the Gas-Phase Photodissociation of Fe(CO) 5. J Am Chem Soc 2024; 146:22711-22723. [PMID: 39092878 DOI: 10.1021/jacs.4c07523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Excitation of iron pentacarbonyl [Fe(CO)5], a prototypical photocatalyst, at 266 nm causes the sequential loss of two CO ligands in the gas phase, creating catalytically active, unsaturated iron carbonyls. Despite numerous studies, major aspects of its ultrafast photochemistry remain unresolved because the early excited-state dynamics have so far eluded spectroscopic observation. This has led to the long-held assumption that ultrafast dissociation of gas-phase Fe(CO)5 proceeds exclusively on the singlet manifold. Herein, we present a combined experimental-theoretical study employing ultrafast extreme ultraviolet transient absorption spectroscopy near the Fe M2,3-edge, which features spectral evolution on 100 fs and 3 ps time scales, alongside high-level electronic structure theory, which enables characterization of the molecular geometries and electronic states involved in the ultrafast photodissociation of Fe(CO)5. We assign the 100 fs evolution to spectroscopic signatures associated with intertwined structural and electronic dynamics on the singlet metal-centered states during the first CO loss and the 3 ps evolution to the competing dissociation of Fe(CO)4 along the lowest singlet and triplet surfaces to form Fe(CO)3. Calculations of transient spectra in both singlet and triplet states as well as spin-orbit coupling constants along key structural pathways provide evidence for intersystem crossing to the triplet ground state of Fe(CO)4. Thus, our work presents the first spectroscopic detection of transient excited states during ultrafast photodissociation of gas-phase Fe(CO)5 and challenges the long-standing assumption that triplet states do not play a role in the ultrafast dynamics.
Collapse
Affiliation(s)
- Jan Troß
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Juan E Arias-Martinez
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Neil C Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Paul Schrader
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Laura M McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
4
|
Moreno-da Costa D, Zúñiga-Loyola C, Droghetti F, Robles S, Villegas-Menares A, Villegas-Escobar N, Gonzalez-Pavez I, Molins E, Natali M, Cabrera AR. Air- and Water-Stable Heteroleptic Copper (I) Complexes Bearing Bis(indazol-1-yl)methane Ligands: Synthesis, Characterisation, and Computational Studies. Molecules 2023; 29:47. [PMID: 38202630 PMCID: PMC10780253 DOI: 10.3390/molecules29010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A series of four novel heteroleptic Cu(I) complexes, bearing bis(1H-indazol-1-yl)methane analogues as N,N ligands and DPEPhos as the P,P ligand, were synthesised in high yields under mild conditions and characterised by spectroscopic and spectrometric techniques. In addition, the position of the carboxymethyl substituent in the complexes and its effect on the electrochemical and photophysical behaviour was evaluated. As expected, the homoleptic copper (I) complexes with the N,N ligands showed air instability. In contrast, the obtained heteroleptic complexes were air- and water-stable in solid and solution. All complexes displayed green-yellow luminescence in CH2Cl2 at room temperature due to ligand-centred (LC) phosphorescence in the case of the Cu(I) complex with an unsubstituted N,N ligand and metal-to-ligand charge transfer (MLCT) phosphorescence for the carboxymethyl-substituted complexes. Interestingly, proper substitution of the bis(1H-indazol-1-yl)methane ligand enabled the achievement of a remarkable luminescent yield (2.5%) in solution, showcasing the great potential of this novel class of copper(I) complexes for potential applications in luminescent devices and/or photocatalysis.
Collapse
Affiliation(s)
- David Moreno-da Costa
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - César Zúñiga-Loyola
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile; (C.Z.-L.); (S.R.)
| | - Federico Droghetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy;
| | - Stephania Robles
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile; (C.Z.-L.); (S.R.)
| | - Alondra Villegas-Menares
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Nery Villegas-Escobar
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile;
| | - Ivan Gonzalez-Pavez
- Departamento de Química, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile;
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus de la UAB, 08193 Barcelona, Spain;
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy;
| | - Alan R. Cabrera
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| |
Collapse
|
5
|
Hatanaka M, Kato H, Sakai M, Kariya K, Nakatani S, Yoshimura T, Inagaki T. Insights into the Luminescence Quantum Yields of Cyclometalated Iridium(III) Complexes: A Density Functional Theory and Machine Learning Approach. J Phys Chem A 2023; 127:7630-7637. [PMID: 37651718 DOI: 10.1021/acs.jpca.3c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Cyclometalated iridium(III) complexes have been used in various optical materials, including organic light-emitting diodes (OLEDs) and photocatalysts, and a deeper understanding and prediction of their luminescence quantum yields (LQYs) greatly aid in accelerating material design. In this study, we integrated density functional theory (DFT) calculations with machine learning (ML) techniques to extract factors controlling LQY. Although a substantial data set of Ir(III) complexes and their LQYs is indispensable for constructing accurate ML models to predict LQYs, generating this type of data set is challenging due to the complexities associated with ab initio calculations of LQYs. To address this issue, we investigated the nonradiative decay process of nine Ir(III) complexes emitting blue to green, each exhibiting varying experimental LQYs, by using DFT calculations. For all nine complexes, the quenching process was induced by the rotation of the single bond in one of the ligands, which converted the six-coordinate structure to the five-coordinate structure. Since the decay mechanism was common for the nine Ir(III) complexes, parameters correlated with LQYs could be used as objective variables instead of LQYs. Based on this idea, we collected a data set featuring Ir(III) complexes and the energy differences between their six- and five-coordinate triplet structures, which correlated with LQYs. We also constructed ML models using the calculated LQYs as the objective variables with the parameters from the ground-state calculations as explanatory variables. The analyses of the constructed model revealed that the LUMO energy of the ligand made the most significant negative contribution to LQY. This suggests that the potential energy surface of the metal-to-ligand charge transfer (MLCT) excited state, which stabilizes the six-coordinate structure, is reduced by decreasing the energy of the unoccupied orbitals.
Collapse
Affiliation(s)
- Miho Hatanaka
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hiromoto Kato
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Minami Sakai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikokma, Nara 630-0192, Japan
| | - Kosuke Kariya
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shunsuke Nakatani
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takayoshi Yoshimura
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Taichi Inagaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
6
|
Dumur F. The Future of Visible Light Photoinitiators of Polymerization for Photocrosslinking Applications. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
7
|
Recent Advances on Photobleachable Visible Light Photoinitiators of Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Dumur F. Recent advances on benzylidene cyclopentanones as visible light photoinitiators of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Rana P, Kaushik B, Solanki K, Saini KM, Sharma RK. Development of heterogeneous photocatalysts via the covalent grafting of metal complexes on various solid supports. Chem Commun (Camb) 2022; 58:11354-11377. [PMID: 36148784 DOI: 10.1039/d2cc03568e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, remarkable progress has been achieved in the development of photocatalysts owing to their high activity, selectivity, and tunable light absorption in the visible light range. Recently, heterogeneous photocatalytic systems have emerged as potential candidates due to their beneficial attributes (e.g., high surface area, ease of functionalization and facile separation). Herein, we provide a concise overview of the rational design of heterogeneous photocatalysts by grafting photoactive complexes on heterogeneous support matrices via covalent grafting and their detailed characterization techniques, which have been followed by the landmark examples of their applications. Also, major challenges and opportunities in the forthcoming progress of these appealing areas are emphasised.
Collapse
Affiliation(s)
- Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Bhawna Kaushik
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Kanika Solanki
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Kapil Mohan Saini
- Kalindi College, University of Delhi, New Delhi, Delhi 110008, India
| | - R K Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| |
Collapse
|
10
|
Pigot C, Brunel D, Dumur F. Indane-1,3-Dione: From Synthetic Strategies to Applications. Molecules 2022; 27:5976. [PMID: 36144711 PMCID: PMC9501146 DOI: 10.3390/molecules27185976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Indane-1,3-dione is a versatile building block used in numerous applications ranging from biosensing, bioactivity, bioimaging to electronics or photopolymerization. In this review, an overview of the different chemical reactions enabling access to this scaffold but also to the most common derivatives of indane-1,3-dione are presented. Parallel to this, the different applications in which indane-1,3-dione-based structures have been used are also presented, evidencing the versatility of this structure.
Collapse
Affiliation(s)
- Corentin Pigot
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Damien Brunel
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
11
|
|
12
|
|
13
|
Liu Z, Dumur F. Recent Advances on Visible Light Coumarin-based Oxime Esters as Initiators of Polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Novel Copper Complexes as Visible Light Photoinitiators for the Synthesis of Interpenetrating Polymer Networks (IPNs). Polymers (Basel) 2022; 14:polym14101998. [PMID: 35631880 PMCID: PMC9145974 DOI: 10.3390/polym14101998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
This work is devoted to the study of two copper complexes (Cu) bearing pyridine ligands, which were synthesized, evaluated and tested as new visible light photoinitiators for the free radical photopolymerization (FRP) of acrylates functional groups in thick and thin samples upon light-emitting diodes (LED) at 405 and 455 nm irradiation. These latter wavelengths are considered to be safe to produce polymer materials. The photoinitiation abilities of these organometallic compounds were evaluated in combination with an iodonium (Iod) salt and/or amine (e.g., N-phenylglycine—NPG). Interestingly, high final conversions and high polymerization rates were obtained for both compounds using two and three-component photoinitiating systems (Cu1 (or Cu2)/Iodonium salt (Iod) (0.1%/1% w/w) and Cu1 (or Cu2)/Iod/amine (0.1%/1%/1% w/w/w)). The new proposed copper complexes were also used for direct laser write experiments involving a laser diode at 405 nm, and for the photocomposite synthesis with glass fibers using a UV-conveyor at 395 nm. To explain the obtained polymerization results, different methods and characterization techniques were used: steady-state photolysis, real-time Fourier transform infrared spectroscopy (RT-FTIR), emission spectroscopy and cyclic voltammetry.
Collapse
|
15
|
|
16
|
Boga K, Patti AF, Warner JC, Simon GP, Saito K. Sustainable Light‐stimulated Synthesis of Cross‐linked Polymer Microparticles. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karteek Boga
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - Antonio F. Patti
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - John C. Warner
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - George P. Simon
- Department of Materials Science and Engineering Monash University Clayton VIC 3800 Australia
| | - Kei Saito
- School of Chemistry Monash University Clayton VIC 3800 Australia
- Graduate School of Advanced Integrated Studies in Human Survivability Kyoto University Higashi‐Ichijo‐Kan, Yoshida‐nakaadachicho 1 Sakyo‐ku Kyoto Japan
| |
Collapse
|
17
|
Hammoud F, Hijazi A, Ibrahim-Ouali M, Lalevée J, Dumur F. Chemical engineering around the 5,12-dihydroindolo[3,2-a]carbazole scaffold : Fine tuning of the optical properties of visible light photoinitiators of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
|
19
|
|
20
|
|
21
|
Stevens LM, Tagnon C, Page ZA. "Invisible" Digital Light Processing 3D Printing with Near Infrared Light. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22912-22920. [PMID: 35080842 DOI: 10.1021/acsami.1c22046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ability to 3D print structures with low-intensity, long-wavelength light will broaden the materials scope to facilitate inclusion of biological components and nanoparticles. Current materials limitations arise from the pervasive absorption, scattering, and/or degradation that occurs upon exposure to high-intensity, short-wavelength (ultraviolet) light, which is the present-day standard used in light-based 3D printers. State-of-the-art techniques have recently extended printability to orange/red light. However, as the wavelength of light increases, so do the inherent challenges to match the speed and resolution of traditional UV light-induced solidification processes (i.e., photocuring). Herein, a photosystem is demonstrated to enable low-intensity (<5 mW/cm2), long-wavelength (∼850 nm) near-infrared (NIR) light-driven 3D printing, "invisible" to the human eye. The combination of a NIR absorbing cyanine dye with electron-rich and -deficient redox pairs was required for rapid photocuring in a catalytic manner. The rate of polymerization and time to solidification upon exposure to NIR light were characterized via in situ spectroscopic and rheological monitoring. Translation to NIR digital light processing (projection-based) 3D printing was accomplished through rigorous optimization of resin composition and printing parameters to balance the speed (<60 s/layer) and resolution (<300 μm features). As a proof-of-concept, composite 3D printing with nanoparticle-infused resins was accomplished. Preliminary analysis showed improved feature fidelity for structures produced with NIR relative to UV light. The present report provides key insight that will inform next-generation light-based photocuring technology, such as wavelength-selective multimaterial 3D bio- and composite-printing.
Collapse
Affiliation(s)
- Lynn M Stevens
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Clotilde Tagnon
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Zachariah A Page
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Bezzubov S, Ermolov K, Gorbunov A, Kalle P, Lentin I, Latyshev G, Kovalev V, Vatsouro I. Inherently dinuclear iridium(III) meso architectures accessed by cyclometalation of calix[4]arene-based bis(aryltriazoles). Dalton Trans 2021; 50:16765-16769. [PMID: 34761791 DOI: 10.1039/d1dt03579g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conventional cyclometalation of calix[4]arene bis(aryltriazoles) with iridium(III) chloride hydrate leads to unique meso architectures in which the Ir2Cl2 core is cross-bound by two (C^N)2 ligands, which allows further replacement of the chloride bridges with ancillary ligands while maintaining the dinuclear structures of the complexes having independent or coupled iridium pairs.
Collapse
Affiliation(s)
- Stanislav Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia.
| | - Kirill Ermolov
- Department of Chemistry M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Alexander Gorbunov
- Department of Chemistry M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Paulina Kalle
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia.
| | - Ivan Lentin
- Department of Chemistry M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Gennadij Latyshev
- Department of Chemistry M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Vladimir Kovalev
- Department of Chemistry M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Ivan Vatsouro
- Department of Chemistry M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| |
Collapse
|
23
|
|
24
|
Zeppuhar AN, Wolf SM, Falvey DE. Photoacid Generators Activated through Sequential Two-Photon Excitation: 1-Sulfonatoxy-2-alkoxyanthraquinone Derivatives. J Phys Chem A 2021; 125:5227-5236. [PMID: 34129332 DOI: 10.1021/acs.jpca.1c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two sulfonate ester derivatives of anthraquinone, 1-tosyloxy-2-methoxy-9,10-anthraquinone (1a) and 1-trifluoromethylsulfonoxy-2-methoxy-9,10-anthraquinone (1b), were prepared and their ability to produce strong acids upon photoexcitation was examined. It is shown that these compounds generate acid with a yield that increases with light intensity when the applied photon dose is held constant. Additional experiments show that the rate of acid generation increases fourfold when visible light (532 nm) laser pulses are combined with ultraviolet (355 nm) compared with ultraviolet alone. Continuous wave diode laser photolysis also affects acid generation with a rate that depends quadratically on the light intensity. Density functional theory calculations, laser flash photolysis, and chemical trapping experiments support a mechanism, whereby an initially formed triplet state (T1) is excited to a higher triplet state which in turn undergoes homolysis of the RS(O2)-OAr bond. Secondary reactions of the initially formed sulfonyl radicals produce strong acids. It is demonstrated that high-intensity photolysis of either 1a or 1b can initiate cationic polymerization of ethyl vinyl ether.
Collapse
Affiliation(s)
- Andrea N Zeppuhar
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Steven M Wolf
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel E Falvey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
25
|
|
26
|
Noirbent G, Dumur F. Photoinitiators of polymerization with reduced environmental impact: Nature as an unlimited and renewable source of dyes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110109] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
|
28
|
Ahn D, Stevens LM, Zhou K, Page ZA. Rapid High-Resolution Visible Light 3D Printing. ACS CENTRAL SCIENCE 2020; 6:1555-1563. [PMID: 32999930 PMCID: PMC7517116 DOI: 10.1021/acscentsci.0c00929] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 05/10/2023]
Abstract
Light-driven 3D printing to convert liquid resins into solid objects (i.e., photocuring) has traditionally been dominated by engineering disciplines, yielding the fastest build speeds and highest resolution of any additive manufacturing process. However, the reliance on high-energy UV/violet light limits the materials scope due to degradation and attenuation (e.g., absorption and/or scattering). Chemical innovation to shift the spectrum into more mild and tunable visible wavelengths promises to improve compatibility and expand the repertoire of accessible objects, including those containing biological compounds, nanocomposites, and multimaterial structures. Photochemistry at these longer wavelengths currently suffers from slow reaction times precluding its utility. Herein, novel panchromatic photopolymer resins were developed and applied for the first time to realize rapid high-resolution visible light 3D printing. The combination of electron-deficient and electron-rich coinitiators was critical to overcoming the speed-limited photocuring with visible light. Furthermore, azo-dyes were identified as vital resin components to confine curing to irradiation zones, improving spatial resolution. A unique screening method was used to streamline optimization (e.g., exposure time and azo-dye loading) and correlate resin composition to resolution, cure rate, and mechanical performance. Ultimately, a versatile and general visible-light-based printing method was shown to afford (1) stiff and soft objects with feature sizes <100 μm, (2) build speeds up to 45 mm/h, and (3) mechanical isotropy, rivaling modern UV-based 3D printing technology and providing a foundation from which bio- and composite-printing can emerge.
Collapse
Affiliation(s)
- Dowon Ahn
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Lynn M. Stevens
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Kevin Zhou
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Zachariah A. Page
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
29
|
Bobo MV, Arcidiacono AM, Ayare PJ, Reed JC, Helton MR, Ngo T, Hanson K, Vannucci AK. A Series of Green Light Absorbing Organic Photosensitizers Capable of Oxidative Quenching Photocatalysis. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- M. Victoria Bobo
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Ashley M. Arcidiacono
- Department of Chemistry & Biochemistry Florida State University Tallahassee FL 32306 USA
| | - Pooja J. Ayare
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Jordan C. Reed
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Maizie R. Helton
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Thi Ngo
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry Florida State University Tallahassee FL 32306 USA
| | - Aaron K. Vannucci
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| |
Collapse
|
30
|
Rangarajan G, Yan N, Farnood R. High‐performance photocatalysts for the selective oxidation of alcohols to carbonyl compounds. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Goutham Rangarajan
- Department of Chemical Engineering & Applied Chemistry University of Toronto Toronto Ontario Canada
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore Singapore
| | - Ramin Farnood
- Department of Chemical Engineering & Applied Chemistry University of Toronto Toronto Ontario Canada
| |
Collapse
|
31
|
Stafford A, Ahn D, Raulerson EK, Chung KY, Sun K, Cadena DM, Forrister EM, Yost SR, Roberts ST, Page ZA. Catalyst Halogenation Enables Rapid and Efficient Polymerizations with Visible to Far-Red Light. J Am Chem Soc 2020; 142:14733-14742. [DOI: 10.1021/jacs.0c07136] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|