1
|
CaO as a cheap, eco-friendly material for the continuous-flow, gas-phase, catalytic transfer hydrogenation of furfural with methanol. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
2
|
Shi S, Yang P, Dun C, Zheng W, Urban JJ, Vlachos DG. Selective hydrogenation via precise hydrogen bond interactions on catalytic scaffolds. Nat Commun 2023; 14:429. [PMID: 36702821 PMCID: PMC9879947 DOI: 10.1038/s41467-023-36015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The active site environment in enzymes has been known to affect catalyst performance through weak interactions with a substrate, but precise synthetic control of enzyme inspired heterogeneous catalysts remains challenging. Here, we synthesize hyper-crosslinked porous polymer (HCPs) with solely -OH or -CH3 groups on the polymer scaffold to tune the environment of active sites. Reaction rate measurements, spectroscopic techniques, along with DFT calculations show that HCP-OH catalysts enhance the hydrogenation rate of H-acceptor substrates containing carbonyl groups whereas hydrophobic HCP- CH3 ones promote non-H bond substrate activation. The functional groups go beyond enhancing substrate adsorption to partially activate the C = O bond and tune the catalytic sites. They also expose selectivity control in the hydrogenation of multifunctional substrates through preferential substrate functional group adsorption. The proposed synthetic strategy opens a new class of porous polymers for selective catalysis.
Collapse
Affiliation(s)
- Song Shi
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, DE, 19716, USA
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Piaoping Yang
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, DE, 19716, USA
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Weiqing Zheng
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, DE, 19716, USA
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
3
|
Luo J, Cheng Y, Niu H, Wang T, Liang C. Efficient Cu/FeOx catalyst with developed structure for catalytic transfer hydrogenation of furfural. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Taraban'ko VE, Smirnova MA, Zhizhina EG. Methods for the Synthesis of γ-Acetopropyl Alcohol. CATALYSIS IN INDUSTRY 2022; 14:195-207. [PMID: 35755715 PMCID: PMC9215152 DOI: 10.1134/s207005042202009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
The methods for the synthesis of γ-acetopropyl alcohol (APA) used for the production of vitamin B1, antimalarial drugs, and polymers are analyzed. Promising APS synthesis methods are the hydrogenation–hydration of sylvane, the hydrogenation of furfural, and syntheses based on allyl acetate, sodium acetoacetic ester, and γ-butyrolactone.
Collapse
Affiliation(s)
- V E Taraban'ko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| | - M A Smirnova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| | - E G Zhizhina
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Catalytic Transformation of Renewables (Olefin, Bio-Sourced, et al.). Catalysts 2021. [DOI: 10.3390/catal11030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The objective of this Special Issue is to provide new diverse contributions that can demonstrate recent applications in biomass transformation using heterogeneous catalysts [...]
Collapse
|
6
|
Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 2021; 49:4273-4306. [PMID: 32453311 DOI: 10.1039/d0cs00041h] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Furans represent one of the most important classes of intermediates in the conversion of non-edible lignocellulosic biomass into bio-based chemicals and fuels. At present, bio-furan derivatives are generally obtained from cellulose and hemicellulose fractions of biomass via the acid-catalyzed dehydration of their relative C6-C5 sugars and then converted into a wide range of products. Furfural (FUR) and 5-hydroxymethylfurfural (HMF) are surely the most used furan-based feedstocks since their chemical structure allows the preparation of various high-value-added chemicals. Among several well-established catalytic approaches, hydrogenation and oxygenation processes have been efficiently adopted for upgrading furans; however, harsh reaction conditions are generally required. In this review, we aim to discuss the conversion of biomass derived FUR and HMF through unconventional (transfer hydrogenation, photocatalytic and electrocatalytic) catalytic processes promoted by heterogeneous catalytic systems. The reaction conditions adopted, the chemical nature and the physico-chemical properties of the most employed heterogeneous systems in enhancing the catalytic activity and in driving the selectivity to desired products are presented and compared. At the same time, the latest results in the production of FUR and HMF through novel environmental friendly processes starting from lignocellulose as well as from wastes and by-products obtained in the processing of biomass are also overviewed.
Collapse
Affiliation(s)
- C Xu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, P. R. China
| | - E Paone
- Dipartimento DICEAM, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy. and Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Firenze, Italy
| | - D Rodríguez-Padrón
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Córdoba, Spain.
| | - R Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Córdoba, Spain. and Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| | - F Mauriello
- Dipartimento DICEAM, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy.
| |
Collapse
|
7
|
Fu X, Ren X, Shen J, Jiang Y, Wang Y, Orooji Y, Xu W, Liang J. Synergistic catalytic hydrogenation of furfural to 1,2-pentanediol and 1,5-pentanediol with LDO derived from CuMgAl hydrotalcite. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C 2-C 6 Platform Chemicals Derived from Biomass. Chem Rev 2020; 120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ever increasing industrial production of commodity and specialty chemicals inexorably depletes the finite primary fossil resources available on Earth. The forecast of population growth over the next 3 decades is a very strong incentive for the identification of alternative primary resources other than petro-based ones. In contrast with fossil resources, renewable biomass is a virtually inexhaustible reservoir of chemical building blocks. Shifting the current industrial paradigm from almost exclusively petro-based resources to alternative bio-based raw materials requires more than vibrant political messages; it requires a profound revision of the concepts and technologies on which industrial chemical processes rely. Only a small fraction of molecules extracted from biomass bears significant chemical and commercial potentials to be considered as ubiquitous chemical platforms upon which a new, bio-based industry can thrive. Owing to its inherent assets in terms of unique process experience, scalability, and reduced environmental footprint, flow chemistry arguably has a major role to play in this context. This review covers a selection of C2 to C6 bio-based chemical platforms with existing commercial markets including polyols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,4-butanediol, xylitol, and sorbitol), furanoids (furfural and 5-hydroxymethylfurfural) and carboxylic acids (lactic acid, succinic acid, fumaric acid, malic acid, itaconic acid, and levulinic acid). The aim of this review is to illustrate the various aspects of upgrading bio-based platform molecules toward commodity or specialty chemicals using new process concepts that fall under the umbrella of continuous flow technology and that could change the future perspectives of biorefineries.
Collapse
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet 45, Zone Industrielle C, B-7180 Seneffe, Belgium
| | - Patricia Luis
- Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Materials & Process Engineering (iMMC-IMAP), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| |
Collapse
|
9
|
Gyergyek S, Lisjak D, Beković M, Grilc M, Likozar B, Nečemer M, Makovec D. Magnetic Heating of Nanoparticles Applied in the Synthesis of a Magnetically Recyclable Hydrogenation Nanocatalyst. NANOMATERIALS 2020; 10:nano10061142. [PMID: 32532039 PMCID: PMC7353275 DOI: 10.3390/nano10061142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 11/16/2022]
Abstract
Utilization of magnetic nanoparticle-mediated conversion of electromagnetic energy into heat is gaining attention in catalysis as a source of heat needed for a substrate's chemical reaction (electrification of chemical conversions). We demonstrate that rapid and selective heating of magnetic nanoparticles opens a way to the rapid synthesis of a nanocatalyst. Magnetic heating caused rapid reduction of Ru3+ cations in the vicinity of the support material and enabled preparation of a Ru nanoparticle-bearing nanocatalyst. Comparative synthesis conducted under conventional heating revealed significantly faster Ru3+ reduction under magnetic heating. The faster kinetic was ascribed to the higher surface temperature of the support material caused by rapid magnetic heating. The nanocatalyst was rigorously tested in the hydrotreatment of furfural. The activity, selectivity and stability for furfural hydrogenation to furfuryl alcohol, a valuable biobased monomer, remained high even after four magnetic recycles.
Collapse
Affiliation(s)
- Sašo Gyergyek
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 60, 1000 Ljubljana, Slovenia; (D.L.); (D.M.)
- Correspondence:
| | - Darja Lisjak
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 60, 1000 Ljubljana, Slovenia; (D.L.); (D.M.)
| | - Miloš Beković
- Institute of Electrical Power Engineering, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška 46, 2000 Maribor, Slovenia;
| | - Miha Grilc
- Department of Catalysis and Chemical Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.G.); (B.L.)
| | - Blaž Likozar
- Department of Catalysis and Chemical Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.G.); (B.L.)
| | - Marijan Nečemer
- Department for Low and Medium Energy Physics, Jožef Stefan Institute, Jamova 60, 1000 Ljubljana, Slovenia;
| | - Darko Makovec
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 60, 1000 Ljubljana, Slovenia; (D.L.); (D.M.)
| |
Collapse
|
10
|
Izzo L, Tabanelli T, Cavani F, Blair Vàsquez P, Lucarelli C, Mella M. The competition between dehydrogenation and dehydration reactions for primary and secondary alcohols over gallia: unravelling the effects of molecular and electronic structure via a two-pronged theoretical/experimental approach. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02603g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relative dehydrogenation/dehydration reactivity imparted by nanostructured gallium(iii) oxide on alcohols was investigated via electronic structure calculations, reactivity tests and DRIFT-IR spectroscopy.
Collapse
Affiliation(s)
- Lorella Izzo
- Dipartimento di Biotecnologia e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese (I)
- Italy
| | - Tommaso Tabanelli
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università degli Studi di Bologna
- 40136 Bologna (I)
- Italy
| | - Fabrizio Cavani
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università degli Studi di Bologna
- 40136 Bologna (I)
- Italy
- Consorzio INSTM
| | - Paola Blair Vàsquez
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università degli Studi di Bologna
- 40136 Bologna (I)
- Italy
| | - Carlo Lucarelli
- Dipartimento di Scienza ed Alta Tecnologia
- Università degli Studi dell'Insubria
- 22100 Como (I)
- Italy
- Consorzio INSTM
| | - Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia
- Università degli Studi dell'Insubria
- 22100 Como (I)
- Italy
| |
Collapse
|