1
|
Gojun M, Valinger D, Šalić A, Zelić B. Development of NIR-Based ANN Models for On-Line Monitoring of Glycerol Concentration during Biodiesel Production in a Microreactor. MICROMACHINES 2022; 13:1590. [PMID: 36295943 PMCID: PMC9607543 DOI: 10.3390/mi13101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
During the production process, a whole range of analytical methods must be developed to monitor the quality of production and the desired product(s). Most of those methods belong to the group of off-line monitoring methods and are usually recognized as costly and long-term. In contrast, on-line monitoring methods are fast, reliable, simple, and repeatable. The main objective of this study was to compare different methods for monitoring total glycerol concentration as one of the indicators of process efficiency during biodiesel production in a batch reactor and in a microreactor. During the biodiesel production process, the glycerol concentration was measured off-line using standard methods based on UV-VIS spectrophotometry and gas chromatography. Neither method provided satisfactory results, namely, both analyses showed significant deviations from the theoretical value of glycerol concentration. Therefore, near infrared spectroscopy (NIR) analysis was performed as an alternative analytical method. The analysis using NIR spectroscopy was performed in two ways: off-line, using a sample collected during the transesterification process, and on-line by the continuous measurement of glycerol concentration in a rector. Obtained results showed a great NIR application potential not only for off-line but also for on-line monitoring of the biodiesel production process.
Collapse
Affiliation(s)
- Martin Gojun
- Deptartment of Reaction Engineering and Catalysis, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Davor Valinger
- Laboratory for Measurement, Control and Automatisation, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Anita Šalić
- Department of Thermodynamics, Mechanical Engineering and Energy, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Bruno Zelić
- Deptartment of Reaction Engineering and Catalysis, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
- Department of Packaging, Recycling and Environmental Protection, University North, Trg dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia
| |
Collapse
|
2
|
Aguado-Deblas L, López-Tenllado FJ, Luna D, Bautista FM, Romero AA, Estevez R. Advanced Biofuels from ABE (Acetone/Butanol/Ethanol) and Vegetable Oils (Castor or Sunflower Oil) for Using in Triple Blends with Diesel: Evaluation on a Diesel Engine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6493. [PMID: 36143804 PMCID: PMC9504408 DOI: 10.3390/ma15186493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
From a technical and economic point of view, our aim is to provide viable solutions for the replacement of fossil fuels which are currently used in internal combustion diesel engines. In this research, two new biofuels composed of second-generation vegetable oils (SVO),used oil sunflower (SO) or castor oil (CO), and the ABE blend (acetone/butanol/ethanol) were evaluated. ABE is an intermediate product from the fermentation of carbohydrates to obtain bio-butanol. Besides, the ABE blend exhibits suitable properties as biofuel, such asvery low kinematic viscosity, reasonable energy density, low autoignition temperature, and broad flammability limits. Diesel/ABE/SVO triple blends were prepared, characterized and then, tested on a diesel engine, evaluating power output, consumption, and exhaust emissions. The power output was slightly reduced due to the low heating values of ABE blend. Also, engine consumed more fuel with the triple blends than with diesel under low engine loads whereas, at medium and high loads, the fuel consumption was very similar to that of diesel. Regarding exhaust gas emissions, soot wasnotably reduced, and nitrogen oxides (NOx) and carbon monoxide (CO2) emissions were lower or comparable to that of diesel, while the CO emissions increased. The use of these biofuels allows the replacement of high percentagesof diesel without compromising engine power and achievinga significant reduction in pollution emissions. Furthermore, a notable improvement in cold flow properties of the fuel blends is obtained, in comparison with diesel.
Collapse
|
3
|
Macías-Alonso M, Hernández-Soto R, Carrera-Rodríguez M, Salazar-Hernández C, Mendoza-Miranda JM, Villegas-Alcaraz JF, Marrero JG. Obtention of biodiesel through an enzymatic two-step process. Study of its performance and characteristic emissions. RSC Adv 2022; 12:23747-23753. [PMID: 36090409 PMCID: PMC9394349 DOI: 10.1039/d2ra03578b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
We describe the enzymatic synthesis of biodiesel from waste cooking oil (WCO) in a two-step production process: hydrolysis of WCO, followed by acid-catalyzed esterification of free fatty acids (FFAs). Among the three commercial enzymes evaluated, the inexpensive lipase Lipex® 100L supported on Lewatit® VP OC 1600 produced the best overall biodiesel yield (96.3%). Finally, we assessed the combustion efficiency of the obtained biodiesel and its blends. All blends tested presented lower emissions of CO and HC compared to diesel. The NOx emissions were higher due to biodiesel's high volatility and viscosity. The cost of biodiesel production was calculated using the process described.
Collapse
Affiliation(s)
- Mariana Macías-Alonso
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato Av. Mineral de Valenciana 200 Col. Fracc. Industrial Puerto Interior Silao 36275 Guanajuato Mexico
| | - Rosa Hernández-Soto
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato Av. Mineral de Valenciana 200 Col. Fracc. Industrial Puerto Interior Silao 36275 Guanajuato Mexico
| | - Marcelino Carrera-Rodríguez
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato Av. Mineral de Valenciana 200 Col. Fracc. Industrial Puerto Interior Silao 36275 Guanajuato Mexico
| | - Carmen Salazar-Hernández
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato Av. Mineral de Valenciana 200 Col. Fracc. Industrial Puerto Interior Silao 36275 Guanajuato Mexico
| | - Juan Manuel Mendoza-Miranda
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato Av. Mineral de Valenciana 200 Col. Fracc. Industrial Puerto Interior Silao 36275 Guanajuato Mexico
| | - José Francisco Villegas-Alcaraz
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato Av. Mineral de Valenciana 200 Col. Fracc. Industrial Puerto Interior Silao 36275 Guanajuato Mexico
| | - Joaquín González Marrero
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato Av. Mineral de Valenciana 200 Col. Fracc. Industrial Puerto Interior Silao 36275 Guanajuato Mexico
| |
Collapse
|
4
|
Oxygenated Diesel Fuels and Their Effect on PM Emissions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Particulate matter (PM) emitted by diesel engines is one of the most harmful components of exhaust gases, including its carcinogenic effect. Due to the widespread use of diesel engines, the health effects of PM emissions affect millions of people around the world. At the same time, diesel particulate matter is characterized by a very complicated structure and mechanisms of formation compared to other exhaust gas components. It is obvious that PM emissions should be limited by all means. This article focuses on the reduction of PM emissions with the use of oxygenated fuels. The mechanisms of oxygenated fuels influence on the soot formation process in the working process of diesel engines have been discussed. The importance of the chemical structure of oxygenated compounds for the effectiveness of PM emissions reduction was considered. The results of empirical research on the influence on PM emissions of oxygenated fuels containing 12 oxygenates from chemical groups such as glycol ethers, maleates, carbonates and butanol were analyzed. The emissions tests were undertaken on a diesel passenger car over the NEDC and FTP-75 cycles. The results showed a high potential of oxygenated fuels in PM emissions reduction, even at a low oxygenates concentration of 5% v/v; namely, PM emissions were reduced by up to 32%. According to tests results, 1% of oxygen in the fuel resulted in an average reduction of PM emissions by 7% to 10%. In the view of already limited possibilities of modifying conventional parameters of diesel fuels, the use of oxygenated compounds is a promising way to trade on the potential of fuels in PM emissions reduction.
Collapse
|
5
|
Alashek F, Keshe M, Alhassan G. Preparation of Glycerol Derivatives by Entered of Glycerol in Different Chemical Organic Reactions: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review. ENERGIES 2022. [DOI: 10.3390/en15093173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many countries are immersed in several strategies to reduce the carbon dioxide (CO2) emissions of internal combustion engines. One option is the substitution of these engines by electric and/or hydrogen engines. However, apart from the strategic and logistical difficulties associated with this change, the application of electric or hydrogen engines in heavy transport, e.g., trucks, shipping, and aircrafts, also presents technological difficulties in the short-medium term. In addition, the replacement of the current car fleet will take decades. This is why the use of biofuels is presented as the only viable alternative to diminishing CO2 emissions in the very near future. Nowadays, it is assumed that vegetable oils will be the main raw material for replacing fossil fuels in diesel engines. In this context, it has also been assumed that the reduction in the viscosity of straight vegetable oils (SVO) must be performed through a transesterification reaction with methanol in order to obtain the mixture of fatty acid methyl esters (FAMEs) that constitute biodiesel. Nevertheless, the complexity in the industrial production of this biofuel, mainly due to the costs of eliminating the glycerol produced, has caused a significant delay in the energy transition. For this reason, several advanced biofuels that avoid the glycerol production and exhibit similar properties to fossil diesel have been developed. In this way, “green diesels” have emerged as products of different processes, such as the cracking or pyrolysis of vegetable oil, as well as catalytic (hydro)cracking. In addition, some biodiesel-like biofuels, such as Gliperol (DMC-Biod) or Ecodiesel, as well as straight vegetable oils, in blends with plant-based sources with low viscosity have been described as renewable biofuels capable of performing in combustion ignition engines. After evaluating the research carried out in the last decades, it can be concluded that green diesel and biodiesel-like biofuels could constitute the main alternative to addressing the energy transition, although green diesel will be the principal option in aviation fuel.
Collapse
|
7
|
Klaehn JR, Orme CJ, Ginosar DM. Separation of isoprene from biologically-derived gas streams. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- John R. Klaehn
- Biological and Chemical Processing and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho, United States
| | - Christopher J. Orme
- Biological and Chemical Processing and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho, United States
| | - Daniel M. Ginosar
- Biological and Chemical Processing and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho, United States
| |
Collapse
|
8
|
Phonolite Material as Catalyst Support for the Hydrotreatment of Gas Oil and Vegetable Oil Type Feedstocks. MATERIALS 2022; 15:ma15010386. [PMID: 35009534 PMCID: PMC8746302 DOI: 10.3390/ma15010386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 11/17/2022]
Abstract
Phonolite material has shown to be promising catalyst support for the deoxygenation of triglycerides. In this work, we continue with our previous research by synthesising and testing three acid-treated phonolite-supported Co-Mo, Ni-Mo and Ni-W catalysts for the hydrotreating of atmospheric gas oil and co-processing with rapeseed oil at industrial operating conditions (350-370 °C, WHSV 1-2 h-1, 5.5 MPa) in the continuous regime for more than 270 h. The phonolite-supported catalysts showed hydrotreating activity comparable with commercial catalysts, together with a complete conversion of triglycerides into n-alkanes. During co-processing, the Ni-promoted catalyst showed strong stability, with similar activity previous to the rapeseed oil addition. Our results enable us to evaluate the suitability of phonolite as catalyst support for the development of plausible alternatives to conventional hydrotreating catalysts for the co-processing of middle distillates with vegetable oils.
Collapse
|
9
|
Comparative Study on the Catalytic Performance of a 13X Zeolite and its Dealuminated Derivative for Biodiesel Production. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.4.11436.763-772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natural kaolin clay was used to successfully prepare 13X zeolite catalysts, which were modified by dealumination with citric acid. Acid leaching eliminates impurities and aluminum, and improves the Si/Al ratio of the zeolite framework. The X-ray diffraction (XRD) patterns of both the original and modified 13X zeolites were the same, indicating that the crystalline frameworks were not destroyed during the dealumination process. X-ray fluorescence data of the dealuminated 13X zeolite showed an improved Si/Al ratio. Also, Atomic Force Microscopy (AFM) was used for the characterization of the catalysts. The catalytic performance of the original and modified catalysts was tested in the esterification reaction of oleic acid in a batch reactor. A higher conversion of oleic acid was obtained using the modified 13X zeolite. The resulting experimental data from the esterification reactions were fitted to the heterogeneous Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model to determine the rates of reaction. The results of the reaction kinetics showed an increase in the rate of reaction velocity and a distinct decrease in the activation energy when using the modified zeolite, indicating that employing the modified catalyst will give a higher conversion over a shorter time through a reaction with less sensitivity to temperature. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
10
|
Enzymatic Production of Ecodiesel by Using a Commercial Lipase CALB, Immobilized by Physical Adsorption on Mesoporous Organosilica Materials. Catalysts 2021. [DOI: 10.3390/catal11111350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The synthesis of two biocatalysts based on a commercial Candida antarctica lipase B, CALB enzyme (E), physically immobilized on two silica supports, was carried out. The first support was a periodic mesoporous organosilica (PMO) and the second one was a commercial silica modified with octyl groups (octyl-MS3030). The maximum enzyme load was 122 mg enzyme/g support on PMO and 288 mg enzyme/g support on octyl-MS3030. In addition, the biocatalytic efficiency was corroborated by two reaction tests based on the hydrolysis of p-nitrophenylacetate (p-NPA) and tributyrin (TB). The transesterification of sunflower oil with ethanol was carried out over the biocatalysts synthesized at the following reaction conditions: 6 mL sunflower oil, 1.75 mL EtOH, 30 °C, 25 μL NaOH 10 N and 300 rpm, attaining conversion values over 80% after 3 h of reaction time. According to the results obtained, we can confirm that these biocatalytic systems are viable candidates to develop, optimize and improve a new methodology to achieve the integration of glycerol in different monoacylglycerol molecules together with fatty acid ethyl esters (FAEE) molecules to obtain Ecodiesel.
Collapse
|
11
|
Transesterification of Pyrolysed Castor Seed Oil in the Presence of CaCu(OCH3)2 Catalyst. ENERGIES 2021. [DOI: 10.3390/en14196064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Energy consumption is on the rise due to rapid technological progress and a higher standard of living. The use of alternative energy resources is essential to meet the rising energy demand and mitigate the carbon emissions caused due to use of fossil-based fuels. Biodiesel produced from non-edible oils such as castor seed oil (CO) can be used in diesel engines to replace fossil diesel. However, the quality and yields for CO biodiesel is low due to the presence of ricinolic acid C18:1OH (79%). In this study, two-stage conversion techniques were used to improve the yields and properties of CO biodiesel. The catalyst CaCu(OCH3)2 was prepared from waste eggshell and synthesized with copper oxide in the presence of methanol. The castor oil was subjected to pyrolysis at 450–500 °C and then transesterified in the presence of modified catalyst. The reaction parameters such as methanol-to-oil ratio and catalyst and reaction time were investigated, and the optimum combination was used to produce castor biodiesel from pyrolysis castor oil. Results showed that the cetane number and oxidation stability were increased by 7% and 42% respectively. The viscosity, density, flash point, and iodine value were decreased by 52%, 3%, 5% and 6%, respectively. The calorific values remained the same. This study suggests that pyrolyzed castor seed oil followed by transesterification in the presence of a modified catalyst gave better fuel properties and yields than the conventional transesterification process for biodiesel fuel production.
Collapse
|
12
|
Hidalgo-Carrillo J, Estévez-Toledano RC, López-Tenllado FJ, Bautista FM, Urbano FJ, Marinas A. Fourth generation synthesis of solketal by glycerol acetalization with acetone: A solar-light photocatalytic approach. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Sa-ngasaeng Y, Sirimungkalakul N, Boonyongmaneerat Y, Jongpatiwut S. Pd/TiO
2
Coated in a Microscale‐Based Reactor by Electrophoretic Deposition for Biohydrogenated Diesel Production. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanika Sa-ngasaeng
- Chulalongkorn University The Petroleum and Petrochemical College Phayathai Road 10330 Bangkok Thailand
| | | | - Yuttanant Boonyongmaneerat
- Chulalongkorn University Metallurgy and Materials Science Research Institute (MMRI) Phayathai Road 10330 Bangkok Thailand
| | - Siriporn Jongpatiwut
- Chulalongkorn University The Petroleum and Petrochemical College Phayathai Road 10330 Bangkok Thailand
- Chulalongkorn University Center of Excellence on Petrochemical and Materials Technology Phayathai Road 10330 Bangkok Thailand
| |
Collapse
|
14
|
Melchiorre M, Cucciolito ME, Di Serio M, Ruffo F, Tarallo O, Trifuoggi M, Esposito R. Homogeneous Catalysis and Heterogeneous Recycling: A Simple Zn(II) Catalyst for Green Fatty Acid Esterification. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:6001-6011. [PMID: 34306834 PMCID: PMC8297397 DOI: 10.1021/acssuschemeng.1c01140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Indexed: 05/17/2023]
Abstract
This work describes the use of simple zinc(II) salts (ZnCl2, ZnCO3, Zn(OAc)2, ZnO, Zn(ClO4)2, Zn(TfO)2, and Zn(BF4)2) as effective catalysts for the esterification of fatty acids with long-chain alcohols and simple polyols through a homogeneous system that allows the gradual and selective removal of water. The results show that the catalytic activity depends on the nature of the counterion: the most effective are the salts with poorly coordinating anions (perchlorate and triflate) or containing basic Brønsted anions (oxide, acetate, and carbonate). However, only with the latter is it possible to fully recover the catalyst at the end of each run, which is easily filtered in the form of zinc carboxylate, given its insolubility in the ester produced. In this way, it is possible to recycle the catalyst numerous times, without any loss of activity. This beneficial prerogative couples the efficiency of the homogeneous catalysis with the advantage of the heterogeneous catalysis. The process is, therefore, truly sustainable, given its high efficiency, low energy consumption, ease of purification, and the absence of auxiliary substances and byproducts.
Collapse
Affiliation(s)
| | - Maria Elena Cucciolito
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Via
Cintia 21, 80126 Napoli, Italy
- Consorzio
Interuniversitario di Reattività Chimica e Catalisi, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Martino Di Serio
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Via
Cintia 21, 80126 Napoli, Italy
- Consorzio
Interuniversitario di Reattività Chimica e Catalisi, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Francesco Ruffo
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Via
Cintia 21, 80126 Napoli, Italy
- Consorzio
Interuniversitario di Reattività Chimica e Catalisi, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Oreste Tarallo
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Via
Cintia 21, 80126 Napoli, Italy
| | - Marco Trifuoggi
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Via
Cintia 21, 80126 Napoli, Italy
| | - Roberto Esposito
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Via
Cintia 21, 80126 Napoli, Italy
- Consorzio
Interuniversitario di Reattività Chimica e Catalisi, Via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
15
|
Evaluation of Dimethyl Carbonate as Alternative Biofuel. Performance and Smoke Emissions of a Diesel Engine Fueled with Diesel/Dimethyl Carbonate/Straight Vegetable Oil Triple Blends. SUSTAINABILITY 2021. [DOI: 10.3390/su13041749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dimethyl carbonate (DMC) is an interesting blending component for diesel fuel (D) owing to the high oxygen content (53 wt.%) and the absence of C–C bonds in its structure. Moreover, DMC can be produced from CO2 and methanol, which provides a renewable way to reduce anthropogenic CO2. This research has been addressed to assess the use of DMC as a solvent of sunflower oil (SO) and castor oil (CO), with the purpose of obtaining biofuels that can replace fossil diesel as much as possible. The blending of DMC with straight vegetable oils (SVOs) reduces their high viscosity, allowing their usage as drop-in biofuels without chemical treatments. Based on viscosity requirements of European Standard EN 590, the optimal DMC/SVO double blends have been tested as direct biofuels by themselves or mixed with fossil diesel in D/DMC/SVO triple blends. Relevant physico-chemical properties of fuels have been analyzed. Engine parameters such as power output, brake-specific fuel consumption (BSFC) and soot emissions have been studied to determine the effect of new biofuels on efficiency of a diesel engine. An outstanding engine efficiency is shown by the studied D/DMC/SVO triple blends, either with SO or CO as an SVO. The low calorific value of DMC is the main reason for reduction in power and BSFC, as the amount of diesel in the triple blends is reduced. Experimental results demonstrate that the use of these biofuels allows the replacement of up to 40% of fossil diesel, without compromising the power and BSFC of the engine, and accomplishing optimal cold flow properties and a marked drop in exhaust emissions.
Collapse
|
16
|
Biofuels from Diethyl Carbonate and Vegetable Oils for Use in Triple Blends with Diesel Fuel: Effect on Performance and Smoke Emissions of a Diesel Engine. ENERGIES 2020. [DOI: 10.3390/en13246584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The main objective of this work is to contribute to a gradual replacement process of fossil diesel (D) with biofuels composed by diethyl carbonate (DEC) and either sunflower or castor oil, as straight vegetable oils (SVOs). DEC is a very interesting candidate as an oxygenated additive not only because of its low price and renewable nature, but also its favorable fuel properties, such as very low kinematic viscosity, high cetane number, high oxygen content, rich cold flow properties and good miscibility with fossil diesel and vegetable oils. In this work, the more suitable DEC/SVO biofuels are chosen based on kinematic viscosity, according to the European normative. Additionally, the most relevant physical–chemical properties of (bio)fuels such as density, calorific value, cloud point, pour point and cetane number are determined. The influence of DEC on engine performance and exhaust emissions is analyzed by fueling a conventional Diesel engine with the different D/DEC/SVO triple and DEC/SVO double mixtures. The tests results are also compared with commercial diesel. From the results, it is concluded that Diesel engine fueled with the blends studied exhibits an excellent performance in terms of power output, very similar to diesel. Additionally, the use of these blends can remarkably decrease smoke emissions down to 98%, with respect to fossil diesel. The addition of DEC shows a significant improvement in cold flow properties of fuel mixtures in the exchange of a slightly higher brake specific fuel consumption (BSFC) than diesel. Interestingly, the pure biofuels composed by DEC and SVO allow for a suitable engine operation and achieve the lowest emissions, which means these blends can be successfully employed in current engines without adding fossil diesel, i.e., their use entail a 100% renewability.
Collapse
|
17
|
Abstract
Once a biorefinery is ready to operate, the main processed materials need to be completely evaluated in terms of many different factors, including disposal regulations, technological limitations of installation, the market, and other societal considerations. In biorefinery, glycerol is the main by-product, representing around 10% of biodiesel production. In the last few decades, the large-scale production of biodiesel and glycerol has promoted research on a wide range of strategies in an attempt to valorize this by-product, with its transformation into added value chemicals being the strategy that exhibits the most promising route. Among them, C3 compounds obtained from routes such as hydrogenation, oxidation, esterification, etc. represent an alternative to petroleum-based routes for chemicals such as acrolein, propanediols, or carboxylic acids of interest for the polymer industry. Another widely studied and developed strategy includes processes such as reforming or pyrolysis for energy, clean fuels, and materials such as activated carbon. This review covers recent advances in catalysts used in the most promising strategies considering both chemicals and energy or fuel obtention. Due to the large variety in biorefinery industries, several potential emergent valorization routes are briefly summarized.
Collapse
|
18
|
Rhizopus oryzae Lipase, a Promising Industrial Enzyme: Biochemical Characteristics, Production and Biocatalytic Applications. Catalysts 2020. [DOI: 10.3390/catal10111277] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipases are biocatalysts with a significant potential to enable a shift from current pollutant manufacturing processes to environmentally sustainable approaches. The main reason of this prospect is their catalytic versatility as they carry out several industrially relevant reactions as hydrolysis of fats in water/lipid interface and synthesis reactions in solvent-free or non-aqueous media such as transesterification, interesterification and esterification. Because of the outstanding traits of Rhizopus oryzae lipase (ROL), 1,3-specificity, high enantioselectivity and stability in organic media, its application in energy, food and pharmaceutical industrial sector has been widely studied. Significant advances have been made in the biochemical characterisation of ROL particularly in how its activity and stability are affected by the presence of its prosequence. In addition, native and heterologous production of ROL, the latter in cell factories like Escherichia coli, Saccharomyces cerevisiae and Komagataella phaffii (Pichia pastoris), have been thoroughly described. Therefore, in this review, we summarise the current knowledge about R. oryzae lipase (i) biochemical characteristics, (ii) production strategies and (iii) potential industrial applications.
Collapse
|
19
|
Outlook for Direct Use of Sunflower and Castor Oils as Biofuels in Compression Ignition Diesel Engines, Being Part of Diesel/Ethyl Acetate/Straight Vegetable Oil Triple Blends. ENERGIES 2020. [DOI: 10.3390/en13184836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Today, biofuels are indispensable in the implementation of fossil fuels replacement processes. This study evaluates ethyl acetate (EA) as a solvent of two straight vegetable oils (SVOs), castor oil (CO), and sunflower oil (SO), in order to obtain EA/SVO double blends that can be used directly as biofuels, or along with fossil diesel (D), in the current compression-ignition (C.I.) engines. The interest of EA as oxygenated additive lies not only in its low price and renewable character, but also in its very attractive properties such as low kinematic viscosity, reasonable energy density, high oxygen content, and rich cold flow properties. Revelant fuel properties of EA/SVO double and D/EA/SVO triple blends have been object of study including kinematic viscosity, pour point (PP), cloud point (CP), calorific value (CV), and cetane number (CN). The suitability of using these blends as fuels has been tested by running them on a diesel engine electric generator, analyzing their effect on engine power output, fuel consumption, and smoke emissions. Results obtained indicate that the D/EA/SO and D/EA/CO triple blends, composed by up to 24% and 36% EA, respectively, allow a fossil diesel substitution up to 60–80% providing power values very similar to conventional diesel.In addition, in exchange of a slight fuel consumption, a very notable lessening in the emission of pollutants as well as a better behavior at low temperatures, as compared to diesel, are achieved.
Collapse
|
20
|
Qian X, Xu N, Jing Y, Song M, Zhou J, Dong W, Xin F, Zhang W, Jiang M, Ochsenreither K. Valorization of Crude Glycerol into Citric Acid and Malic Acid by Yarrowia lipolytica. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ning Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yiwen Jing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Meng Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg4, Karlsruhe 76131, Germany
| |
Collapse
|
21
|
V R S, Thomas JJ, G N. Experimental investigation on the effects of multiple injections and EGR on n-pentanol-biodiesel fuelled RCCI engine. RSC Adv 2020; 10:29498-29509. [PMID: 35521148 PMCID: PMC9055961 DOI: 10.1039/d0ra03723k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
Stringent emissions and fuel economy regulations have necessitated the need to boost the research interest in oxygenated alternate fuels such as n-pentanol and biodiesel under low-temperature combustion strategies due to their renewability and cleaner combustion characteristics. Being higher alcohol, n-pentanol has desirable fuel properties that are comparable to mineral diesel, which enable easy blending of these fuels. In the present study, the Reactivity Controlled Compression Ignition (RCCI) operation in a modified single-cylinder diesel engine operating at the rated speed of 1500 rpm and 50% load was investigated with non-edible karanja oil-based biodiesel-diesel blend with B20 as high reactivity fuel (HRF) and n-pentanol as low reactivity fuel (LRF). The intake temperature was maintained constant at 40 °C, intake pressure was ambient and the LRF was varied from 20% to 50%. The engine's performance with split injection was investigated by sweeping starts of injection (SOI) crank angles and these were optimized at 47°, 27°, and 17° bTDC for SOI 1, SOI 2, and SOI 3 respectively at 400 bar injection pressure. The engine performance characteristics were investigated by introducing 10% to 30% cooled exhaust gas recirculation (EGR) and was optimized at 25%, based on the stable operation of the engine with acceptable ringing intensity and emission. The combined effect of EGR, multiple injections (three), and varying PFI mass fractions was investigated and compared with a single injection of HRF. A simultaneous reduction of 76% smoke and 91.5% NO X emission was obtained with a marginal increase in CO and HC emissions.
Collapse
Affiliation(s)
- Sabu V R
- ICE Division, Anna University Chennai India +91 9447388555
| | | | - Nagarajan G
- ICE Division, Anna University Chennai India +91 9447388555
| |
Collapse
|
22
|
Abstract
The alcohols ethanol and 1-butanol are interesting options as blending components for renewable fuels. We studied whether it is possible to mix these alcohols with a little refined material, rapeseed oil, to obtain stable fuel samples. At room temperature, the stable samples consisted of rapeseed oil blended with butanol at 5 vol-%, 10 vol-%, 20 vol-%, 30 vol-% and one sample of rapeseed oil with 5 vol-% of ethanol. The samples’ fuel properties analysed were kinematic viscosity (at 40 °C), density (at 15 °C) and surface tension. Cold filter plugging point was measured for rapeseed oil with 20 vol-% and 30 vol-% of butanol. Stability of butanol or ethanol and rapeseed oil blends can be achieved at the studied volumes. The density of neat rapeseed oil and all the alcohol–rapeseed oil blends met the requirements set for residual marine fuels. The 30 vol-% butanol–rapeseed oil blend met the requirements for distillate marine oil for density, and almost for kinematic viscosity. The blends appeared most suitable for power plants and marine engines. More detailed analyses of their properties are needed before recommendations for use can be given.
Collapse
|
23
|
Acetone Prospect as an Additive to Allow the Use of Castor and Sunflower Oils as Drop-In Biofuels in Diesel/Acetone/Vegetable Oil Triple Blends for Application in Diesel Engines. Molecules 2020; 25:molecules25122935. [PMID: 32630602 PMCID: PMC7356534 DOI: 10.3390/molecules25122935] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/02/2022] Open
Abstract
The present paper investigates the feasibility of using acetone (ACE) in triple blends with fossil diesel (D) and straight vegetable oils (SVOs) as alternative fuel for diesel engines. In this respect, ACE is selected as an oxygenated additivedue to its favorable propertiesto be mixed with vegetable oils and fossil diesel. In fact, the very low kinematic viscosity allows reduces the high viscosity of SVOs. ACE’s oxygen content, low autoignition temperature, and very low cloud point and pour point values highlight its possibilities as an additive in D/ACE/SVO triple blends. Moreover, ACE can be produced through a renewable biotechnological process, an acetone–butanol–ethanol (ABE) fermentation from cellulosic biomass. The SVOs tested were castor oil (CO), which is not suitable for human consumption, and sunflower oil (SO), used as a standard reference for waste cooking oil. The viscosity measurement of the ACE/SVO double blend was considered crucial to choose the optimum proportion, which better fulfilled the specifications established by European standard EN 590. Moreover, some of the most significant physicochemical properties of D/ACE/SVO triple blends, such as kinematic viscosity, cloud point, pour point, and calorific value, were determined to assess their suitability as fuels. The blends were evaluated in a conventional diesel generator through the study of the following parameters: engine power, smoke emissions, and fuel consumption. Despite the low calorific value of ACE limits its ratio in the mixtures due to engine knocking problems, the experimental results reveal an excellent performance for the blends containing up to 16-18% of ACE and 22-24% of SVO. These blends produce similar engine power as to fossil diesel, but with slightly higher fuel consumption. Considerable reductions in emissions of air pollutants, as well as excellent cold flow properties are also obtained with these triple blends. In summary, the use of these biofuels could achieve a substitution of fossil diesel up to 40%, independently on the SVO employed.
Collapse
|
24
|
Utilization of Waste Grooved Razor Shell (GRS) as a Catalyst in Biodiesel Production from Refined and Waste Cooking Oils. Catalysts 2020. [DOI: 10.3390/catal10060703] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biodiesel is a potential alternative for fossil fuel. However, its large-scale application is held up by the disadvantage of a homogenous process, the scarce availability of raw materials and the production cost, which is higher than for fossil diesel. In this work, biodiesel production was carried out using both refined and used cooking oils. The process was investigated in a batch reactor, in the presence of CaO as a heterogeneous catalyst prepared by the calcination of the natural Waste Grooved Razor Shell (GRS). Characterizations by X-Ray Diffraction (XRD) and Thermal Gravimetric (TG)/Differential Thermal Analysis (DTA) showed that the as-received GRS consists of aragonite, (i.e., CaCO3) as the main component and of water and organic matter in a lower amount. After calcination at 900 °C, CaO was formed as the only crystalline phase. The effects of several experimental parameters in the transesterification reactions were studied, and their impact on the produced biodiesel properties was investigated. The studied variables were the methanol/oil molar ratio, the catalyst weight percentage (with respect to the oil mass), the calcination temperature of the parent GRS and the recycling and regeneration of the catalyst. The physico-chemical and fuel properties, i.e., viscosity, density and acid value of used oils and of the produced biodiesel, were determined by conventional methods (American Society for Testing and Materials (ASTM) methods) and compared with the European standards of biodiesel. The optimal identified conditions were the following: the use of a 15:1 methanol/oil molar ratio and 5 wt% of CaO with respect to the oil mass. After 3 h of reaction at 65 °C, the biodiesel yield was equal to 94% and 99% starting from waste and refined oils, respectively.
Collapse
|
25
|
Aguado-Deblas L, Estevez R, Russo M, La Parola V, Bautista FM, Testa ML. Microwave-Assisted Glycerol Etherification Over Sulfonic Acid Catalysts. MATERIALS 2020; 13:ma13071584. [PMID: 32235560 PMCID: PMC7178245 DOI: 10.3390/ma13071584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022]
Abstract
Glycerol is the main by-product of biodiesel production. For this reason, its valorization into value-added products, by using green procedures, represents an important goal. Different sulfonic acid silica- or titania-based catalysts were prepared, characterized and tested in the glycerol etherification process, assisted by microwaves, in order to obtain biodiesel additives. The surface and structural properties of the catalysts were investigated by means of N2 adsorption isotherms, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and acid capacity measurements by X-Ray Fluorescence Spectroscopy (XRF). The best performance in terms of activity was achieved in the presence of the sulfonic function directly linked to the amorphous silica. By the correlation of the structure properties of the materials and their activity, the performance of the catalysts was shown to be influenced mainly by the surface area, pore volume and acidity. Recycling experiments performed over the most active systems showed that the sulfonic silica-based materials maintained their performance during several cycles.
Collapse
Affiliation(s)
- Laura Aguado-Deblas
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, 14014 Córdoba, Spain; (L.A.-D.); (R.E.); (F.M.B.)
| | - Rafael Estevez
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, 14014 Córdoba, Spain; (L.A.-D.); (R.E.); (F.M.B.)
| | - Marco Russo
- Istituto per lo Studio dei Materiali Nanostrutturati, ISMN-CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy; (M.R.); (V.L.P.)
| | - Valeria La Parola
- Istituto per lo Studio dei Materiali Nanostrutturati, ISMN-CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy; (M.R.); (V.L.P.)
| | - Felipa M. Bautista
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, 14014 Córdoba, Spain; (L.A.-D.); (R.E.); (F.M.B.)
| | - Maria Luisa Testa
- Istituto per lo Studio dei Materiali Nanostrutturati, ISMN-CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy; (M.R.); (V.L.P.)
- Correspondence: ; Tel.: +39-0916-809-253
| |
Collapse
|
26
|
Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine. ENERGIES 2020. [DOI: 10.3390/en13071542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of this work is to analyze the effect of using diethyl ether (DEE) as an oxygenated additive of straight vegetable oils (SVOs) in triple blends with fossil diesel, to be used in current compression ignition (C.I.) engines, in order to implement the current process of replacing fossil fuels with others of a renewable nature. The use of DEE is considered taking into account the favorable properties for blending with SVO and fossil diesel, such as its very low kinematic viscosity, high oxygen content, low autoignition temperature, broad flammability limits (it works as a cold start aid for engines), and very low values of cloud and pour point. Therefore, DEE can be used as a solvent of vegetable oils to reduce the viscosity of the blends and to improve cold flow properties. Besides, DEE is considered renewable, since it can be easily obtained from bioethanol, which is produced from biomass through a dehydration process. The vegetable oils evaluated in the mixtures with DEE were castor oil, which is inedible, and sunflower oil, used as a standard reference for waste cooking oil. In order to meet European petrodiesel standard EN 590, a study of the more relevant rheological properties of biofuels obtained from the DEE/vegetable oil double blends has been performed. The incorporation of fossil diesel to these double blends gives rise to diesel/DEE/vegetable oil triple blends, which exhibited suitable rheological properties to be able to operate in conventional diesel engines. These blends have been tested in a conventional diesel engine, operating as an electricity generator. The efficiency, consumption and smoke emissions in the engine have been measured. The results reveal that a substitution of fossil diesel up to 40% by volume can be achieved, independently of the SVO employed. Moreover, a significant reduction in the emission levels of pollutants and better cold flow properties has been also obtained with all blends tested.
Collapse
|
27
|
Abstract
The development of solid acid catalysts, especially based on metal oxides and different magnetic nanoparticles, gained much awareness recently as a result of the development of different nano-based materials. Solid acid catalysts based on metal oxides are promising for the (trans)esterification reactions of different oils and waste materials for biodiesel production. This review gives a brief overview of recent developments in various solid acid catalysts based on different metal oxides, such as zirconia, zinc, titanium, iron, tungsten, and magnetic materials, where the catalysts are optimized for various reaction parameters, such as the amount of catalyst, molar ratio of oil to alcohol, reaction time, and temperature. Furthermore, yields and conversions for biodiesel production are compared. Such metal-oxide-based solid acid catalysts provide more sustainable, green, and easy-separation synthesis routes with high catalytic activity and reusability than traditionally used catalysts.
Collapse
|