1
|
Li M, Zhang J, Li Z, Xu Z, Qian S, Tay LJ, Zhang Z, Yang F, Huang Y. The role and mechanism of SUMO modification in liver disease. Biomed Pharmacother 2024; 177:116898. [PMID: 38878635 DOI: 10.1016/j.biopha.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
Liver disease affects millions of people in the world, and China has the highest prevalence of liver disease in the world. Small ubiquitin-related modifier (SUMO) modification is a highly conserved post-translational modification of proteins. They are widely expressed in a variety of tissues, including the heart, liver, kidney and lung. SUMOylation of protein plays a key role in the occurrence and development of liver disease. Therefore, this study reviewed the effects of SUMO protein on non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases to provide novel strategies for targeted treatment of liver disease.
Collapse
Affiliation(s)
- Mengxue Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Jingrong Zhang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zihao Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zhou Xu
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Shishun Qian
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Lynn Jia Tay
- School of International Education, Anhui Medical University, Hefei 230032, China
| | - Ziwen Zhang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Furong Yang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| | - Yan Huang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; School of International Education, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
2
|
Khai NX, Huy DQ, Trang DT, Minh NT, Tien TD, Phuong NV, Dung NV, Hang NT, Khanh LV, Hoang NH, Xuan NT, Mao CV, Tong HV. Expression of SUMO and NF-κB genes in hepatitis B virus-associated hepatocellular carcinoma patients: An observational study. Medicine (Baltimore) 2024; 103:e38737. [PMID: 38941371 PMCID: PMC11466154 DOI: 10.1097/md.0000000000038737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024] Open
Abstract
Alterations in signaling pathways and modulation of cell metabolism are associated with the pathogenesis of cancers, including hepatocellular carcinoma (HCC). Small ubiquitin-like modifier (SUMO) proteins and NF-κB family play major roles in various cellular processes. The current study aims to determine the expression profile of SUMO and NF-κB genes in HCC tumors and investigate their association with the clinical outcome of HCC. The expression of 5 genes - SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 - was quantified in tumor and adjacent non-tumor tissues of 58 HBV-related HCC patients by real-time quantitative PCR and was analyzed for the possible association with clinical parameters of HCC. The expression of SUMO2 was significantly higher in HCC tumor tissues compared to the adjacent non-tumor tissues (P = .01), while no significant difference in SUMO1, SUMO3, NF-κB p65, and NF-κB p50 expression was observed between HCC tumor and non-tumor tissues (P > .05). In HCC tissues, a strong correlation was observed between the expression of SUMO2 and NF-κB p50, between SUMO3 and NF-κB p50, between SUMO3 and NF-κB p65 (Spearman rho = 0.83; 0.82; 0.772 respectively; P < .001). The expression of SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 was decreased in grade 3 compared to grades 1 and 2 in HCC tumors according to the World Health Organization grades system. Our results highlighted that the SUMO2 gene is upregulated in tumor tissues of patients with HCC, and is related to the development of HCC, thus it may be associated with the pathogenesis of HCC.
Collapse
Affiliation(s)
- Nguyen Xuan Khai
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Duong Quang Huy
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Do Thi Trang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngo Tuan Minh
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Truong Dinh Tien
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Viet Phuong
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | | | - Ngo Thu Hang
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le Van Khanh
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Can Van Mao
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Van Tong
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
3
|
Yang Y, Yu F. Abnormal protein SUMOylation in liver disease: novel target for therapy. J Mol Med (Berl) 2024; 102:719-731. [PMID: 38565749 DOI: 10.1007/s00109-024-02440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
SUMOylation is an important protein post-translational modification (PTM) process, in which the small ubiquitin-like modifier (SUMO) protein covalently binds to the target protein and regulates stability, subcellular localization, and protein-protein interaction of the target protein. Protein SUMOylation exerts crucial regulatory function in the liver, and its abnormalities are associated with various liver-related disease processes. This review focuses on the biological functions of protein SUMOylation in liver-related diseases in recent years, summarizes the molecular mechanisms of SUMOylation in the replication of hepatitis viruses and the occurrence of hepatocellular carcinoma, and discusses the significance of SUMOylation in liver-related disorders, which is essential for understanding liver biological processes and formulating therapeutic strategies.
Collapse
Affiliation(s)
- Yanfang Yang
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| | - Fuxun Yu
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
4
|
Lachiondo-Ortega S, Rejano-Gordillo CM, Simon J, Lopitz-Otsoa F, C Delgado T, Mazan-Mamczarz K, Goikoetxea-Usandizaga N, Zapata-Pavas LE, García-Del Río A, Guerra P, Peña-Sanfélix P, Hermán-Sánchez N, Al-Abdulla R, Fernandez-Rodríguez C, Azkargorta M, Velázquez-Cruz A, Guyon J, Martín C, Zalamea JD, Egia-Mendikute L, Sanz-Parra A, Serrano-Maciá M, González-Recio I, Gonzalez-Lopez M, Martínez-Cruz LA, Pontisso P, Aransay AM, Barrio R, Sutherland JD, Abrescia NGA, Elortza F, Lujambio A, Banales JM, Luque RM, Gahete MD, Palazón A, Avila MA, G Marin JJ, De S, Daubon T, Díaz-Quintana A, Díaz-Moreno I, Gorospe M, Rodríguez MS, Martínez-Chantar ML. SUMOylation controls Hu antigen R posttranscriptional activity in liver cancer. Cell Rep 2024; 43:113924. [PMID: 38507413 PMCID: PMC11025316 DOI: 10.1016/j.celrep.2024.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/08/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Sofia Lachiondo-Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Claudia M Rejano-Gordillo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, University Institute of Biosanitary Research of Extremadura (INUBE), 06071 Badajoz, Spain; Biofisika Institute, Consejo Superior de Investigaciones Científicas (CSIC), Departamento Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Jorge Simon
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Teresa C Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - L Estefanía Zapata-Pavas
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Ana García-Del Río
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Pietro Guerra
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Patricia Peña-Sanfélix
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Natalia Hermán-Sánchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Ruba Al-Abdulla
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Institute of Medical Biochemistry and Molecular Biology, University Medicine of Greifswald, 17475 Greifswald, Germany
| | - Carmen Fernandez-Rodríguez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), 48160 Derio, Bizkaia, Spain
| | - Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Joris Guyon
- University of Bordeaux, INSERM, BPH, U1219, 33000 Bordeaux, France; CHU de Bordeaux, Service de Pharmacologie Médicale, 33000 Bordeaux, France
| | - César Martín
- Biofisika Institute, Consejo Superior de Investigaciones Científicas (CSIC), Departamento Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Juan Diego Zalamea
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Arantza Sanz-Parra
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Irene González-Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Monika Gonzalez-Lopez
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Patrizia Pontisso
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Ana M Aransay
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Rosa Barrio
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - James D Sutherland
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Félix Elortza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), 48160 Derio, Bizkaia, Spain
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jesus M Banales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Asís Palazón
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Hepatology Program, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM), Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Manuel S Rodríguez
- Laboratoire de Chimie de Coordination (LCC), UPR 8241, CNRS; IPBS-University of Toulouse III-Paul Sabatier, Toulouse, France
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| |
Collapse
|
5
|
Shi L, Shangguan J, Lu Y, Rong J, Yang Q, Yang Y, Xie C, Shu X. ROS-mediated up-regulation of SAE1 by Helicobacter pylori promotes human gastric tumor genesis and progression. J Transl Med 2024; 22:148. [PMID: 38351014 PMCID: PMC10863176 DOI: 10.1186/s12967-024-04913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a major risk factor of gastric cancer (GC). The SUMO-activating enzyme SAE1(SUMO-activating enzyme subunit 1), which is indispensable for protein SUMOylation, involves in human tumorigenesis. In this study, we used the TIMER and TCGA database to explore the SAE1 expression in GC and normal tissues and Kaplan-Meier Plotter platform for survival analysis of GC patients. GC tissue microarray and gastric samples from patients who underwent endoscopic treatment were employed to detect the SAE1expression. Our results showed that SAE1 was overexpressed in GC tissues and higher SAE1 expression was associated with worse clinical characteristics of GC patients. Cell and animal models showed that H. pylori infection upregulated SAE1, SUMO1, and SUMO2/3 protein expression. Functional assays suggested that suppression of SAE1 attenuated epithelial-mesenchymal transition (EMT) biomarkers and cell proliferation abilities induced by H. pylori. Cell and animal models of ROS inhibition in H. pylori showed that ROS could mediate the H. pylori-induced upregulation of SAE1, SUMO1, and SUMO2/3 protein. RNA sequencing was performed and suggested that knockdown of SAE1 could exert an impact on IGF-1 expression. General, increased SUMOylation modification is involved in H. pylori-induced GC.
Collapse
Affiliation(s)
- Liu Shi
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Gastroenterology, The Affiliated Ganzhou Hospital of Nanchang University, No.16, Meiguan Avenue, Ganzhou, 341000, Jiangxi, China
| | - Jianfang Shangguan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Ying Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jianfang Rong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Qinyu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Yihan Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
6
|
Kiruthiga C, Niharika K, Devi KP. Phytol and α-Bisabolol Synergy Induces Autophagy and Apoptosis in A549 Cells and Additional Molecular Insights through Comprehensive Proteome Analysis via Nano LC-MS/MS. Anticancer Agents Med Chem 2024; 24:773-788. [PMID: 38415491 DOI: 10.2174/0118715206289038240214102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Non-Small Cell Lung Cancer (NSCLC) is a malignancy with a significant prevalence and aggressive nature, posing a considerable challenge in terms of therapeutic interventions. Autophagy and apoptosis, two intricate cellular processes, are integral to NSCLC pathophysiology, each affecting the other through shared signaling pathways. Phytol (Phy) and α-bisabolol (Bis) have shown promise as potential anticancer agents individually, but their combined effects in NSCLC have not been extensively investigated. OBJECTIVE The present study was to examine the synergistic impact of Phy and Bis on NSCLC cells, particularly in the context of autophagy modulation, and to elucidate the resulting differential protein expression using LCMS/ MS analysis. METHODS The A549 cell lines were subjected to the patented effective concentration of Phy and Bis, and subsequently, the viability of the cells was evaluated utilizing the MTT assay. The present study utilized real-time PCR analysis to assess the expression levels of crucial apoptotic genes, specifically Bcl-2, Bax, and Caspase-9, as well as autophagy-related genes, including Beclin-1, SQSTM1, Ulk1, and LC3B. The confirmation of autophagy marker expression (Beclin-1, LC3B) and the autophagy-regulating protein SQSTM1 was achieved through the utilization of Western blot analysis. Differentially expressed proteins were found using LC-MS/MS analysis. RESULTS The combination of Phy and Bis demonstrated significant inhibition of NSCLC cell growth, indicating their synergistic effect. Real-time PCR analysis revealed a shift towards apoptosis, with downregulation of Bcl-2 and upregulation of Bax and Caspase-9, suggesting a shift towards apoptosis. Genes associated with autophagy regulation, including Beclin-1, SQSTM1 (p62), Ulk1, and LC3B, showed significant upregulation, indicating potential induction of autophagy. Western blot analysis confirmed increased expression of autophagy markers, such as Beclin-1 and LC3B, while the autophagy-regulating protein SQSTM1 exhibited a significant decrease. LC-MS/MS analysis revealed differential expression of 861 proteins, reflecting the modulation of cellular processes. Protein-protein interaction network analysis highlighted key proteins involved in apoptotic and autophagic pathways, including STOML2, YWHAB, POX2, B2M, CDA, CAPN2, TXN, ECHS1, PEBP1, PFN1, CDC42, TUBB1, HSPB1, PXN, FGF2, and BAG3, emphasizing their crucial roles. Additionally, PANTHER pathway analysis uncovered enriched pathways associated with the differentially expressed proteins, revealing their involvement in a diverse range of biological processes, encompassing cell signaling, metabolism, and cellular stress responses. CONCLUSION The combined treatment of Phy and Bis exerts a synergistic inhibitory effect on NSCLC cell growth, mediated through the interplay of apoptosis and autophagy. The differential protein expression observed, along with the identified proteins and enriched pathways, provides valuable insights into the underlying molecular mechanisms. These findings offer a foundation for further exploration of the therapeutic potential of Phy and Bis in the management of NSCLC.
Collapse
Affiliation(s)
| | - Kambati Niharika
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| |
Collapse
|
7
|
Chatterjee M, Roschitzki B, Grossmann J, Rathinam M, Kunz L, Wolski W, Panse C, Yadav J, Schlapbach R, Rao U, Sreevathsa R. Developmental stage-specific proteome analysis of the legume pod borer Maruca vitrata provides insights on relevant proteins. Int J Biol Macromol 2024; 254:127666. [PMID: 37890743 DOI: 10.1016/j.ijbiomac.2023.127666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
The spotted pod borer, Maruca vitrata (Lepidoptera: Crambidae) is a destructive insect pest that inflicts significant productivity losses on important leguminous crops. Unravelling insect proteomes is vital to comprehend their fundamental molecular mechanisms. This research delved into the proteome profiles of four distinct stages -three larval and pupa of M. vitrata, utilizing LC-MS/MS label-free quantification-based methods. Employing comprehensive proteome analysis with fractionated datasets, we mapped 75 % of 3459 Drosophila protein orthologues out of which 2695 were identified across all developmental stages while, 137 and 94 were exclusive to larval and pupal stages respectively. Cluster analysis of 2248 protein orthologues derived from MaxQuant quantitative dataset depicted six clusters based on expression pattern similarity across stages. Consequently, gene ontology and protein-protein interaction network analyses using STRING database identified cluster 1 (58 proteins) and cluster 6 (25 proteins) associated with insect immune system and lipid metabolism. Furthermore, qRT-PCR-based expression analyses of ten selected proteins-coding genes authenticated the proteome data. Subsequently, functional validation of these chosen genes through gene silencing reduced their transcript abundance accompanied by a marked increase in mortality among dsRNA-injected larvae. Overall, this is a pioneering study to effectively develop a proteome atlas of M. vitrata as a potential resource for crop protection programs.
Collapse
Affiliation(s)
- Madhurima Chatterjee
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Laura Kunz
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Witold Wolski
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Christian Panse
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Jyoti Yadav
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India; Engrave Bio Labs Pvt.Ltd., Shanthipuram, Kukatpally, Hyderabad, India.
| | | |
Collapse
|
8
|
Wu YJ, Huang ST, Chang YH, Lin SY, Lin WL, Chen YJ, Chien ST. SUMO-Activating Enzyme Subunit 1 Is Associated with Poor Prognosis, Tumor Progression, and Radio-Resistance in Colorectal Cancer. Curr Issues Mol Biol 2023; 45:8013-8026. [PMID: 37886949 PMCID: PMC10605852 DOI: 10.3390/cimb45100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Concurrent chemoradiotherapy is an effective treatment option for patients with low-grade colorectal cancer (CRC) in the local disease stage. At present, the principle of the Taiwan Medical Center is to treat CRC patients with combination radiotherapy and chemotherapy (high-dose 5-FU) for a period of about five weeks prior to surgery. Radical resection of the tumor is performed at least six to eight weeks after concurrent chemoradiotherapy (CCRT). However, this approach fails to produce the desired therapeutic effect in approximately 20% to 30% of patients, and such patients are unnecessarily exposed to the risks of radiation and drug toxicity posed by this therapy. Therefore, it is crucial to explore new biomarkers to predict the prognosis of CRC. SUMO-activating enzyme subunit 1 (SAE1) plays an important role in SUMOylation, a post-translational modification involved in cellular functions, such as cell proliferation, cell cycle, and apoptosis. In our study, to explore the clinical-pathological role of SAE1 protein in CRC, we evaluated the clinical data and paraffin sections from CRC patients. The expression of SAE1 was evaluated using immunohistochemical analysis, and clinical parameters were analyzed using chi-square and Kaplan-Meier survival tests. The results of in vitro proliferation and radiosensitive assays were compared between control groups and SAE1 siRNA groups. Western blotting was also used to detect the expressions of the SAE1, PARP, cyclin D1, p-NF-κB, and NF-κB proteins. Flow cytometry and colony formation assays were used to detect the effect of SAE-1 on radiosensitivity. In vivo, we detected the growth curve in a mouse xenograft model. The results showed that SAE-1 was revealed to be an independent prognostic biomarker of CRC. SAE1 knockdown inhibited CRC proliferation in vitro and in vivo, and led to the cleavage of PARP, downregulation of cyclin D1 protein expression, and downregulation of p-NF-κB/NF-κB. Additionally, SAE1 knockdown promoted radiosensitivity in CRC cells. Therefore, it was inferred that SAE1 may be used as a potential therapeutic target in CRC treatment.
Collapse
Affiliation(s)
- Yueh-Jung Wu
- Division of Colorectal Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| | - Siang-Ting Huang
- Cancer Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| | - Ya-Hui Chang
- Cancer Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| | - Shih-Yi Lin
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| | - Weng-Ling Lin
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shang-Tao Chien
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
- Department of Nursing, Fooyin University, Kaohsiung 831, Taiwan
| |
Collapse
|
9
|
Zheng J, Wang Y, Tao L, Cai J, Shen Z, Liu Y, Pan H, Li S, Ruan Y, Chen T, Ye Z, Lin K, Sun Y, Xu J, Liang X. Circ-RAPGEF5 promotes intrahepatic cholangiocarcinoma progression by stabilizing SAE1 to facilitate SUMOylation. J Exp Clin Cancer Res 2023; 42:239. [PMID: 37705041 PMCID: PMC10498551 DOI: 10.1186/s13046-023-02813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy with a poor prognosis. The underlying functions and mechanisms of circular RNA and SUMOylation in the development of ICC remain poorly understood. METHODS Circular RNA hsa_circ_0001681 (termed Circ-RAPGEF5 hereafter) was identified by circular RNA sequencing from 19 pairs of ICC and adjacent tissue samples. The biological function of Circ-RAPGEF5 in tumor proliferation and metastasis was examined by a series of in vitro assays. A preclinical model was used to validate the therapeutic effect of targeting Circ-RAPGEF5. RNA pull-down and dual-luciferase reporter assays were used to access the RNA interactions. Western blot and Co-IP assays were used to detect SUMOylation levels. RESULTS Circ-RAPGEF5, which is generated from exons 2 to 6 of the host gene RAPGEF5, was upregulated in ICC. In vitro and in vivo assays showed that Circ-RAPGEF5 promoted ICC tumor proliferation and metastasis, and inhibited apoptosis. Additionally, high Circ-RAPGEF5 expression was significantly correlated with a poor prognosis. Further investigation showed that SAE1, a potential target of Circ-RAPGEF5, was also associated with poor oncological outcomes. RNA pull-down and dual-luciferase reporter assays showed an interaction of miR-3185 with Circ-RAPGEF5 and SAE1. Co-IP and western blot assays showed that Circ-RAPGEF5 is capable of regulating SUMOylation. CONCLUSION Circ-RAPGEF5 promotes ICC tumor progression and SUMOylation by acting as a sponge for miR-3185 to stabilize SAE1. Targeting Circ-RAPGEF5 or SAE1 might be a novel diagnostic and therapeutic strategy in ICC.
Collapse
Affiliation(s)
- Junhao Zheng
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Liye Tao
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jingwei Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zefeng Shen
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yang Liu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Haoyu Pan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Shihao Li
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Tianyi Chen
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zhengtao Ye
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Kainan Lin
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yin Sun
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Xiao Liang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
10
|
Dai J, Hao Y, Chen X, Yu Q, Wang B. miR‑122/SENP1 axis confers stemness and chemoresistance to liver cancer through Wnt/β‑catenin signaling. Oncol Lett 2023; 26:390. [PMID: 37559577 PMCID: PMC10407855 DOI: 10.3892/ol.2023.13976] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/22/2023] [Indexed: 08/11/2023] Open
Abstract
The property of inherent stemness of tumor cells coupled with the development of chemoresistance results in a poor prognosis for patients with liver cancer. Therefore, the present study focused on microRNA (miR)-122, a potential tumor suppressor, the expression of which has been previously shown to be significantly decreased and negatively associated with cancer cell stemness in liver cancer. The present study aimed to identify the molecular targets of miR-122 whilst uncovering the mechanism underlying chemoresistance and stemness of HepG2 cells in liver cancer. Bioinformatics online tools, such as ENCORI, coupled with dual-luciferase reporter assays in HepG2 cells, were used to identify and validate small ubiquitin-like modifier (SUMO) specific peptidase 1 (SENP1) as a potential target of miR-122 in liver cancer. The liver cancer stem cell population was determined using sphere formation assays and flow cytometry, whilst stem cell markers (Oct3/4, Nanog, B lymphoma Mo-MLV insertion region 1 homolog and Notch1) were detected by reverse transcription-quantitative PCR. Chemoresistance, cell proliferation and migratory ability of HepG2 cells were monitored using Cell Counting Kit-8, colony formation and Transwell assays, respectively. The overexpression of miR-122 by mimic transfection led to a significant decrease in the number spheres, downregulation of stem cell marker expression, the number of CD24+ cells, drug-resistance protein levels (P-glycoprotein and multidrug resistance protein), impaired chemoresistance, proliferation and migration of HepG2 cells. The transfection of SENP1 overexpression vector resulted in contrasting functions to miR-122 mimics, by partially reversing the effects induced by miR-122 mimic transfection in HepG2 cells. Wnt/β-catenin signaling has been proven to be involved in cancer stemness and malignant behavior. Western blotting analysis in HepG2 cells showed that the expression levels of both Wnt1 and β-catenin were significantly reduced after overexpressing miR-122, but increased after overexpressing SENP1. Co-transfection with the SENP1 overexpression vector reversed the suppression induced by the miR-122 mimics on Wnt1 and β-catenin expression. Co-immunoprecipitation, SUMOylation and half-life assays showed SENP1 interacted with β-catenin and decreased the SUMOylation of β-catenin, thereby enhancing its stability. Finally, tumor xenograft analyses revealed that HepG2 cells transfected with Agomir-122 exerted significantly lower tumor initiation frequency and growth rate, and a superior response to DOX in vivo, compared with those transfected with Agomir NC. Taken together, data from the present study miR-122/SENP1 axis can regulate β-catenin stability through de-SUMOylation, thereby promoting stemness and chemoresistance in liver cancer.
Collapse
Affiliation(s)
- Jianbo Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400060, P.R. China
- Department of General Surgery, Nan'an District People's Hospital of Chongqing, Chongqing 400060, P.R. China
| | - Yaqin Hao
- Department of Gastroenterology, The Fifth People's Hospital of Chongqing, Chongqing 400060, P.R. China
| | - Xun Chen
- Department of Anesthesiology, Nan'an District People's Hospital of Chongqing, Chongqing 400060, P.R. China
| | - Qingsan Yu
- Department of General Surgery, Nan'an District People's Hospital of Chongqing, Chongqing 400060, P.R. China
| | - Bin Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400060, P.R. China
- Department of General Surgery, Chongqing Hospital of Integrated Traditional Chinese and Western Medicine, Chongqing 400060, P.R. China
| |
Collapse
|
11
|
Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y, Ma P, Wang Q, Shu Y. The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications. Exp Hematol Oncol 2023; 12:58. [PMID: 37415251 DOI: 10.1186/s40164-023-00420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor initiation, progression, and response to therapies depend to a great extent on interactions between malignant cells and the tumor microenvironment (TME), which denotes the cancerous/non-cancerous cells, cytokines, chemokines, and various other factors around tumors. Cancer cells as well as stroma cells can not only obtain adaption to the TME but also sculpt their microenvironment through a series of signaling pathways. The post-translational modification (PTM) of eukaryotic cells by small ubiquitin-related modifier (SUMO) proteins is now recognized as a key flexible pathway. Proteins involved in tumorigenesis guiding several biological processes including chromatin organization, DNA repair, transcription, protein trafficking, and signal conduction rely on SUMOylation. The purpose of this review is to explore the role that SUMOylation plays in the TME formation and reprogramming, emphasize the importance of targeting SUMOylation to intervene in the TME and discuss the potential of SUMOylation inhibitors (SUMOi) in ameliorating tumor prognosis.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Tong Hu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Yangyue Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Wang H, Yang T, Wu J, Chen D, Wang W. Unveiling the Mystery of SUMO-activating enzyme subunit 1: A Groundbreaking Biomarker in the Early Detection and Advancement of Hepatocellular Carcinoma. Transplant Proc 2023:S0041-1345(23)00211-7. [PMID: 37236867 DOI: 10.1016/j.transproceed.2023.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/27/2023] [Indexed: 05/28/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. The discovery and research of effective biomarkers have become prevailing trends. SUMO-activating enzyme subunit 1 (sae1), an E1-activating enzyme, is indispensable for protein SUMOylation. In this study, we conducted a comprehensive analysis of database contents and found that sae1 is highly expressed in HCC and is correlated with poor prognosis. We also identified its regulated transcription factor, rad51, and related signaling pathways. We conclude that sae1 is a promising cancer metabolic biomarker with diagnostic and prognostic value in HCC.
Collapse
Affiliation(s)
- Haojun Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Capital Medical University, Beijing, China
| | - Tongwang Yang
- Academician Workstation, Changsha Medical University, Changsha, China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Capital Medical University, Beijing, China
| | - Dongshan Chen
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Chen Y, Peng W, Tao Q, Li S, Wu Z, Zhou Y, Xu Q, Shu Y, Xu Y, Shao M, Chen M, Shi Y. Increased Small Ubiquitin-like Modifier-Activating Enzyme SAE1 Promotes Hepatocellular Carcinoma by Enhancing mTOR SUMOylation. J Transl Med 2023; 103:100011. [PMID: 36748193 DOI: 10.1016/j.labinv.2022.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/19/2023] Open
Abstract
SUMOylation, one of the most important posttranslational modifications of proteins, plays an essential role in various biological processes; however, enzymes that control SUMOylation in hepatocellular carcinoma (HCC) are still unclear. Comprehensive exploration of the expression and clinical significance of SUMO enzymes in HCC would be of great value. Here, we obtained the gene expression profile of each small ubiquitin-like modifier (SUMO) protein and the corresponding clinical information from The Cancer Genome Atlas. We found that all SUMO enzymes were significantly increased in HCC tissues compared with that in adjacent nontumorous tissues. We identified a 6-gene prognostic signature, including SAE1, PIAS2, PIAS3, SENP3, SENP5, and UBC9, that could effectively predict the overall survival in patients with HCC. Specifically, SAE1 was the most valuable prognostic indicator. In 282 clinical samples, we found that SAE1 was closely related to the clinicopathologic parameters and prognosis of patients with HCC. In vitro and in vivo studies showed that SAE1 knockdown inhibits the proliferation, migration, and invasion of HCC cells. Mechanistically, we confirmed that SAE1 plays a role in driving HCC progression, which is largely dependent on the SUMOylation of mTOR signaling. In conclusion, our study revealed that the expression of SUMO enzymes, especially SAE1, is highly associated with HCC development and acts as a promising prognostic predictor.
Collapse
Affiliation(s)
- Yuwei Chen
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Peng
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Tao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Shengfu Li
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjie Zhou
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Yuke Shu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Yahong Xu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Mingyang Shao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Menglin Chen
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Zhang Y, Gabere M, Taylor MA, Simoes CC, Dumbauld C, Barro O, Tesfay MZ, Graham AL, Ferdous KU, Savenka AV, Chamcheu JC, Washam CL, Alkam D, Gies A, Byrum SD, Conti M, Post SR, Kelly T, Borad MJ, Cannon MJ, Basnakian A, Nagalo BM. Repurposing live attenuated trivalent MMR vaccine as cost-effective cancer immunotherapy. Front Oncol 2022; 12:1042250. [PMID: 36457491 PMCID: PMC9706410 DOI: 10.3389/fonc.2022.1042250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2024] Open
Abstract
It has long been known that oncolytic viruses wield their therapeutic capability by priming an inflammatory state within the tumor and activating the tumor immune microenvironment, resulting in a multifaceted antitumor immune response. Vaccine-derived viruses, such as measles and mumps, have demonstrated promising potential for treating human cancer in animal models and clinical trials. However, the extensive cost of manufacturing current oncolytic viral products makes them far out of reach for most patients. Here by analyzing the impact of intratumoral (IT) administrations of the trivalent live attenuated measles, mumps, and rubella viruses (MMR) vaccine, we unveil the cellular and molecular basis of MMR-induced anti-cancer activity. Strikingly, we found that IT delivery of low doses of MMR correlates with tumor control and improved survival in murine hepatocellular cancer and colorectal cancer models via increased tumor infiltration of CD8+ granzyme B+ T-cells and decreased macrophages. Moreover, our data indicate that MMR activates key cellular effectors of the host's innate and adaptive antitumor immunity, culminating in an immunologically coordinated cancer cell death. These findings warrant further work on the potential for MMR to be repurposed as safe and cost-effective cancer immunotherapy to impact cancer patients globally.
Collapse
Affiliation(s)
- Yuguo Zhang
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Musa Gabere
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mika A. Taylor
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Camila C. Simoes
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Chelsae Dumbauld
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Oumar Barro
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Alicia L. Graham
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Khandoker Usran Ferdous
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Alena V. Savenka
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Science, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Charity L. Washam
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Duah Alkam
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Allen Gies
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Stephanie D. Byrum
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Matteo Conti
- Public Health Department, AUSL Imola, Imola, Italy
| | - Steven R. Post
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Thomas Kelly
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Mitesh J. Borad
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Martin J. Cannon
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Alexei Basnakian
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Bolni M. Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| |
Collapse
|
15
|
Zi Q, Cui H, Liang W, Chi Q. Machine learning algorithm and deep neural networks identified a novel subtype in hepatocellular carcinoma. Cancer Biomark 2022; 35:305-320. [DOI: 10.3233/cbm-220147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Due to the lack of specific characteristics in the early stage of the disease, patients are usually diagnosed in the advanced stage of disease progression. OBJECTIVE: This study used machine learning algorithms to identify key genes in the progression of hepatocellular carcinoma and constructed a prediction model to predict the survival risk of HCC patients. METHODS: The transcriptome data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The differential expression analysis and COX proportional-hazards model participated in the identification of survival-related genes. K-Means, Random forests, and LASSO regression are involved in identifying novel subtypes of HCC and screening key genes. The prediction model was constructed by deep neural networks (DNN), and Gene Set Enrichment Analysis (GSEA) reveals the metabolic pathways where key genes are located. RESULTS: Two subtypes were identified with significantly different survival rates (p< 0.0001, AUC = 0.720) and 17 key genes associated with the subtypes. The accuracy rate of the deep neural network prediction model is greater than 93.3%. The GSEA analysis found that the survival-related genes were significantly enriched in hallmark gene sets in the MSigDB database. CONCLUSIONS: In this study, we used machine learning algorithms to screen out 17 genes related to the survival risk of HCC patients, and trained a DNN model based on them to predict the survival risk of HCC patients. The genes that make up the model are all key genes that affect the formation and development of cancer.
Collapse
Affiliation(s)
- Quan Zi
- Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan, Hubei, China
| | - Hanwei Cui
- Department of Science and Education, Shenzhen Samii Medical Center, Shenzhen, Guangdong, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingjia Chi
- Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan, Hubei, China
| |
Collapse
|
16
|
Liu Y, Wang X, Zeng X, Wu Y, Liu X, Tan J, Li X. Bioinformatics-based analysis of SUMOylation-related genes in hepatocellular carcinoma reveals a role of upregulated SAE1 in promoting cell proliferation. Open Med (Wars) 2022; 17:1183-1202. [PMID: 35859792 PMCID: PMC9263891 DOI: 10.1515/med-2022-0510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
The function of small ubiquitin-like modifier (SUMO)-related genes in hepatocellular carcinoma (HCC) remains unclear. This study aimed to analyze the expression profile and prognostic relevance of SUMO-related genes using publicly available data. A set of bioinformatics tools and experiments were integrated to explore the mechanism of the genes of interest. The least absolute shrinkage and selection operator Cox regression analysis was used to construct a prognostic model. SUMO-2 and SUMO-activating enzyme subunit 1 (SAE1) were upregulated in HCC. The enrichment analysis indicated that SUMO-2 and SAE1 might regulate the cell cycle. The downregulation of SAE1 inhibited the proliferation of HCC cells, whereas the upregulation of the gene promoted cell proliferation. IGF2BP3 contributed to the upregulation of SAE1 in an N6-methyladenosine (m6A)-dependent way. Eventually, an SAE1-related risk score (SRRS) was developed and validated in HCC. SRRS could serve as an independent prognostic factor and predict the efficiency of transarterial chemoembolization in patients with HCC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Xiang Wang
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xingzhi Zeng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yinghua Wu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xinrong Liu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Juan Tan
- Department of Pathology, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Xiaoyan Li
- Department of Blood Transfusion, Shanxi Province People's Hospital, No. 29 Shuangtasi Street, Yingze District, Taiyuan, Shanxi, 030012, China
| |
Collapse
|
17
|
Sheng H, Hao Z, Zhu L, Zeng Y, He J. Construction and validation of a two-gene signature based on SUMOylation regulatory genes in non-small cell lung cancer patients. BMC Cancer 2022; 22:572. [PMID: 35606717 PMCID: PMC9125860 DOI: 10.1186/s12885-022-09575-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/18/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Post-translational modification plays an important role in the occurrence and development of various tumors. However, few researches were focusing on the SUMOylation regulatory genes as tumor biomarkers to predict the survival for specific patients. Here, we constructed and validated a two-gene signature to predict the overall survival (OS) of non-small cell lung cancer (NSCLC) patients. METHODS The datasets analyzed in this study were downloaded from TCGA and GEO databases. The least absolute shrinkage and selection operator (LASSO) Cox regression was used to construct the two-gene signature. Gene set enrichment analysis (GSEA) and Gene Ontology (GO) was used to identify hub pathways associated with risk genes. The CCK-8 assay, cell cycle analysis, and transwell assay was used to validate the function of risk genes in NSCLC cell lines. RESULTS Firstly, most of the SUMOylation regulatory genes were highly expressed in various tumors through the R package 'limma' in the TCGA database. Secondly, our study found that the two gene signature constructed by LASSO regression analysis, as an independent prognostic factor, could predict the OS in both the TCGA training cohort and GEO validation cohorts (GSE68465, GSE37745, and GSE30219). Furthermore, functional enrichment analysis suggests that high-risk patients defined by the risk score system were associated with the malignant phenomenon, such as DNA replication, cell cycle regulation, p53 signaling pathway. Finally, the results of the CCK-8 assay, cell cycle analysis, and transwell assay demonstrated that the two risk genes, SAE1 and UBA2, could promote proliferation and migration in non-small cell lung cancer cells. CONCLUSIONS The two-gene signature constructed in our study could predict the OS and may provide valuable clinical guidance for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Hongxu Sheng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zhexue Hao
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yuan Zeng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
18
|
Antrodia cinnamomea exerts an anti-hepatoma effect by targeting PI3K/AKT-mediated cell cycle progression in vitro and in vivo. Acta Pharm Sin B 2022; 12:890-906. [PMID: 35256953 PMCID: PMC8897033 DOI: 10.1016/j.apsb.2021.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Antrodia cinnamomea is extensively used as a traditional medicine to prevention and treatment of liver cancer. However, its comprehensive chemical fingerprint is uncertain, and the mechanisms, especially the potential therapeutic target for anti-hepatocellular carcinoma (HCC) are still unclear. Using UPLC‒Q-TOF/MS, 139 chemical components were identified in A. cinnamomea dropping pills (ACDPs). Based on these chemical components, network pharmacology demonstrated that the targets of active components were significantly enriched in the pathways in cancer, which were closely related with cell proliferation regulation. Next, HCC data was downloaded from Gene Expression Omnibus database (GEO). The Cancer Genome Atlas (TCGA) and DisGeNET were analyzed by bioinformatics, and 79 biomarkers were obtained. Furtherly, nine targets of ACDP active components were revealed, and they were significantly enriched in PI3K/AKT and cell cycle signaling pathways. The affinity between these targets and their corresponding active ingredients was predicted by molecular docking. Finally, in vivo and in vitro experiments showed that ACDPs could reduce the activity of PI3K/AKT signaling pathway and downregulate the expression of cell cycle-related proteins, contributing to the decreased growth of liver cancer. Altogether, PI3K/AKT-cell cycle appears as the significant central node in anti-liver cancer of A. Cinnamomea.
Collapse
|
19
|
The Role of Protein SUMOylation in Human Hepatocellular Carcinoma: A Potential Target of New Drug Discovery and Development. Cancers (Basel) 2021; 13:cancers13225700. [PMID: 34830854 PMCID: PMC8616375 DOI: 10.3390/cancers13225700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The small ubiquitin-like modifier is a highly conserved post-translational modification protein, mainly found in eukaryotes. Recently, studies have shown that SUMOylation promotes the development of liver cancer. This article summarises the recent literature on SUMOylation and Hepatocellular carcinoma (HCC). The mechanism of SUMOs in liver cancer cells was described. It also shows the potential of SUMO as a therapeutic target for liver cancer. At the same time, this article also enumerates the practical application in clinical, developing progress and future direction of HCC in clinical practice. Abstract Small ubiquitin-like modifier (SUMO) is a highly conserved post-translational modification protein, mainly found in eukaryotes. They are widely expressed in different tissues, including the liver. As an essential post-translational modification, SUMOylation is involved in many necessary regulations in cells. It plays a vital role in DNA repair, transcription regulation, protein stability and cell cycle progression. Increasing shreds of evidence show that SUMOylation is closely related to Hepatocellular carcinoma (HCC). The high expression of SUMOs in the inflammatory hepatic tissue may lead to the carcinogenesis of HCC. At the same time, SUMOs will upregulate the proliferation and survival of HCC, migration, invasion and metastasis of HCC, tumour microenvironment as well as drug resistance. This study reviewed the role of SUMOylation in liver cancer. In addition, it also discussed natural compounds that modulate SUMO and target SUMO drugs in clinical trials. Considering the critical role of SUMO protein in the occurrence of HCC, the drug regulation of SUMOylation may become a potential target for treatment, prognostic monitoring and adjuvant chemotherapy of HCC.
Collapse
|
20
|
Wang Q, Zhong W, Deng L, Lin Q, Lin Y, Liu H, Xu L, Lu L, Chen Y, Huang J, Jiang M, Xiao H, Zhang J, Li H, Lin Y, Song C, Lin Y. The Expression and Prognostic Value of SUMO1-Activating Enzyme Subunit 1 and Its Potential Mechanism in Triple-Negative Breast Cancer. Front Cell Dev Biol 2021; 9:729211. [PMID: 34621746 PMCID: PMC8490707 DOI: 10.3389/fcell.2021.729211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is the most invasive and metastatic subtype of breast cancer. SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme, is indispensable for protein SUMOylation. SAE1 has been found to be a relevant biomarker for progression and prognosis in several tumor types. However, the role of SAE1 in TNBC remains to be elucidated. Methods: In the research, the mRNA expression of SAE1 was analyzed via the cancer genome atlas (TCGA) and gene expression omnibus (GEO) database. Cistrome DB Toolkit was used to predict which transcription factors (TFs) are most likely to increase SAE1 expression in TNBC. The correlation between the expression of SAE1 and the methylation of SAE1 or quantity of tumor-infiltrating immune cells was further invested. Single-cell analysis, using CancerSEA, was performed to query which functional states are associated with SAE1 in different cancers in breast cancer at the single-cell level. Next, weighted gene coexpression network (WGCNA) was applied to reveal the highly correlated genes and coexpression networks of SAE1 in TNBC patients, and a prognostic model containing SAE1 and correlated genes was constructed. Finally, we also examined SAE1 protein expression of 207 TNBC tissues using immunohistochemical (IHC) staining. Results: The mRNA and protein expression of SAE1 were increased in TNBC tissues compared with adjacent normal tissues, and the protein expression of SAE1 was significantly associated with overall survival (OS) and disease-free survival (DFS). Correlation analyses revealed that SAE1 expression was positively correlated with forkhead box M1 (FOXM1) TFs and negatively correlated with SAE1 methylation site (cg14042711) level. WGCNA indicated that the genes coexpressed with SAE1 belonged to the green module containing 1,176 genes. Through pathway enrichment analysis of the module, 1,176 genes were found enriched in cell cycle and DNA repair. Single-cell analysis indicated that SAE1 and its coexpression genes were associated with cell cycle, DNA damage, DNA repair, and cell proliferation. Using the LASSO COX regression, a prognostic model including SAE1 and polo-like kinase 1 (PLK1) was built to accurately predict the likelihood of DFS in TNBC patients. Conclusion: In conclusion, we comprehensively analyzed the mRNA and protein expression, prognosis, and interaction genes of SAE1 in TNBC and constructed a prognostic model including SAE1 and PLK1. These results might be important for better understanding of the role of SAE1 in TNBC. In addition, DNA methyltransferase and TFs inhibitor treatments targeting SAE1 might improve the survival of TNBC patients.
Collapse
Affiliation(s)
- Qingshui Wang
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Fujian Provincial Key Laboratory of Hepatic Drug Research, Fuzhou, China
| | - Wenting Zhong
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Lin Deng
- Department of General Surgery, The 900th Hospital of the Joint Logistics Support Force, Fuzhou, China
| | - Qili Lin
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Youyu Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongxia Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Luyun Xu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Lingfang Lu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yajuan Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jianping Huang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Meichen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Han Xiao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, China
| | - He Li
- Department of General Surgery, The 900th Hospital of the Joint Logistics Support Force, Fuzhou, China
| | - Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, China
| | - Chuangui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, China
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
21
|
Chen W, Gao C, Shen J, Yao L, Liang X, Chen Z. The expression and prognostic value of REXO4 in hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:1704-1717. [PMID: 34532121 DOI: 10.21037/jgo-21-98] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background Globally, one of the dominant causes of cancer-related mortality is liver cancer. Identification of potent biomarkers for initial stage diagnosis and prognosis is a key factor to ensure efficient therapy and reduce the mortality rate in liver cancer patients. REXO4 has been reported in neuropathic pain and familial isolated pituitary adenoma (FIPA), however, its relationship with liver cancer is still elusive. Methods In an attempt to scrutinize the expression of REXO4 in liver cancer, the Oncomine, and TCGA databases were analyzed. Real-time PCR was employed to identify the REXO4 mRNA levels in 45 patient tissue samples and western blot was used to detect the REXO4 protein levels in hepatocellular carcinoma (HCC) cells. Evaluation of the prognostic value of REXO4 in liver cancer was made using Univariate and multivariate Cox proportional hazards regression models and Kaplan-Meier plots. Tumor-associated biological processes related to REXO4 were revealed by LinkedOmics. The correlation of REXO4 and immune infiltration was evaluated using the TIMER database. Results REXO4 is significantly up-regulated in liver cancer in comparison with the nontumor controls. Moreover, poor progression-free survival and overall survival is a frequent outcome related to high expression of REXO4, highlighting it as a risk factor in case of liver cancer. Additionally, the plausible role of REXO4 in tumor-immune interactions was also investigated and it was revealed that the immune infiltration and immune activation of liver cancer might have an association with REXO4. Conclusions REXO4 has a significant expression in liver cancer and could potentially become a predictor for the prognosis of liver cancers and a biomarker for targeted therapeutic regimens. Significant overexpression of REXO4 in HCC was revealed by the bioinformatics analysis, with REXO4 overexpression being related to a negative outcome in HCC patients, in addition, REXO4 might be associated with the immune infiltration in liver cancer. Such a vital understanding of the functioning of REXO4 may furnish a foundation for new targeted drug therapy as well as a new direction for additional investigation into the underlying mechanisms of REXO4 carcinogenesis in liver cancer.
Collapse
Affiliation(s)
- Weipeng Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Department of General Surgery, Binhai County People's Hospital, Yancheng, China
| | - Cheng Gao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianbo Shen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lanqing Yao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoliang Liang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhong Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW In the article, we focus on the role of SUMOylation in tumorigenesis and cancer-related processes, including Epithelial-mesenchymal transition (EMT), metastasis, resistance to cancer therapies, and antitumor immunity. Clinical perspective on small ubiquitin-like modifier (SUMO) inhibitors will be discussed. RECENT FINDINGS SUMOylation regulates multiple important biologic functions including gene transcription, DNA damage repair, cell cycle, and innate immunity. The SUMO pathway enzymes are usually elevated in various cancers and linked with cancer progression and poor clinical outcomes for patients. Recent studies have revealed the role of SUMOylation in EMT and metastasis through regulating E-Cadherin and Snail expression. Multiple studies demonstrate SUMOylation is involved with chemoresistance and hormone treatment resistance. Oncogene Myc and SUMOylation machinery regulation has been revealed in pancreatic cancer. SUMOylation is involved in regulating antitumor immune response through dendritic cells and T cells. A breakthrough has been made in targeting SUMOylation in cancer as first-in-class SUMO E1 inhibitor TAK-981 enters clinical trials. SUMMARY SUMOylation plays an important role in tumor EMT, metastasis, therapy resistance, and antitumor immune response. Pharmaceutical inhibition of SUMOylation has become promising clinical therapy to improve the outcome of the existing chemo and immune therapies.
Collapse
Affiliation(s)
- Li Du
- Toni Stephenson Lymphoma Center
| | - Wei Liu
- Toni Stephenson Lymphoma Center
| | - Steven T Rosen
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute and Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
23
|
Liu X, Chen X, Xiao M, Zhu Y, Gong R, Liu J, Zeng Q, Xu C, Chen X, Wang F, Cao K. RANBP2 Activates O-GlcNAcylation through Inducing CEBPα-Dependent OGA Downregulation to Promote Hepatocellular Carcinoma Malignant Phenotypes. Cancers (Basel) 2021; 13:3475. [PMID: 34298689 PMCID: PMC8304650 DOI: 10.3390/cancers13143475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
O-GlcNAcylation is an important post-translational modification (PTM) jointly controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Aberrant hyper-O-GlcNAcylation is reported to yield hepatocellular carcinoma (HCC) malignancy, but the underlying mechanisms of the OGT/OGA imbalance responsible for HCC tumorigenesis remain largely unknown. Here, we report that RAN-binding protein 2 (RANBP2), one of the small ubiquitin-like modifier (SUMO) E3 ligases, contributed to malignant phenotypes in HCC. RANBP2 was found to facilitate CCAAT/enhancer-binding protein alpha (CEBPα) SUMOylation and degradation by direct interplay with CEBPα. As a transcriptional factor, CEBPα was verified to augment OGA transcription, and further experiments demonstrated that RANBP2 enhanced the O-GlcNAc level by downregulating OGA transcription while not affecting OGT expression. Importantly, we provided in vitro and in vivo evidence of HCC malignant phenotypes that RANBP2 triggered through an imbalance of OGT/OGA and subsequent higher O-GlcNAcylation events for oncogenic proteins such as peroxisome proliferative-activated receptor gamma coactivator 1 alpha (PGC1α) in a CEBPα-dependent manner. Altogether, our results show a novel molecular mechanism whereby RANBP2 regulates its function through CEBPα-dependent OGA downregulation to induce a global change in the hyper-O-GlcNAcylation of genes, such as PGC1α, encouraging the further study of promising implications for HCC therapy.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
| | - Renjie Gong
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Jianye Liu
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Canxia Xu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Xiong Chen
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Fen Wang
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
| |
Collapse
|
24
|
Yuan L, Li JX, Yang Y, Chen Y, Ma TT, Liang S, Bu Y, Yu L, Nan Y. Depletion of MRPL35 inhibits gastric carcinoma cell proliferation by regulating downstream signaling proteins. World J Gastroenterol 2021; 27:1785-1804. [PMID: 33967557 PMCID: PMC8072187 DOI: 10.3748/wjg.v27.i16.1785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric carcinoma (GC) is a digestive system disease with high morbidity and mortality. However, early clinical detection is difficult, and the therapeutic effect for advanced disease is not satisfactory. Thus, finding new tumor markers and therapeutic targets conducive to the treatment of GC is imperative. MRPL35 is a member of the large subunit family of mitochondrial ribosomal protein. MRPL35 shows the characteristic of oncogene in colorectal cancer and esophageal cancer, which promotes the exploration of the correlation between MRPL35 and GC. We proposed that the expression of MRPL35 might be critical in GC.
AIM To study the effect of MRPL35 knockdown on GC cell proliferation.
METHODS The expression of MRPL35 in GC was evaluated based on data from the public tumor database UALCAN (http://www.ualcan.path.uab.edu). The effect of the expression of MRPL35 on the prognosis was evaluated with KMplot (http://www.kmplot.com). The expression of MRPL35 was assessed on the tissue microarray by immunohistochemistry and the level of MRPL35 mRNA in 25 pairs of clinical GC tissues and matched adjacent tissues was detected by quantitative reverse transcription-polymerase chain reaction. Celigo cell count assay, colony formation assay, and flow cytometry were used to assess the role of MRPL35 in GC cell proliferation and apoptosis in vitro. Additionally, tumor formation experiment in BALB/c nude mice was utilized to determine the effect of MRPL35 on GC cell proliferation. After knockdown of MRPL35, related proteins were identified by isobaric tags for relative and absolute quantification analysis, and the expression of related proteins was detected by Western blot.
RESULTS The expression of MRPL35 was up-regulated in GC (P = 1.77 × 10-4). The Kaplan-Meier plots of the overall survival indicated that high expression of MRPL35 was associated with a poor survival in GC. Compared with adjacent tissues, the expression of MRPL35 in GC tissues was increased, which was related to age (P = 0.03), lymph node metastasis (P = 0.007), and pathological tumor-node-metastasis stage (P = 0.024). Knockdown of MRPL35 inhibited GC cell proliferation and colony formation and induced apoptosis. Animal experiment results showed that knockdown of MRPL35 inhibited tumor formation in BALB/c nude mice. Western blotting analysis showed that after knockdown of MRPL35, the expression of PICK1 and BCL-XL proteins decreased, and that of AGR2 protein increased.
CONCLUSION Collectively, our findings demonstrate that knockdown of MRPL35 inhibits GC cell proliferation through related proteins including PICK1, BCL-XL, and AGR2.
Collapse
Affiliation(s)
- Ling Yuan
- Pharmacy College of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia-Xin Li
- Pharmacy College of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- Pharmacy College of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan Chen
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ting-Ting Ma
- Pharmacy College of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Shuang Liang
- Department of Oncology and Endocrinology, Yinchuan Hospital of Traditional Chinese Medicine Affiliated to Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yang Bu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Lei Yu
- Department of Infectious Diseases, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yi Nan
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|