1
|
Shu B, Wen Y, Lin R, He C, Luo C, Li F. HSPB8-BAG3 chaperone complex modulates cell invasion in intrahepatic cholangiocarcinoma by regulating CASA-mediated Filamin A degradation. Cancer Biol Ther 2024; 25:2396694. [PMID: 39215616 PMCID: PMC11370900 DOI: 10.1080/15384047.2024.2396694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
The incidence of intrahepatic cholangiocarcinoma (ICC) is steadily rising, and it is associated with a high mortality rate. Clinical samples were collected to detect the expression of HSPB8 and BAG3 in ICC tissues. ICC cells were cultured and transfected with plasmids that overexpressed or silenced specific genes to investigate the impact of gene expression alterations on cell function. qPCR and Western blot techniques were utilized to measure gene and protein expression levels. A wound healing assay was conducted to assess cell migration ability. The Transwell assay was used to assess cell invasion ability. Co-IP was used to verify the binding relationship between HSPB8 and BAG3. The effects of HSPB8 and BAG3 on lung metastasis of tumors in vivo were verified by constructing a metastatic tumor model. Through the above experiments, we discovered that the expressions of HSPB8 and BAG3 were up-regulated in ICC tissues and cells, and their expressions were positively correlated. The metastatic ability of ICC cells could be promoted or inhibited by upregulating or downregulating the expression of BAG3. Furthermore, the HSPB8-BAG3 chaperone complex resulted in the abnormal degradation of Filamin A by activating autophagy. Increased expression of Filamin A inhibits the migration and invasion of ICC cells. Overexpression of HSPB8 and BAG3 in vivo promoted the lung metastasis ability of ICC cells. The HSPB8-BAG3 chaperone complex promotes ICC cell migration and invasion by regulating CASA-mediated degradation of Filamin A, offering insights for enhancing ICC therapeutic strategies.
Collapse
Affiliation(s)
- Bo Shu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ronghua Lin
- Department of General Surgery, Huichang County People’s Hospital, Huichang, Jiangxi Province, China
| | - Chao He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Cailan Luo
- Department of Hospital Nursing, Huichang County People’s Hospital, Huichang, Jiangxi Province, China
| | - Fazhao Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Wu Y, Xiong F, Ling J. The role of heat shock protein B8 in neuronal protection against oxidative stress and mitochondrial dysfunction: A literature review. Int Immunopharmacol 2024; 140:112836. [PMID: 39094362 DOI: 10.1016/j.intimp.2024.112836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Excessive oxidative stress triggers cerebrovascular and neurodegenerative diseases resulting in acute and chronic brain injury. However, the underlying mechanisms remain unknown. Levels of small heat shock protein B8 (HSPB8), which is highly expressed in the brain, are known to be significantly elevated in cerebral injury models. Exogenous HSPB8 protects the brain against mitochondrial damage. One potential mechanism underlying this protection is that HSPB8 overexpression alleviates the mitochondria-dependent pathways of apoptosis; mitochondrial biogenesis, fission, and mitophagy. Overexpression of HSPB8 may therefore have potential as a clinical therapy for cerebrovascular and neurodegenerative diseases. This review provides an overview of advances in the protective effects of HSPB8 against excessive cerebral oxidative stress, including the modulation of mitochondrial dysfunction and potent signaling pathways.
Collapse
Affiliation(s)
- Yanqing Wu
- Health Management Center, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Feng Xiong
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jianmin Ling
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
3
|
Rashid N, Juneja P, Rathi A, Sultan I, Rehman SU. Identification of Alternatively Spliced Novel Isoforms of Human HSPB8 Gene. Protein J 2024; 43:782-792. [PMID: 38980537 DOI: 10.1007/s10930-024-10215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
HSPB8 is a heat shock protein belonging to a family of ATP-independent stress proteins called HSPB which are present far and wide in the cells of various organisms. They are committed to protein quality control (PQC) and strive to avert protein aggregation and to procreate a pool of non-native proteins that can be swiftly folded. Their fundamental expression or stress inducibility is regulated by various cis-elements localized in the HSPB regulatory regions. In the current study we have predicted and confirmed two alternatively spliced novel transcripts of HSPB8 gene in liver, brain, and heart. These spliced variants have smaller sizes owing to smaller N terminal regions and showed remarkable changes in their cellular localization. Novel isoform (HSPB8-N1) was predicted to be majorly localized to nuclear region while the reported isoform (HSPB8) and one of the novel isoforms (HSPB8-N2) were predicted to be cytoplasmic in nature. There were many changes observed in the phosphorylation sites of the novel isoforms as well. The newly reported isoforms lack several structural motifs that are essential for various functional endeavors of the HSPB8 protein. In silico analysis of the conceptually translated protein was carried out using various bioinformatics tools to gain an understanding of their properties in order to explore their possible potential in therapeutics.
Collapse
Affiliation(s)
- Naira Rashid
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pallavi Juneja
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Akshat Rathi
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Insha Sultan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Chen M, Qi Y, Zhang S, Du Y, Cheng H, Gao S. Molecular insights into programmed cell death in esophageal squamous cell carcinoma. PeerJ 2024; 12:e17690. [PMID: 39006030 PMCID: PMC11246021 DOI: 10.7717/peerj.17690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a deadly type of esophageal cancer. Programmed cell death (PCD) is an important pathway of cellular self-extermination and is closely involved in cancer progression. A detailed study of its mechanism may contribute to ESCC treatment. Methods We obtained expression profiling data of ESCC patients from public databases and genes related to 12 types of PCD from previous studies. Hub genes in ESCC were screened from PCD-related genes applying differential expression analysis, machine learning analysis, linear support vector machine (SVM), random forest and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. In addition, based on the HTFtarget and TargetScan databases, transcription factors (TFs) and miRNAs interacting with the hub genes were selected. The relationship between hub genes and immune cells were analyzed using the CIBERSORT algorithm. Finally, to verify the potential impact of the screened hub genes on ESCC occurrence and development, a series of in vitro cell experiments were conducted. Results We screened 149 PCD-related DEGs, of which five DEGs (INHBA, LRRK2, HSP90AA1, HSPB8, and EIF2AK2) were identified as the hub genes of ESCC. The area under the curve (AUC) of receiver operating characteristic (ROC) curve of the integrated model developed using the hub genes reached 0.997, showing a noticeably high diagnostic accuracy. The number of TFs and miRNAs regulating hub genes was 105 and 22, respectively. INHBA, HSP90AA1 and EIF2AK2 were overexpressed in cancer tissues and cells of ESCC. Notably, INHBA knockdown suppressed ECSS cell migration and invasion and altered the expression of important apoptotic and survival proteins. Conclusion This study identified significant molecules with promising accuracy for the diagnosis of ESCC, which may provide a new perspective and experimental basis for ESCC research.
Collapse
Affiliation(s)
- Min Chen
- School of Information Engineering, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College of Henan University of Science and Technology, Luoyang, China
| | - Yijun Qi
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College of Henan University of Science and Technology, Luoyang, China
| | - Shenghua Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College of Henan University of Science and Technology, Luoyang, China
| | - Yubo Du
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College of Henan University of Science and Technology, Luoyang, China
| | - Haodong Cheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College of Henan University of Science and Technology, Luoyang, China
| | - Shegan Gao
- School of Information Engineering, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Du W, Guo K, Wang P, Zhong J, Jiang N. HSPB8 Facilitates the Oncogenesis and Advancement of Bladder Cancer via Activation of HSP27. J Cancer 2024; 15:645-658. [PMID: 38213722 PMCID: PMC10777032 DOI: 10.7150/jca.89994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
Bladder cancer (BCa) stands as a significant malignancy within the genitourinary system. Notably, heat shock proteins (HSPs) exhibit elevated expression in cells subjected to environmental stresses and have been linked to the progression of many human malignancies. Among these, the functional implications and specific mechanism of HSPB8 in BCa have yet to be fully explored. In this study, we measured HSPB8 expression in both BCa tissues and various cell lines, further delving into its influence on cellular behaviors. Our observations pinpoint an upregulation of HSPB8 in BCa, a trend strongly associated with more advanced clinical manifestations. Suppressing HSPB8 exhibited marked reductions in cell proliferation and migration capabilities, while simultaneously amplifying apoptosis and inducing cell cycle arrest. Reinforcing these findings, our in vivo analyses using mouse models showed similar trends. Notably, upon HSPB8 knockdown, levels of specific proteins including eNOS (S1177), Hsp27 (S78/S82), PRAS40(T246), RSK1/2(S221/S227), and STAT3 (S727) decreased, with Hsp27 (S78/S82) and PRAS40(T246) experiencing the most profound drops. Furthermore, the application of an HSP27 inhibitor effectively reversed the phenotypes caused by increased HSPB8 expression. Collectively, our results suggest that elevated HSPB8 expression could act as a potential prognostic marker for BCa, and targeting HSPB8 might open new therapeutic avenues for treating this malignancy.
Collapse
Affiliation(s)
| | | | | | | | - Ning Jiang
- Department of Urological Surgery, Zhujiang Hospital of Southern Medical University, Guangdong, Guangzhou, 510280, China
| |
Collapse
|
6
|
Collard R, Majtan T. Genetic and Pharmacological Modulation of Cellular Proteostasis Leads to Partial Functional Rescue of Homocystinuria-Causing Cystathionine-Beta Synthase Variants. Mol Cell Biol 2023; 43:664-674. [PMID: 38051092 PMCID: PMC10761163 DOI: 10.1080/10985549.2023.2284147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Homocystinuria (HCU), an inherited metabolic disorder caused by lack of cystathionine beta-synthase (CBS) activity, is chiefly caused by misfolding of single amino acid residue missense pathogenic variants. Previous studies showed that chemical, pharmacological chaperones or proteasome inhibitors could rescue function of multiple pathogenic CBS variants; however, the underlying mechanisms remain poorly understood. Using Chinese hamster DON fibroblasts devoid of CBS and stably overexpressing human WT or mutant CBS, we showed that expression of pathogenic CBS variant mostly dysregulates gene expression of small heat shock proteins HSPB3 and HSPB8 and members of HSP40 family. Endoplasmic reticulum stress sensor BiP was found upregulated with CBS I278T variant associated with proteasomes suggesting proteotoxic stress and degradation of misfolded CBS. Co-expression of the main effector HSP70 or master regulator HSF1 rescued steady-state levels of CBS I278T and R125Q variants with partial functional rescue of the latter. Pharmacological proteostasis modulators partially rescued expression and activity of CBS R125Q likely due to reduced proteotoxic stress as indicated by decreased BiP levels and promotion of refolding as indicated by induction of HSP70. In conclusion, targeted manipulation of cellular proteostasis may represent a viable therapeutic approach for the permissive pathogenic CBS variants causing HCU.
Collapse
Affiliation(s)
- Renata Collard
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, Switzerland
| |
Collapse
|
7
|
Huang Y, Zhen Y, Chen Y, Sui S, Zhang L. Unraveling the interplay between RAS/RAF/MEK/ERK signaling pathway and autophagy in cancer: From molecular mechanisms to targeted therapy. Biochem Pharmacol 2023; 217:115842. [PMID: 37802240 DOI: 10.1016/j.bcp.2023.115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
RAS/RAF/MEK/ERK signaling pathway is one of the most important pathways of Mitogen-activated protein kinases (MAPK), which widely participate in regulating cell proliferation, differentiation, apoptosis and signaling transduction. Autophagy is an essential mechanism that maintains cellular homeostasis by degrading aged and damaged organelles. Recently, some studies revealed RAS/RAF/MEK/ERK signaling pathway is closely related to autophagy regulation and has a dual effect in tumor cells. However, the specific mechanism by which RAS/RAF/MEK/ERK signaling pathway participates in autophagy regulation is not fully understood. This article provides a comprehensive review of the research progress with regard to the RAS/RAF/MEK/ERK signaling pathway and autophagy, as well as their interplay in cancer therapy. The impact of small molecule inhibitors that target the RAS/RAF/MEK/ERK signaling pathway on autophagy is discussed in this study. The advantages and limitations of the clinical combination of these small molecule inhibitors with autophagy inhibitors are also explored. The findings from this study may provide additional perspectives for future cancer treatment strategies.
Collapse
Affiliation(s)
- Yunli Huang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yongqi Zhen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanmei Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shaoguang Sui
- Emergency Department, The Second Hospital, Dalian Medical University, Dalian 116000, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
8
|
Ling J, Yu S, Xiong F, Li S. HSPB8 up-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy. Int Immunopharmacol 2023; 122:110448. [PMID: 37399610 DOI: 10.1016/j.intimp.2023.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is associated with a higher risk of cognitive deficits; however, its potential mechanisms are still unknow. Recently, researches show that HSPB8, a family of small heat shock proteins, affects cognitive function and ameliorates sepsis-induced dysfunction. However, the role of HSPB8 in SAE-associated cognitive impairment has not been elucidated. In this study, we found that HSPB8 expression was up-regulated in the brain of mice with lipopolysaccharide-induced sepsis. HSPB8 overexpression alleviated cognitive decline in SAE mice. In addition, exogenous HSPB8 exerts neuroprotective effects and salvages synaptic function via regulating NRF1/TFAM-induced mitochondrial biogenesis and DRP1-mediate mitochondrial fission in a lipopolysaccharide-induced mouse model. Furthermore, HSPB8 overexpression inhibits IBA1 and NLRP3 activation in the SAE model. Overexpression of HSPB8 may be an efficient treatment for relieving SAE-related cognitive decline.
Collapse
Affiliation(s)
- Jianmin Ling
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Shanshan Yu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Feng Xiong
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
9
|
Zhou F, Li F, Hou Y, Yang B. HSPB8-Mediated Actin Filament Reorganization by Promoting Autophagic Flux Confers Resilience to Blood-Brain Barrier (BBB) Injury in an In Vitro Model of Ischemic Stroke. ACS Chem Neurosci 2023; 14:2868-2875. [PMID: 37522952 DOI: 10.1021/acschemneuro.3c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Recently, uncontrolled actin polymerization has been recognized as an initiator of early-onset blood-brain barrier (BBB) rupture. Here, using in vitro models, we found that after oxygen-glucose deprivation/reperfusion (OGD/R), endothelial overexpression of HSPB8 suppressed aberrant actin polymerization and thus preserved the integrity of BBB. We further investigated the mechanisms of HSPB8 in the control of actin assembly. HSPB8 suppressed the RhoA/ROCK2/p-MLC signaling pathway in bEnd.3 cells and the RhoA activator abrogated the inhibitory action of HSPB8 on actin reorganization after OGD/R. In addition, endothelial autophagic flux was impaired after OGD/R. This effect was attenuated by HSPB8 overexpression. Autophagy inhibition partially reversed the effect of HSPB8 on the RhoA/ROCK2/p-MLC pathway. Taken together, the present study revealed that the restoration of autophagic flux by overexpressing HSPB8, via the inhibition of the RhoA/ROCK2/p-MLC signaling pathway, reverses the aggregation of endothelial cytoskeleton actin, eventually alleviating OGD/R-induced BBB injury.
Collapse
Affiliation(s)
- Fangfang Zhou
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Fei Li
- Department of Neurology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Ying Hou
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Binbin Yang
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
10
|
Xu D, Liu Z, Liang MX, Chen WQ, Fei YJ, Yang SJ, Wu Y, Zhang W, Tang JH. Hyperthermia promotes M1 polarization of macrophages via exosome-mediated HSPB8 transfer in triple negative breast cancer. Discov Oncol 2023; 14:81. [PMID: 37233869 DOI: 10.1007/s12672-023-00697-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
PURPOSE To investigate the mechanism underlying the modulation of M1 macrophage polarization by exosomes released from hyperthermia-treated triple-negative breast cancer (TNBC) cells. MATERIALS AND METHODS In this study, the effects of hyperthermia on TNBC cells were examined using cell counting kit-8, apoptosis, and cell cycle assays. Transmission electron microscopy was used to identify the structure of exosomes, while bicinchoninic acid and nanoparticle tracking analysis were used to detect particle size and amounts of exosomes released after hyperthermia. The polarization of macrophages incubated with exosomes derived by hyperthermia-pretreated TNBC cells were assessed by RT-qPCR and flow cytometry analysis. Next, RNA sequencing was performed to determine the targeting molecules changed in hyperthermia-treated TNBC cells in vitro. Finally, the mechanism underlying the modulation of macrophage polarization by exosomes derived from hyperthermia-treated TNBC cells was examined by using RT-qPCR, immunofluorescence and flow cytometry analysis. RESULTS Hyperthermia markedly reduced cell viability in TNBC cells and promoted the secretion of TNBC cell-derived exosomes. The hub genes of hyperthermia-treated TNBC cells were significantly correlated with macrophage infiltration. Additionally, hyperthermia-treated TNBC cell-derived exosomes promoted M1 macrophage polarization. Furthermore, the expression levels of heat shock proteins, including HSPA1A, HSPA1B, HSPA6, and HSPB8, were significantly upregulated upon hyperthermia treatment, with HSPB8 exhibiting the highest upregulation. Moreover, hyperthermia can induce M1 macrophage polarization by promoting exosome-mediated HSPB8 transfer. CONCLUSION This study demonstrated a novel mechanism that hyperthermia can induce M1 polarization of macrophages via exosome-mediated HSPB8 transfer. These results will help with future development of an optimized hyperthermia treatment regime for clinical application, especially for combination treatment with immunotherapy.
Collapse
Affiliation(s)
- Di Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Zhen Liu
- Department of General Surgery, Taixing People's Hospital, Taixing, 225400, People's Republic of China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Wen-Quan Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Yin-Jiao Fei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Su-Jin Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Yang Wu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Department of Biobank, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
11
|
Pueyo JI, Salazar J, Grincho C, Berni J, Towler BP, Newbury SF. Purriato is a conserved small open reading frame gene that interacts with the CASA pathway to regulate muscle homeostasis and epithelial tissue growth in Drosophila. Front Cell Dev Biol 2023; 11:1117454. [PMID: 36968202 PMCID: PMC10036370 DOI: 10.3389/fcell.2023.1117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Recent advances in proteogenomic techniques and bioinformatic pipelines have permitted the detection of thousands of translated small Open Reading Frames (smORFs), which contain less than 100 codons, in eukaryotic genomes. Hundreds of these actively translated smORFs display conserved sequence, structure and evolutionary signatures indicating that the translated peptides could fulfil important biological roles. Despite their abundance, only tens of smORF genes have been fully characterised; these act mainly as regulators of canonical proteins involved in essential cellular processes. Importantly, some of these smORFs display conserved functions with their mutations being associated with pathogenesis. Thus, investigating smORF roles in Drosophila will not only expand our understanding of their functions but it may have an impact in human health. Here we describe the function of a novel and essential Drosophila smORF gene named purriato (prto). prto belongs to an ancient gene family whose members have expanded throughout the Protostomia clade. prto encodes a transmembrane peptide which is localized in endo-lysosomes and perinuclear and plasma membranes. prto is dynamically expressed in mesodermal tissues and imaginal discs. Targeted prto knockdown (KD) in these organs results in changes in nuclear morphology and endo-lysosomal distributions correlating with the loss of sarcomeric homeostasis in muscles and reduction of mitosis in wing discs. Consequently, prto KD mutants display severe reduction of motility, and shorter wings. Finally, our genetic interaction experiments show that prto function is closely associated to the CASA pathway, a conserved mechanism involved in turnover of mis-folded proteins and linked to muscle dystrophies and neurodegenerative diseases. Thus, this study shows the relevance of smORFs in regulating important cellular functions and supports the systematic characterisation of this class of genes to understand their functions and evolution.
Collapse
Affiliation(s)
- Jose I. Pueyo
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Jorge Salazar
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Carolina Grincho
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Jimena Berni
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Benjamin P. Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sarah F. Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
12
|
Wu X, Ni Z, Song T, Lv W, Chen Y, Huang D, Xie Y, Huang W, Niu Y. C-Terminal Truncated HBx Facilitates Oncogenesis by Modulating Cell Cycle and Glucose Metabolism in FXR-Deficient Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24065174. [PMID: 36982249 PMCID: PMC10048952 DOI: 10.3390/ijms24065174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor known to play protective roles in anti-hepatocarcinogenesis and regulation of the basal metabolism of glucose, lipids, and bile acids. FXR expression is low or absent in HBV-associated hepatocarcinogenesis. Full-length HBx and HBx C-terminal truncation are frequently found in clinical HCC samples and play distinct roles in hepatocarcinogenesis by interacting with FXR or FXR signaling. However, the impact of C-terminal truncated HBx on the progression of hepatocarcinogenesis in the absence of FXR is unclear. In this study, we found that one known FXR binding protein, a C-terminal truncated X protein (HBx C40) enhanced obviously and promoted tumor cell proliferation and migration by altering cell cycle distribution and inducing apoptosis in the absence of FXR. HBx C40 enhanced the growth of FXR-deficient tumors in vivo. In addition, RNA-sequencing analysis showed that HBx C40 overexpression could affect energy metabolism. Overexpressed HSPB8 aggravated the metabolic reprogramming induced by down-regulating glucose metabolism-associated hexokinase 2 genes in HBx C40-induced hepatocarcinogenesis. Overall, our study suggests that C-terminal truncated HBx C40 synergizes with FXR deficiency by altering cell cycle distribution as well as disturbing glucose metabolism to promote HCC development.
Collapse
Affiliation(s)
- Xuejun Wu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Zhengzhong Ni
- School of Public Health, Shantou University, Shantou 515063, China
| | - Tiantian Song
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Wenya Lv
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yan Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yangmin Xie
- Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, China
| | - Weiyi Huang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Correspondence: or ; Tel.: +86-0754-88900432
| |
Collapse
|
13
|
Li S, Que Y, Yang R, He P, Xu S, Hu Y. Construction of Osteosarcoma Diagnosis Model by Random Forest and Artificial Neural Network. J Pers Med 2023; 13:jpm13030447. [PMID: 36983630 PMCID: PMC10056981 DOI: 10.3390/jpm13030447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Osteosarcoma accounts for 28% of primary bone malignancies in adults and up to 56% in children and adolescents (<20 years). However, early diagnosis and treatment are still inadequate, and new improvements are still needed. Missed diagnoses exist due to fewer traditional diagnostic methods, and clinical symptoms are often already present before diagnosis. This study aimed to develop novel and efficient predictive models for the diagnosis of osteosarcoma and to identify potential targets for exploring osteosarcoma markers. First, osteosarcoma and normal tissue expression microarray datasets were downloaded from the Gene Expression Omnibus (GEO). Then we screened the differentially expressed genes (DEGs) in the osteosarcoma and normal groups in the training group. Next, in order to explore the biologically relevant role of DEGs, Metascape and enrichment analyses were also performed on DEGs. The “randomForest” and “neuralnet” packages in R software were used to select representative genes and construct diagnostic models for osteosarcoma. The next step is to validate the model of the artificial neural network. Then, we performed an immune infiltration analysis by using the training set data. Finally, we constructed a prognostic model using representative genes for prognostic analysis. The copy number of osteosarcoma was also analyzed. A random forest classifier identified nine representative genes (ANK1, TGFBR3, RSF21, HSPB8, ITGA7, RHD, AASS, GREM2, NFASC). HSPB8, RHD, AASS, and NFASC were genes we identified that have not been previously reported to be associated with osteosarcoma. The osteosarcoma diagnostic model we constructed has good performance with areas under the curves (AUCs) of 1 and 0.987 in the training and validation groups, respectively. This study opens new horizons for the early diagnosis of osteosarcoma and provides representative markers for the future treatment of osteosarcoma. This is the first study to pioneer the establishment of a genetic diagnosis model for osteosarcoma and advance the development of osteosarcoma diagnosis and treatment.
Collapse
|
14
|
Twenty Novel MicroRNAs in the Aqueous Humor of Pseudoexfoliation Glaucoma Patients. Cells 2023; 12:cells12050737. [PMID: 36899874 PMCID: PMC10000531 DOI: 10.3390/cells12050737] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The microRNAs (miRNAs) are short non-coding RNAs (19-25 nt) that regulate the level of gene expression at the post-transcriptional stage. Altered miRNAs expression can lead to the development of various diseases, e.g., pseudoexfoliation glaucoma (PEXG). In this study, we assessed the levels of miRNA expression in the aqueous humor of PEXG patients using the expression microarray method. Twenty new miRNA molecules have been selected as having the potential to be associated with the development or progression of PEXG. Ten miRNAs were downregulated in PEXG (hsa-miR-95-5p, hsa-miR-515-3p, hsa-mir-802, hsa-miR-1205, hsa-miR-3660, hsa-mir-3683, hsa -mir-3936, hsa-miR-4774-5p, hsa-miR-6509-3p, hsa-miR-7843-3p) and ten miRNAs were upregulated in PEXG (hsa-miR-202 -3p, hsa-miR-3622a-3p, hsa-mir-4329, hsa-miR-4524a-3p, hsa-miR-4655-5p, hsa-mir-6071, hsa-mir-6723-5p, hsa-miR-6847-5p, hsa-miR-8074, and hsa-miR-8083). Functional analysis and enrichment analysis showed that the mechanisms that can be regulated by these miRNAs are: extracellular matrix (ECM) imbalance, cell apoptosis (possibly retinal ganglion cells (RGCs)), autophagy, and elevated calcium cation levels. Nevertheless, the exact molecular basis of PEXG is unknown and further research is required on this topic.
Collapse
|
15
|
Zhang K, Yin W, Ma L, Liu Z, Li Q. HSPB8 facilitates prostate cancer progression via activating the JAK/STAT3 signaling pathway. Biochem Cell Biol 2023; 101:1-11. [PMID: 36318825 DOI: 10.1139/bcb-2022-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer (PC) is a clinically and biologically heterogeneous disease that lacks effective treatment. Heat shock protein B8 (HSPB8) is an important factor in the progression of various types of cancer. However, the clinical significance and biological role of HSPB8 in PC are still unclear. In this study, we determined HSPB8 expression in PC tissues by immunohistochemical staining and explored the in vitro functions of HSPB8 using HSPB8 knockdown DU145 and LNcap PC cell lines. The in vivo effect of HSPB8 was explored by a subcutaneous xenograft mice model. The human phospho-kinase array and signal transducer and activator of transcription (STAT) 3 activator were utilized to explore the potential mechanism of HSPB8-induced PC progression. As a result, we found that HSPB8 was abundantly expressed in PC tissues and cell lines. HSPB8 knockdown inhibited cell proliferation and migration, promoted apoptosis and cycle repression, as well as weakened tumorigenesis ability. Mechanistically, we demonstrated that HSPB8 facilitates the malignant phenotypes of PC by activating the Janus kinase/STAT3 signaling pathway. These results proposed that HSPB8 seems to be an attractive therapeutic target for PC patients.
Collapse
Affiliation(s)
- Kan Zhang
- Department of urinary surgery, Ningbo First Hospital, No.59, Liuting Street, Haishu District, Ningbo, Zhejiang Province 315000, China
| | - Weiqi Yin
- Department of urinary surgery, Ningbo First Hospital, No.59, Liuting Street, Haishu District, Ningbo, Zhejiang Province 315000, China
| | - Luping Ma
- Department of urinary surgery, First Affiliated Hospital School of Medicine, Shihezi University, No.107, North 2nd Road, Shihezi, Xinjiang Province 832008, China
| | - Zhili Liu
- Department of urinary surgery, First Affiliated Hospital School of Medicine, Shihezi University, No.107, North 2nd Road, Shihezi, Xinjiang Province 832008, China
| | - Qiang Li
- Department of urinary surgery, First Affiliated Hospital School of Medicine, Shihezi University, No.107, North 2nd Road, Shihezi, Xinjiang Province 832008, China
| |
Collapse
|
16
|
Tedesco B, Vendredy L, Timmerman V, Poletti A. The chaperone-assisted selective autophagy complex dynamics and dysfunctions. Autophagy 2023:1-23. [PMID: 36594740 DOI: 10.1080/15548627.2022.2160564] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Each protein must be synthesized with the correct amino acid sequence, folded into its native structure, and transported to a relevant subcellular location and protein complex. If any of these steps fail, the cell has the capacity to break down aberrant proteins to maintain protein homeostasis (also called proteostasis). All cells possess a set of well-characterized protein quality control systems to minimize protein misfolding and the damage it might cause. Autophagy, a conserved pathway for the degradation of long-lived proteins, aggregates, and damaged organelles, was initially characterized as a bulk degradation pathway. However, it is now clear that autophagy also contributes to intracellular homeostasis by selectively degrading cargo material. One of the pathways involved in the selective removal of damaged and misfolded proteins is chaperone-assisted selective autophagy (CASA). The CASA complex is composed of three main proteins (HSPA, HSPB8 and BAG3), essential to maintain protein homeostasis in muscle and neuronal cells. A failure in the CASA complex, caused by mutations in the respective coding genes, can lead to (cardio)myopathies and neurodegenerative diseases. Here, we summarize our current understanding of the CASA complex and its dynamics. We also briefly discuss how CASA complex proteins are involved in disease and may represent an interesting therapeutic target.Abbreviation ALP: autophagy lysosomal pathway; ALS: amyotrophic lateral sclerosis; AMOTL1: angiomotin like 1; ARP2/3: actin related protein 2/3; BAG: BAG cochaperone; BAG3: BAG cochaperone 3; CASA: chaperone-assisted selective autophagy; CMA: chaperone-mediated autophagy; DNAJ/HSP40: DnaJ heat shock protein family (Hsp40); DRiPs: defective ribosomal products; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK1/HRI: eukaryotic translation initiation factor 2 alpha kinase 1; GABARAP: GABA type A receptor-associated protein; HDAC6: histone deacetylase 6; HSP: heat shock protein; HSPA/HSP70: heat shock protein family A (Hsp70); HSP90: heat shock protein 90; HSPB8: heat shock protein family B (small) member 8; IPV: isoleucine-proline-valine; ISR: integrated stress response; KEAP1: kelch like ECH associated protein 1; LAMP2A: lysosomal associated membrane protein 2A; LATS1: large tumor suppressor kinase 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOC: microtubule organizing center; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-κB: nuclear factor kappa B; NFE2L2: NFE2 like bZIP transcription factor 2; PLCG/PLCγ: phospholipase C gamma; polyQ: polyglutamine; PQC: protein quality control; PxxP: proline-rich; RAN translation: repeat-associated non-AUG translation; SG: stress granule; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; STK: serine/threonine kinase; SYNPO: synaptopodin; TBP: TATA-box binding protein; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPR: tetratricopeptide repeats; TSC1: TSC complex subunit 1; UBA: ubiquitin associated; UPS: ubiquitin-proteasome system; WW: tryptophan-tryptophan; WWTR1: WW domain containing transcription regulator 1; YAP1: Yes1 associated transcriptional regulator.
Collapse
Affiliation(s)
- Barbara Tedesco
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy.,Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Angelo Poletti
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
17
|
Chierichetti M, Cerretani M, Ciammaichella A, Crippa V, Rusmini P, Ferrari V, Tedesco B, Casarotto E, Cozzi M, Mina F, Pramaggiore P, Galbiati M, Piccolella M, Bresciani A, Cristofani R, Poletti A. Identification of HSPB8 modulators counteracting misfolded protein accumulation in neurodegenerative diseases. Life Sci 2022; 322:121323. [PMID: 36574942 DOI: 10.1016/j.lfs.2022.121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
AIMS The small Heat Shock Protein B8 (HSPB8) is the core component of the chaperone-assisted selective autophagy (CASA) complex. This complex selectively targets, transports, and tags misfolded proteins for their recognition by autophagic receptors and insertion into autophagosome for clearance. CASA is essential to maintain intracellular proteostasis, especially in heart, muscle, and brain often exposed to various types of cell stresses. In neurons, HSPB8 protects against neurotoxicity caused by misfolded proteins in several models of neurodegenerative diseases; by facilitating autophagy, HSPB8 assists misfolded protein degradation also counteracting proteasome overwhelming and inhibition. MATERIALS AND METHODS To enhance HSPB8 protective activity, we screened a library of approximately 120,000 small molecules to identify compounds capable of increasing HSPB8 gene transcription, translation, or protein stability. We found 83 compounds active in preliminary dose-response assays and further classified them in 19 chemical classes by medicinal chemists' visual inspection. Of these 19 prototypes, 14 induced HSPB8 mRNA and protein levels in SH-SY5Y cells. KEY FINDINGS Out of these 14, 3 successfully reduced the aggregation propensity of a disease-associated mutant misfolded Superoxide Dismutase 1 (SOD1) protein in a flow cytometry-based "aggregation assay" [Flow cytometric analysis of Inclusions and Trafficking" (FloIT)] and induced the expression (mRNA and protein) of some autophagy receptors. Notably, the 3 hits were inactive in HSPB8-depleted cells, confirming that their protective activity is mediated by and requires HSPB8. SIGNIFICANCE Thus, these compounds may be highly relevant for a therapeutic approach in several human disorders, including neurodegenerative diseases, in which enhancement of CASA exerts beneficial activities.
Collapse
Affiliation(s)
- Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Mauro Cerretani
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina Km 30,600, 00071 Pomezia, Roma, Italy
| | - Alina Ciammaichella
- Department of Drug Discovery, IRBM S.p.A., Via Pontina Km 30,600, 00071 Pomezia, Roma, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina Km 30,600, 00071 Pomezia, Roma, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
18
|
Cristofani R, Piccolella M, Montagnani Marelli M, Tedesco B, Poletti A, Moretti RM. HSPB8 counteracts tumor activity of BRAF- and NRAS-mutant melanoma cells by modulation of RAS-prenylation and autophagy. Cell Death Dis 2022; 13:973. [PMID: 36400750 PMCID: PMC9674643 DOI: 10.1038/s41419-022-05365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
Cutaneous melanoma is one of the most aggressive and lethal forms of skin cancer. Some specific driver mutations have been described in multiple oncogenes including BRAF and NRAS that are mutated in 60-70% and 15-20% of melanoma, respectively. The aim of this study was to evaluate the role of Small Heat Shock Protein B8 (HSPB8) on cell growth and migration of both BLM (BRAFwt/NRASQ61R) and A375 (BRAFV600E/NRASwt) human melanoma cell lines. HSPB8 is a member of the HSPB family of chaperones involved in protein quality control (PQC) system and contributes to chaperone assisted selective autophagy (CASA) as well as in the regulation of mitotic spindle. In cancer, HSPB8 has anti- or pro-tumoral action depending on tumor type. In melanoma cell lines characterized by low HSPB8 levels, we demonstrated that the restoration of HSPB8 expression causes cell growth arrest, reversion of EMT (Epithelial-Mesenchymal Transition)-like phenotype switching and antimigratory effect, independently from the cell mutational status. We demonstrated that HSPB8 regulates the levels of the active prenylated form of NRAS in NRAS-mutant and NRAS-wild-type melanoma cell lines. Consequently, the inhibition of NRAS impairs the activation of Akt/mTOR pathway inducing autophagy activation. Autophagy can play a dual role in regulating cell death and survival. We have therefore demonstrated that HSPB8-induced autophagy is a crucial event that counteracts cell growth in melanoma. Collectively, our results suggest that HSPB8 has an antitumoral action in melanoma cells characterized by BRAF and NRAS mutations.
Collapse
Affiliation(s)
- Riccardo Cristofani
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Margherita Piccolella
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Marina Montagnani Marelli
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Barbara Tedesco
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy ,grid.417894.70000 0001 0707 5492Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Angelo Poletti
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
19
|
Tedesco B, Ferrari V, Cozzi M, Chierichetti M, Casarotto E, Pramaggiore P, Mina F, Piccolella M, Cristofani R, Crippa V, Rusmini P, Galbiati M, Poletti A. The role of autophagy-lysosomal pathway in motor neuron diseases. Biochem Soc Trans 2022; 50:1489-1503. [PMID: 36111809 PMCID: PMC9704526 DOI: 10.1042/bst20220778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 10/22/2023]
Abstract
Motor neuron diseases (MNDs) include a broad group of diseases in which neurodegeneration mainly affects upper and/or lower motor neurons (MNs). Although the involvement of specific MNs, symptoms, age of onset, and progression differ in MNDs, the main pathogenic mechanism common to most MNDs is represented by proteostasis alteration and proteotoxicity. This pathomechanism may be directly related to mutations in genes encoding proteins involved in the protein quality control system, particularly the autophagy-lysosomal pathway (ALP). Alternatively, proteostasis alteration can be caused by aberrant proteins that tend to misfold and to aggregate, two related processes that, over time, cannot be properly handled by the ALP. Here, we summarize the main ALP features, focusing on different routes utilized to deliver substrates to the lysosome and how the various ALP pathways intersect with the intracellular trafficking of membranes and vesicles. Next, we provide an overview of the mutated genes that have been found associated with MNDs, how these gene products are involved in different steps of ALP and related processes. Finally, we discuss how autophagy can be considered a valid therapeutic target for MNDs treatment focusing on traditional autophagy modulators and on emerging approaches to overcome their limitations.
Collapse
Affiliation(s)
- Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
20
|
The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. Int J Mol Sci 2022; 23:ijms231911759. [PMID: 36233058 PMCID: PMC9569637 DOI: 10.3390/ijms231911759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Motoneuron diseases (MNDs) are neurodegenerative conditions associated with death of upper and/or lower motoneurons (MNs). Proteostasis alteration is a pathogenic mechanism involved in many MNDs and is due to the excessive presence of misfolded and aggregated proteins. Protein misfolding may be the product of gene mutations, or due to defects in the translation process, or to stress agents; all these conditions may alter the native conformation of proteins making them prone to aggregate. Alternatively, mutations in members of the protein quality control (PQC) system may determine a loss of function of the proteostasis network. This causes an impairment in the capability to handle and remove aberrant or damaged proteins. The PQC system consists of the degradative pathways, which are the autophagy and the proteasome, and a network of chaperones and co-chaperones. Among these components, Heat Shock Protein 70 represents the main factor in substrate triage to folding, refolding, or degradation, and it is assisted in this task by a subclass of the chaperone network, the small heat shock protein (sHSPs/HSPBs) family. HSPBs take part in proteostasis by bridging misfolded and aggregated proteins to the HSP70 machinery and to the degradative pathways, facilitating refolding or clearance of the potentially toxic proteins. Because of its activity against proteostasis alteration, the chaperone system plays a relevant role in the protection against proteotoxicity in MNDs. Here, we discuss the role of HSPBs in MNDs and which HSPBs may represent a valid target for therapeutic purposes.
Collapse
|
21
|
Muranova LK, Shatov VM, Gusev NB. Role of Small Heat Shock Proteins in the Remodeling of Actin Microfilaments. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:800-811. [PMID: 36171660 DOI: 10.1134/s0006297922080119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 06/16/2023]
Abstract
Small heat shock proteins (sHsps) play an important role in the maintenance of proteome stability and, particularly, in stabilization of the cytoskeleton and cell contractile apparatus. Cell exposure to different types of stress is accompanied by the translocation of sHsps onto actin filaments; therefore, it is commonly believed that the sHsps are true actin-binding proteins. Investigations of last years have shown that this assumption is incorrect. Stress-induced translocation of sHsp to actin filaments is not the result of direct interaction of these proteins with intact actin, but results from the chaperone-like activity of sHsps and their interaction with various actin-binding proteins. HspB1 and HspB5 interact with giant elastic proteins titin and filamin thus providing an integrity of the contractile apparatus and its proper localization in the cell. HspB6 binds to the universal adapter protein 14-3-3 and only indirectly affects the structure of actin filament. HspB7 interacts with filamin C and controls actin filament assembly. HspB8 forms tight complex with the universal regulatory and adapter protein Bag3 and participates in the chaperone-assisted selective autophagy (CASA) of actin-binding proteins (e.g., filamin), as well as in the actin-depending processes taking place in mitoses. Hence, the mechanisms of sHsp participation in the maintenance of the contractile apparatus and cytoskeleton are much more complicated and diverse than it has been postulated earlier and are not limited to direct interactions of sHsps with actin. The old hypothesis on the direct binding of sHsps to intact actin should be revised and further detailed investigation on the sHsp interaction with minor proteins participating in the formation and remodeling of actin filaments is required.
Collapse
Affiliation(s)
- Lydia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladislav M Shatov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
22
|
Liu X, Yang R, Xu Q, Zhou M, Feng J, Wang G, Lin T, Tian W, Chen H. Tautomeric phytosterols from Vernonia amygdalina Delile and their anti-cervical cancer activity. Bioorg Chem 2022; 128:106068. [PMID: 35933896 DOI: 10.1016/j.bioorg.2022.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/02/2022]
Abstract
Vernonia amygdalina Delile is generally used as green vegetables for cuisine in Nigeria and health tea or products in southeast of china. It was also used as folk medicine for the treatment of anti-helminth, febrifuge, digestive tonic and wounds. In this study, eleven undescribed phytosterols (1-2, 4-12) and six known analogues (3, 13-17) were isolated from the stems of V. amygdalina. Their structures including absolute configurations were elucidated by comprehensive spectroscopic methods (1D and 2D NMR, HRESIMS), X-ray diffraction and comparison of their ECD spectra. Besides, the tautomerism of phytosterols (1, 3-6, 12-17) with hemiacetal moiety were analyzed by solution NMR with different deuterated solvent and variable-temperature experiments. In addition, the cytotoxic activities of isolates against HeLa cells were evaluated. As a result, compound 10 exhibited the most potent anti-cervical cancer activity with the IC50 of 22.44 μM. Mechanism studies indicated that 10 triggered HeLa cells apoptosis through activating caspase signaling pathway. Furthermore, 10 could arrest the cell cycle in S phase and suppress the activation of the PI3K/AKT/mTOR pathway, leading to the inhibition of HeLa cells proliferation.
Collapse
Affiliation(s)
- Xiangzhong Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Renjing Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Qiannan Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Mi Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jie Feng
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Guanghui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Ting Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China.
| | - Wenjing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China.
| | - Haifeng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
23
|
Van den Broek B, Wuyts C, Sisto A, Pintelon I, Timmermans JP, Somers V, Timmerman V, Hellings N, Irobi J. Oligodendroglia-derived extracellular vesicles activate autophagy via LC3B/BAG3 to protect against oxidative stress with an enhanced effect for HSPB8 enriched vesicles. Cell Commun Signal 2022; 20:58. [PMID: 35513867 PMCID: PMC9069805 DOI: 10.1186/s12964-022-00863-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/12/2022] [Indexed: 01/18/2023] Open
Abstract
Background The contribution of native or modified oligodendroglia-derived extracellular vesicles (OL-EVs) in controlling chronic inflammation is poorly understood. In activated microglia, OL-EVs contribute to the removal of cytotoxic proteins following a proteotoxic stress. Intracellular small heat shock protein B8 (HSPB8) sustain this function by facilitating autophagy and protecting cells against oxidative stress mediated cell death. Therefore, secretion of HSPB8 in OL-EVs could be beneficial for neurons during chronic inflammation. However, how secreted HSPB8 contribute to cellular proteostasis remains to be elucidated. Methods We produced oligodendroglia-derived EVs, either native (OL-EVs) or HSPB8 modified (OL-HSPB8-EVs), to investigate their effects in controlling chronic inflammation and cellular homeostasis. We analyzed the impact of both EV subsets on either a resting or activated microglial cell line and on primary mixed neural cell culture cells. Cells were activated by stimulating with either tumor necrosis factor-alpha and interleukin 1-beta or with phorbol-12-myristate-13-acetate. Results We show that OL-EVs and modified OL-HSPB8-EVs are internalized by C20 microglia and by primary mixed neural cells. The cellular uptake of OL-HSPB8-EVs increases the endogenous HSPB8 mRNA expression. Consistently, our results revealed that both EV subsets maintained cellular homeostasis during chronic inflammation with an increase in the formation of autophagic vesicles. Both EV subsets conveyed LC3B-II and BAG3 autophagy markers with an enhanced effect observed for OL-HSPB8-EVs. Moreover, stimulation with either native or modified OL-HSPB8-EVs showed a significant reduction in ubiquitinated protein, reactive oxygen species and mitochondrial depolarization, with OL-HSPB8-EVs exhibiting a more protective effect. Both EV subsets did not induce cell death in the C20 microglia cell line or the primary mixed neural cultures. Conclusion We demonstrate that the functions of oligodendroglia secreted EVs enriched with HSPB8 have a supportive role, comparable to the native OL-EVs. Further development of engineered oligodendroglia derived EVs could be a novel therapeutic strategy in countering chronic inflammation. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00863-x.
Collapse
Affiliation(s)
- Bram Van den Broek
- Department of Immunology and Infections, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Charlotte Wuyts
- Department of Immunology and Infections, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge and University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology & Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology & Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium
| | - Veerle Somers
- Department of Immunology and Infections, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge and University of Antwerp, Antwerp, Belgium
| | - Niels Hellings
- Department of Immunology and Infections, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Joy Irobi
- Department of Immunology and Infections, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
24
|
Tan Z, Fu S, Huang Y, Duan X, Zuo Y, Zhu X, Wang H, Wang J. HSPB8 is a Potential Prognostic Biomarker that Correlates With Immune Cell Infiltration in Bladder Cancer. Front Genet 2022; 13:804858. [PMID: 35330734 PMCID: PMC8940282 DOI: 10.3389/fgene.2022.804858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Heat shock protein B8 (HSPB8) is expressed in various cancers. However, the functional and clinicopathological significance of HSPB8 expression in bladder cancer (BC) remains unclear. The present study sought to elucidate the clinicopathological features and prognostic value of HSPB8 in BC. Methods: A BC RNA-seq data set was obtained from The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) database, and the external validation dataset GSE130598 was downloaded from the GEO database. Samples in the TCGA-BLCA were categorized into two groups based on HSPB8 expression. Differentially expressed genes (DEGs) between the two groups were defined as HSPB8 co-expressed genes. Gene set enrichment analysis (GSEA), protein-protein interaction networks, and mRNA-microRNA (miRNA) interaction networks were generated to predict the function and interactions of genes that are co-expressed with HSPB8. Finally, we examined immune cell infiltration and constructed a survival prediction model for BC patients. Results: The expression level of HSBP8 has a significant difference between cancer samples and normal samples, and its diagnosis effect was validated by the ROC curve. 446 differential expressed genes between HSBP8 high-expression and HSBP8 low expression groups were identified. Gene enrichment analysis and GSEA analysis show that these differential gene functions are closely related to the occurrence and development of BC and the metabolic pathways of BC. The cancer-related pathways included Cytokine-cytokine receptor Interaction, Focal adhesion, and Proteoglycans in cancer. PPI and protein-coding gene-miRNA network visualized the landscape for these tightly bounded gene interactions. Immune cell infiltration shows that B cells, CD4+T cells, and CD8+T cells have strongly different infiltration levels between the HSBP8 high exp group and low exp group. The survival prediction model shows that HSBP8 has strong prognosis power in the BLCA cohort. Conclusion: Identifying DEGs may enhance understanding of BC development’s causes and molecular mechanisms. HSPB8 may play an essential role in BC progression and prognosis and serve as a potential biomarker for BC treatment.
Collapse
Affiliation(s)
- Zhiyong Tan
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Shi Fu
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Yinglong Huang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Xianzhong Duan
- Department of Urology, the Second People's Hospital of Baoshan, Baoshan, China
| | - Yigang Zuo
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Xiaorui Zhu
- Department of Urology, the Second People's Hospital of Baoshan, Baoshan, China
| | - Haifeng Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Jiansong Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| |
Collapse
|
25
|
Gao T, Yuan D, He B, Gao Y, Liu C, Sun H, Nie J, Wang S, Nie Z. Identification of autophagy related genes in predicting the prognosis and aiding 5- fluorouracil therapy of colorectal cancer. Heliyon 2022; 8:e09033. [PMID: 35284678 PMCID: PMC8904229 DOI: 10.1016/j.heliyon.2022.e09033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
The emergence of 5-Fluorouracil (5-FU) resistance is the barrier to effective clinical outcomes for colorectal cancer (CRC) patients. Autophagy was found to be involved in protecting tumor cells from 5-FU. However, the specific role of autophagy-related genes in CRC 5-FU resistance remains unclear. In this study, HSPB8 among 34 differentially expressed ARGs in CRC was identified to be the hub ARGs in 5-FU resistant which was down-regulated in CRC samples when compared with normal samples but up-regulated in CRC samples with relatively higher lymphatic invasion, later stages and poor prognosis of CRC. Mechanistic analysis demonstrated that due to the recruitment of CAFs, HSPB8 expression was enhanced in CRC cells so that HSPB8 could act together with its co-chaperone BAG3 in autophagy drived 5-FU resistance. Furthermore, the augmented expression level of HSPB8 was found to be significantly correlated to the immune cell infiltration such as Treg cells, macrophages, monocyte and dendritic cells and so on. Our results suggested CAFs driving HSPB8 induced CRC 5-FU resistance by promoting tumor autophagy would provide a new strategy in seeking potential CRC therapeutic target.
Collapse
Affiliation(s)
- Tianyi Gao
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, Jiangsu, China
| | - Dan Yuan
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, Jiangsu, China
| | - Bangshun He
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, Jiangsu, China
| | - Yingdong Gao
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, Jiangsu, China
| | - Caidong Liu
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, Jiangsu, China
| | - Huilin Sun
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, Jiangsu, China
| | - Junjie Nie
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, Jiangsu, China
| | - Shukui Wang
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, Jiangsu, China
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhenlin Nie
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, Jiangsu, China
- Corresponding author.
| |
Collapse
|
26
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
27
|
BAG Family Members as Mitophagy Regulators in Mammals. Cells 2022; 11:cells11040681. [PMID: 35203329 PMCID: PMC8870067 DOI: 10.3390/cells11040681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
The BCL-2-associated athanogene (BAG) family is a multifunctional group of co-chaperones that are evolutionarily conserved from yeast to mammals. In addition to their common BAG domain, these proteins contain, in their sequences, many specific domains/motifs required for their various functions in cellular quality control, such as autophagy, apoptosis, and proteasomal degradation of misfolded proteins. The BAG family includes six members (BAG1 to BAG6). Recent studies reported their roles in autophagy and/or mitophagy through interaction with the autophagic machinery (LC3, Beclin 1, P62) or with the PINK1/Parkin signaling pathway. This review describes the mechanisms underlying BAG family member functions in autophagy and mitophagy and the consequences in physiopathology.
Collapse
|
28
|
Hsp22 Deficiency Induces Age-Dependent Cardiac Dilation and Dysfunction by Impairing Autophagy, Metabolism, and Oxidative Response. Antioxidants (Basel) 2021; 10:antiox10101550. [PMID: 34679684 PMCID: PMC8533440 DOI: 10.3390/antiox10101550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
Heat shock protein 22 (Hsp22) is a small heat shock protein predominantly expressed in skeletal and cardiac muscle. Previous studies indicate that Hsp22 plays a vital role in protecting the heart against cardiac stress. However, the essential role of Hsp22 in the heart under physiological conditions remains largely unknown. In this study, we used an Hsp22 knockout (KO) mouse model to determine whether loss of Hsp22 impairs cardiac growth and function with increasing age under physiological conditions. Cardiac structural and functional alterations at baseline were measured using echocardiography and invasive catheterization in Hsp22 KO mice during aging transition compared to their age-matched wild-type (WT) littermates. Our results showed that Hsp22 deletion induced progressive cardiac dilation along with declined function during the aging transition. Mechanistically, the loss of Hsp22 impaired BCL-2-associated athanogene 3 (BAG3) expression and its associated cardiac autophagy, undermined cardiac energy metabolism homeostasis and increased oxidative damage. This study showed that Hsp22 played an essential role in the non-stressed heart during the early stage of aging, which may bring new insight into understanding the pathogenesis of age-related dilated cardiomyopathy.
Collapse
|
29
|
Muranova LK, Shatov VM, Slushchev AV, Gusev NB. Quaternary Structure and Hetero-Oligomerization of Recombinant Human Small Heat Shock Protein HspB7 (cvHsp). Int J Mol Sci 2021; 22:ijms22157777. [PMID: 34360542 PMCID: PMC8345930 DOI: 10.3390/ijms22157777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/02/2023] Open
Abstract
In this study, a reliable and simple method of untagged recombinant human HspB7 preparation was developed. Recombinant HspB7 is presented in two oligomeric forms with an apparent molecular weight of 36 kDa (probably dimers) and oligomers with an apparent molecular weight of more than 600 kDa. By using hydrophobic and size-exclusion chromatography, we succeeded in preparation of HspB7 dimers. Mild oxidation promoted the formation of large oligomers, whereas the modification of Cys 126 by iodoacetamide prevented it. The deletion of the first 13 residues or deletion of the polySer motif (residues 17–29) also prevented the formation of large oligomers of HspB7. Cys-mutants of HspB6 and HspB8 containing a single-Cys residue in the central part of the β7 strand in a position homologous to that of Cys137 in HspB1 can be crosslinked to the wild-type HspB7 through a disulfide bond. Immobilized on monoclonal antibodies, the wild-type HspB6 interacted with the wild-type HspB7. We suppose that formation of heterodimers of HspB7 with HspB6 and HspB8 may be important for the functional activity of these small heat shock proteins.
Collapse
|
30
|
Shatov VM, Sluchanko NN, Gusev NB. Replacement of Arg in the conserved N-terminal RLFDQxFG motif affects physico-chemical properties and chaperone-like activity of human small heat shock protein HspB8 (Hsp22). PLoS One 2021; 16:e0253432. [PMID: 34143841 PMCID: PMC8213154 DOI: 10.1371/journal.pone.0253432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/04/2021] [Indexed: 01/06/2023] Open
Abstract
The small heat shock protein (sHsp) called HspB8 (formerly, Hsp22) is one of the least typical sHsp members, whose oligomerization status remains debatable. Here we analyze the effect of mutations in a highly conservative sequence located in the N-terminal domain of human HspB8 on its physico-chemical properties and chaperone-like activity. According to size-exclusion chromatography coupled to multi-angle light scattering, the wild type (WT) HspB8 is present as dominating monomeric species (~24 kDa) and a small fraction of oligomers (~60 kDa). The R29A amino acid substitution leads to the predominant formation of 60-kDa oligomers, leaving only a small fraction of monomers. Deletion of the 28–32 pentapeptide (Δ mutant) results in the formation of minor quantities of dimers (~49 kDa) and large quantities of the 24-kDa monomers. Both the WT protein and its Δ mutant efficiently bind a hydrophobic probe bis-ANS and are relatively rapidly hydrolyzed by chymotrypsin, whereas the R29A mutant weakly binds bis-ANS and resists chymotrypsinolysis. In contrast to HspB8 WT and its Δ mutant, which are well phosphorylated by cAMP-dependent and ERK1 protein kinases, the R29A mutant is poorly phosphorylated. R29A mutation affects the chaperone-like activity of HspB8 measured in vitro. It is concluded that the irreplaceable Arg residue located in the only highly conservative motif in the N-terminal domain of all sHsp proteins affects the oligomeric structure and key properties of HspB8.
Collapse
Affiliation(s)
- Vladislav M. Shatov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nikolai B. Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation
- * E-mail:
| |
Collapse
|
31
|
Piccolella M, Cristofani R, Tedesco B, Chierichetti M, Ferrari V, Casarotto E, Cozzi M, Crippa V, Rusmini P, Galbiati M, Poletti A, Messi E. Retinoic Acid Downregulates HSPB8 Gene Expression in Human Breast Cancer Cells MCF-7. Front Oncol 2021; 11:652085. [PMID: 34136389 PMCID: PMC8201400 DOI: 10.3389/fonc.2021.652085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Breast cancer (BC) is a serious and widespread disease for which different treatments have been developed. In addition to the classic therapies, the treatment with retinoic acid (RA) is still being clinically investigated. RA reduces cancer cells proliferation and migration, but its molecular mechanism of action is not clear. In tumor development, autophagy promotes cancer cell survival and prevents apoptosis. Small heat shock protein B8 (HSPB8) acts together with its co-chaperone BCL-2 associated athanogene 3 (BAG3) stimulating BC proliferation and migration. We analyzed whether direct correlations exist between RA and HSPB8 or BAG3 and how this may play a role in BC. We measured HSPB8 and BAG3 gene expression in MCF-7 BC cells and we analyzed the potential correlation between the antiproliferative and antimigratory effect of RA with the expression level of HSPB8. We found that in MCF-7 cells RA reduces both HSPB8 and BAG3 gene expression and it alters the mitotic spindle organization. Notably, the effects of RA on HSPB8 levels are exerted at both transcriptional and translational levels. RA effects are possibly mediated by miR-574-5p that targets the HSPB8 transcript. Our results suggest that therapeutic doses of RA can efficiently counteract the adverse effects of HSPB8 in BC progression.
Collapse
Affiliation(s)
- Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy.,Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
32
|
Wyciszkiewicz A, Lach MS, Wróblewska JP, Michalak M, Suchorska WM, Kalinowska A, Michalak S. The involvement of small heat shock protein in chemoresistance in ovarian cancer - in vitro study. EXCLI JOURNAL 2021; 20:935-947. [PMID: 34177409 PMCID: PMC8222634 DOI: 10.17179/excli2021-3706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 11/12/2022]
Abstract
Ovarian cancer is the most deadly gynecologic malignancy worldwide. Although the primary response to chemotherapy is high, the majority of patients will develop resistance against applied treatment. In this study, we focused on resistance to cisplatin, a first-line drug used for the treatment of ovarian cancer. The mechanism of the resistance development process is widely described, but there is a lack of information about the involvement of members of small heat shock proteins (HSPs) and their transport via exosomes. In this study, we used two cell lines: A2780 and SKOV3, and their cisplatin-resistance variants: A2780 CDDP and SKOV3 CDDP. We have shown that the expression of three small HSPs (HSPB5, HSPB6, and HSPB8) in cisplatin-resistant cell lines differs from their sensitive counterparts. Further, we isolated exosomes and determined the small HSPs in their cargo. In A2780 WT we observed a low amount of HSPB5 and HSPB6. We did not observe the expression of small HSPs in the SKOV3 cell line in both sensitive and resistant variants. Our data suggest the involvement of small HSPs in drug resistance of ovarian cancer and their presence is not related to exosomal transport. Analysis of the biological consequences of the imbalance of small HSPs expression in cisplatin resistance needs further investigation.
Collapse
Affiliation(s)
- Aleksandra Wyciszkiewicz
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Michal S Lach
- Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznań, Poland.,Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznań, Poland
| | - Joanna P Wróblewska
- Department of Tumor Pathology and Prophylaxis, Poznań University of Medical Sciences, Garbary 15, 61-866 Poznań, Poland.,Department of Oncologic Pathology, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznań, Poland
| | - Marcin Michalak
- Surgical, Oncological, and Endoscopic Gynaecology Department, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Wiktoria M Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznań, Poland.,Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznań, Poland
| | - Alicja Kalinowska
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Slawomir Michalak
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| |
Collapse
|