1
|
Petkova-Kirova P, Murciano N, Iacono G, Jansen J, Simionato G, Qiao M, Van der Zwaan C, Rotordam MG, John T, Hertz L, Hoogendijk AJ, Becker N, Wagner C, Von Lindern M, Egee S, Van den Akker E, Kaestner L. The Gárdos Channel and Piezo1 Revisited: Comparison between Reticulocytes and Mature Red Blood Cells. Int J Mol Sci 2024; 25:1416. [PMID: 38338693 PMCID: PMC10855361 DOI: 10.3390/ijms25031416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/12/2024] Open
Abstract
The Gárdos channel (KCNN4) and Piezo1 are the best-known ion channels in the red blood cell (RBC) membrane. Nevertheless, the quantitative electrophysiological behavior of RBCs and its heterogeneity are still not completely understood. Here, we use state-of-the-art biochemical methods to probe for the abundance of the channels in RBCs. Furthermore, we utilize automated patch clamp, based on planar chips, to compare the activity of the two channels in reticulocytes and mature RBCs. In addition to this characterization, we performed membrane potential measurements to demonstrate the effect of channel activity and interplay on the RBC properties. Both the Gárdos channel and Piezo1, albeit their average copy number of activatable channels per cell is in the single-digit range, can be detected through transcriptome analysis of reticulocytes. Proteomics analysis of reticulocytes and mature RBCs could only detect Piezo1 but not the Gárdos channel. Furthermore, they can be reliably measured in the whole-cell configuration of the patch clamp method. While for the Gárdos channel, the activity in terms of ion currents is higher in reticulocytes compared to mature RBCs, for Piezo1, the tendency is the opposite. While the interplay between Piezo1 and Gárdos channel cannot be followed using the patch clamp measurements, it could be proved based on membrane potential measurements in populations of intact RBCs. We discuss the Gárdos channel and Piezo1 abundance, interdependencies and interactions in the context of their proposed physiological and pathophysiological functions, which are the passing of small constrictions, e.g., in the spleen, and their active participation in blood clot formation and thrombosis.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
- Department of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Nicoletta Murciano
- Nanion Technologies, 80339 Munich, Germany; (N.M.); (M.G.R.); (N.B.)
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
| | - Giulia Iacono
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Julia Jansen
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| | - Greta Simionato
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
- Department of Experimental Surgery, Campus University Hospital, Saarland University, 66421 Homburg, Germany
| | - Min Qiao
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| | - Carmen Van der Zwaan
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | | | - Thomas John
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| | - Laura Hertz
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| | - Arjan J. Hoogendijk
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Nadine Becker
- Nanion Technologies, 80339 Munich, Germany; (N.M.); (M.G.R.); (N.B.)
| | - Christian Wagner
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Marieke Von Lindern
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Stephane Egee
- Biological Station Roscoff, Sorbonne University, CNRS, UMR8227 LBI2M, F-29680 Roscoff, France;
- Laboratory of Excellence GR-Ex, F-75015 Paris, France
| | - Emile Van den Akker
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| |
Collapse
|
2
|
Esperti S, Nader E, Stier A, Boisson C, Carin R, Marano M, Robert M, Martin M, Horand F, Cibiel A, Renoux C, Van Bruggen R, Blans C, Dargaud Y, Joly P, Gauthier A, Poutrel S, Romana M, Roussel D, Connes P. Increased retention of functional mitochondria in mature sickle red blood cells is associated with increased sickling tendency, hemolysis and oxidative stress. Haematologica 2023; 108:3086-3094. [PMID: 37259576 PMCID: PMC10620576 DOI: 10.3324/haematol.2023.282684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Abnormal retention of mitochondria in mature red blood cells (RBC) has been recently reported in sickle cell anemia (SCA) but their functionality and their role in the pathophysiology of SCA remain unknown. The presence of mitochondria within RBC was determined by flow cytometry in 61 SCA patients and ten healthy donors. Patients were classified according to the percentage of mature RBC with mitochondria contained in the whole RBC population: low (0-4%), moderate (>4% and <8%), or high level (>8%). RBC rheological, hematological, senescence and oxidative stress markers were compared between the three groups. RBC senescence and oxidative stress markers were also compared between mature RBC containing mitochondria and those without. The functionality of residual mitochondria in sickle RBC was measured by high-resolution respirometry assay and showed detectable mitochondrial oxygen consumption in sickle mature RBC but not in healthy RBC. Increased levels of mitochondrial reactive oxygen species were observed in mature sickle RBC when incubated with Antimycin A versus without. In addition, mature RBC retaining mitochondria exhibited greater levels of reactive oxygen species compared to RBC without mitochondria, as well as greater Ca2+, lower CD47 and greater phosphatidylserine exposure. Hematocrit and RBC deformability were lower, and the propensity of RBC to sickle under deoxygenation was higher, in the SCA group with a high percentage of mitochondria retention in mature RBC. This study showed the presence of functional mitochondria in mature sickle RBC, which could favor RBC sickling and accelerate RBC senescence, leading to increased cellular fragility and hemolysis.
Collapse
Affiliation(s)
- Sofia Esperti
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France; Erytech Pharma, 69008 Lyon
| | - Elie Nader
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris
| | - Antoine Stier
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS, ENTPE, UMR 5023 Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR7178, 67000 Strasbourg
| | - Camille Boisson
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris
| | - Romain Carin
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris
| | - Muriel Marano
- UR4609 Hémostase and Thrombose Université Claude Bernard Lyon 1, Université de Lyon, Lyon
| | - Mélanie Robert
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France; Erytech Pharma, 69008 Lyon
| | - Marie Martin
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon
| | | | | | - Céline Renoux
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France; Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies Erythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Lyon
| | - Robin Van Bruggen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin Blans
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Yesim Dargaud
- UR4609 Hémostase and Thrombose Université Claude Bernard Lyon 1, Université de Lyon, Lyon
| | - Philippe Joly
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France; Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies Erythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Lyon
| | - Alexandra Gauthier
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France; Institut d'Hématologique et d'Oncologique Pédiatrique, Hospices Civils de Lyon, 69008 Lyon
| | - Solène Poutrel
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France; Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69008 Lyon, France. de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69008 Lyon
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France; Université de Paris, Université des Antilles, UMR_S1134, BIGR, INSERM, Paris
| | - Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS, ENTPE, UMR 5023 Université Claude Bernard Lyon 1, Université de Lyon, Lyon
| | - Philippe Connes
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell » Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris.
| |
Collapse
|
3
|
Martins GLS, Nonaka CKV, Rossi EA, de Lima AVR, Adanho CSA, Oliveira MS, Yahouedehou SCMA, de Souza CLEM, Gonçalves MDS, Paredes BD, Souza BSDF. Evaluation of 2D and 3D Erythroid Differentiation Protocols Using Sickle Cell Disease and Healthy Donor Induced Pluripotent Stem Cells. Cells 2023; 12:cells12081121. [PMID: 37190030 DOI: 10.3390/cells12081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Sickle cell disease (SCD) is a highly prevalent genetic disease caused by a point mutation in the HBB gene, which can lead to chronic hemolytic anemia and vaso-occlusive events. Patient-derived induced pluripotent stem cells (iPSCs) hold promise for the development of novel predictive methods for screening drugs with anti-sickling activity. In this study, we evaluated and compared the efficiency of 2D and 3D erythroid differentiation protocols using a healthy control and SCD-iPSCs. METHODS iPSCs were subjected to hematopoietic progenitor cell (HSPC) induction, erythroid progenitor cell induction, and terminal erythroid maturation. Differentiation efficiency was confirmed by flow cytometry analysis, colony-forming unit (CFU) assay, morphological analyses, and qPCR-based gene expression analyses of HBB and HBG2. RESULTS Both 2D and 3D differentiation protocols led to the induction of CD34+/CD43+ HSPCs. The 3D protocol showed good efficiency (>50%) and high productivity (45-fold) for HSPC induction and increased the frequency of BFU-E, CFU-E, CFU-GM, and CFU-GEMM colonies. We also produced CD71+/CD235a+ cells (>65%) with a 630-fold cell expansion relative to that at the beginning of the 3D protocol. After erythroid maturation, we observed 95% CD235a+/DRAQ5- enucleated cells, orthochromatic erythroblasts, and increased expression of fetal HBG2 compared to adult HBB. CONCLUSION A robust 3D protocol for erythroid differentiation was identified using SCD-iPSCs and comparative analyses; however, the maturation step remains challenging and requires further development.
Collapse
Affiliation(s)
- Gabriele Louise Soares Martins
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
| | - Erik Aranha Rossi
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Adne Vitória Rocha de Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Corynne Stephanie Ahouefa Adanho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Moisés Santana Oliveira
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | | | | | | | - Bruno Diaz Paredes
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
| |
Collapse
|
4
|
Hertz L, Flormann D, Birnbaumer L, Wagner C, Laschke MW, Kaestner L. Evidence of in vivo exogen protein uptake by red blood cells: a putative therapeutic concept. Blood Adv 2023; 7:1033-1039. [PMID: 36490356 PMCID: PMC10036505 DOI: 10.1182/bloodadvances.2022008404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/31/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
For some molecular players in red blood cells (RBCs), the functional indications and molecular evidence are discrepant. One such protein is transient receptor potential channel of canonical subfamily, member 6 (TRPC6). Transcriptome analysis of reticulocytes revealed the presence of TRPC6 in mouse RBCs and its absence in human RBCs. We transfused TRPC6 knockout RBCs into wild-type mice and performed functional tests. We observed the "rescue" of TRPC6 within 10 days; however, the "rescue" was slower in splenectomized mice. The latter finding led us to mimic the mechanical challenge with the cantilever of an atomic force microscope and simultaneously carry out imaging by confocal (3D) microscopy. We observed the strong interaction of RBCs with the opposed surface at around 200 pN and the formation of tethers. The results of both the transfusion experiments and the atomic force spectroscopy suggest mechanically stimulated protein transfer to RBCs as a protein source in the absence of the translational machinery. This protein transfer mechanism has the potential to be utilized in therapeutic contexts, especially for hereditary diseases involving RBCs, such as hereditary xerocytosis or Gárdos channelopathy.
Collapse
Affiliation(s)
- Laura Hertz
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| | - Daniel Flormann
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Christian Wagner
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbruecken, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, Luxembourg
| | - Matthias W. Laschke
- Medical Faculty, Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbruecken, Germany
| |
Collapse
|
5
|
Wu M, Fields JJ, Sachdev V, Belcik JT, Chen J, Reed F, Fu X, Hodovan J, Harmann LM, Swistara G, Lindner JR. Increased Susceptibility for Adverse Reactions to Ultrasound Enhancing Agents in Sickle Cell Disease. J Am Soc Echocardiogr 2023; 36:208-215. [PMID: 36113741 DOI: 10.1016/j.echo.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pain-related adverse events (AEs) to ultrasound enhancing agents (UEAs) have been reported in patients with sickle cell disease (SCD). The aims of this study were to characterize the scope of these AEs in the SCD population and to investigate potential mechanisms on the basis of pathways involved in SCD vaso-occlusive crisis (VOC) and pain. METHODS The prevalence and classification of AEs were analyzed from two clinical trials in which high-dose Definity infusions were used in patients with SCD (n = 55) or matched control subjects (n = 43) to study muscle or myocardial microvascular perfusion. Because complement (C') activation can trigger VOC in SCD, C' activation and surface adhesion of C' proteins on lipid UEAs were studied in vitro. C'-mediated UEA attachment to bone marrow immune cells was assessed using flow cytometry in a murine SCD model (Townes mice). Blood from patients receiving Definity was obtained to measure specific lysophospholipid metabolites of lipids in Definity thought to mediate SCD pain. RESULTS Moderate or greater AEs, all of which were nociceptive (back or bone pain), occurred in one control subject and nine SCD subjects (2% vs 16%, P = .02). Patients with SCD who had AEs tended to have more severe manifestations of SCD. Three of the subjects with SCD had previously received Definity without complications. In patients with SCD, four AEs were classified as severe in intensity and as serious AEs on the basis of need for medical intervention. AEs were described to be similar to SCD-related pain, but there was no evidence for VOC, hemolysis, hypotension, or hypoxemia. At baseline, markers of C' activation were greater in patients with SCD than control subjects. However, after administration of lipid UEAs, SCD and control subjects were similar with regard to C' activation response, anaphylatoxin production, bone marrow microbubble retention, and production of lysophospholipids. There was a trend toward increased deposition of C3b and C3bi on lipid UEAs exposed to serum from patients with SCD. CONCLUSIONS Patients with SCD are particularly susceptible to nociceptive AEs when given Definity at high doses. The mechanism for these AEs remains unclear but most are not related to the triggering of classic VOC.
Collapse
Affiliation(s)
- Melinda Wu
- Doernbecher Children's Hospital and Pape Research Center, Oregon Health & Science University, Portland, Oregon
| | - Joshua J Fields
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Junmei Chen
- Bloodworks Research Institute, Seattle, Washington
| | | | - Xiaoyun Fu
- Bloodworks Research Institute, Seattle, Washington
| | - James Hodovan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Leanne M Harmann
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gabriella Swistara
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
6
|
Allison RL, Burand A, Torres DN, Brandow AM, Stucky CL, Ebert AD. Sickle cell disease patient plasma sensitizes iPSC-derived sensory neurons from sickle cell disease patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523446. [PMID: 36711992 PMCID: PMC9882050 DOI: 10.1101/2023.01.10.523446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Individuals living with sickle cell disease (SCD) experience severe recurrent acute and chronic pain. In order to develop novel therapies, it is necessary to better understand the neurobiological mechanisms underlying SCD pain. There are many barriers to gaining mechanistic insight into pathogenic SCD pain processes, such as differential gene expression and function of sensory neurons between humans and mice with SCD, as well as the limited availability of patient samples. These can be overcome by utilizing SCD patient-derived induced pluripotent stem cells (iPSCs) differentiated into sensory neurons (SCD iSNs). Here, we characterize the key gene expression and function of SCD iSNs to establish a model for higher-throughput investigation of intrinsic and extrinsic factors that may contribute to increased SCD patient pain. Importantly, identified roles for C-C Motif Chemokine Ligand 2 (CCL2) and endothelin 1 (ET1) in SCD pain can be recapitulated in SCD iSNs. Further, we find that plasma taken from SCD patients during acute pain increases SCD iSN calcium response to the nociceptive stimulus capsaicin compared to those treated with paired SCD patient plasma at baseline or healthy control plasma samples. Together, these data provide the framework necessary to utilize iSNs as a powerful tool to investigate the neurobiology of SCD and identify potential intrinsic mechanisms of SCD pain which may extend beyond a blood-based pathology.
Collapse
Affiliation(s)
- Reilly L. Allison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Anthony Burand
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Damaris Nieves Torres
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Amanda M. Brandow
- Department of Pediatrics, Section of Hematology/Oncology/Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
7
|
Cao X, van Putten JPM, Wösten MMSM. Biological functions of bacterial lysophospholipids. Adv Microb Physiol 2023; 82:129-154. [PMID: 36948653 DOI: 10.1016/bs.ampbs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Maurer F, John T, Makhro A, Bogdanova A, Minetti G, Wagner C, Kaestner L. Continuous Percoll Gradient Centrifugation of Erythrocytes-Explanation of Cellular Bands and Compromised Age Separation. Cells 2022; 11:cells11081296. [PMID: 35455975 PMCID: PMC9028966 DOI: 10.3390/cells11081296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: When red blood cells are centrifuged in a continuous Percoll-based density gradient, they form discrete bands. While this is a popular approach for red blood cell age separation, the mechanisms involved in banding were unknown. (2) Methods: Percoll centrifugations of red blood cells were performed under various experimental conditions and the resulting distributions analyzed. The age of the red blood cells was measured by determining the protein band 4.1a to 4.1b ratio based on western blots. Red blood cell aggregates, so-called rouleaux, were monitored microscopically. A mathematical model for the centrifugation process was developed. (3) Results: The red blood cell band pattern is reproducible but re-centrifugation of sub-bands reveals a new set of bands. This is caused by red blood cell aggregation. Based on the aggregation, our mathematical model predicts the band formation. Suppression of red blood cell aggregation reduces the band formation. (4) Conclusions: The red blood cell band formation in continuous Percoll density gradients could be explained physically by red blood cell aggregate formation. This aggregate formation distorts the density-based red blood cell age separation. Suppressing aggregation by osmotic swelling has a more severe effect on compromising the RBC age separation to a higher degree.
Collapse
Affiliation(s)
- Felix Maurer
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany; (F.M.); (T.J.); (C.W.)
| | - Thomas John
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany; (F.M.); (T.J.); (C.W.)
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, CH-8057 Zürich, Switzerland; (A.M.); (A.B.)
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, CH-8057 Zürich, Switzerland; (A.M.); (A.B.)
| | - Giampaolo Minetti
- Laboratories of Biochemistry, Department of Biology and Biotechnology “L Spallanzani”, University of Pavia, I-27100 Pavia, Italy;
| | - Christian Wagner
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany; (F.M.); (T.J.); (C.W.)
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Lars Kaestner
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany; (F.M.); (T.J.); (C.W.)
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Correspondence:
| |
Collapse
|
9
|
Nguyen DB, Tran HT, Kaestner L, Bernhardt I. The Relation Between Extracellular Vesicles Released From Red Blood Cells, Their Cargo, and the Clearance by Macrophages. Front Physiol 2022; 13:783260. [PMID: 35432007 PMCID: PMC9008836 DOI: 10.3389/fphys.2022.783260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane particles that include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies, and other EV subsets. EVs are involved in intercellular communication and the transport of macromolecules between cells. Here, we propose and test the ability of red blood cell (RBC)-derived EVs (RBC-EVs) as putative drug carriers. EVs were produced by treating RBCs with Phorbol-12-myristate-13-acetate (PMA) and separating from the cells by differential centrifugation steps. RBC-EVs were characterized by size determination, flow cytometry, and scanning electron microscopy (SEM). EVs were loaded with DNA plasmids coding for the green fluorescent protein (GFP) by electroporation. The DNA-loaded EVs (DNA-EVs) were used to transfect THP-1-derived macrophages and analyzed by fluorescence microscopy and flow cytometry. The results showed that RBC-EVs had an almost spherical shape and a polydispersity in their size with an average of 197 ± 44 nm and with a zeta potential of −36 ± 8 mV. RBC-EVs were successfully loaded with DNA but associated with an increase of the polydispersity index (PdI) and showed a positive signal with Picogreen. DNA-EVs were almost completely taken up by macrophages within 24 h, however, resulting in the expression of the GFP in a subpopulation of macrophages. As the way, we designed that RBC-EVs could be potential nucleic acid carriers when the immune system was addressed. This study may contribute to the understanding of the role of EVs in the development of microvesicle-based vehicles.
Collapse
Affiliation(s)
- Duc Bach Nguyen
- Department of Molecular Biology, Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
- *Correspondence: Duc Bach Nguyen,
| | - Hanh Triet Tran
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Ingolf Bernhardt
- Laboratory of Biophysics, Faculty of Natural and Technical Sciences, Saarland University, Saarbruecken, Germany
- Ingolf Bernhardt,
| |
Collapse
|
10
|
von Lindern M, Egée S, Bianchi P, Kaestner L. The Function of Ion Channels and Membrane Potential in Red Blood Cells: Toward a Systematic Analysis of the Erythroid Channelome. Front Physiol 2022; 13:824478. [PMID: 35177994 PMCID: PMC8844196 DOI: 10.3389/fphys.2022.824478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/04/2022] [Indexed: 01/14/2023] Open
Abstract
Erythrocytes represent at least 60% of all cells in the human body. During circulation, they experience a huge variety of physical and chemical stimulations, such as pressure, shear stress, hormones or osmolarity changes. These signals are translated into cellular responses through ion channels that modulate erythrocyte function. Ion channels in erythrocytes are only recently recognized as utmost important players in physiology and pathophysiology. Despite this awareness, their signaling, interactions and concerted regulation, such as the generation and effects of “pseudo action potentials”, remain elusive. We propose a systematic, conjoined approach using molecular biology, in vitro erythropoiesis, state-of-the-art electrophysiological techniques, and channelopathy patient samples to decipher the role of ion channel functions in health and disease. We need to overcome challenges such as the heterogeneity of the cell population (120 days lifespan without protein renewal) or the access to large cohorts of patients. Thereto we will use genetic manipulation of progenitors, cell differentiation into erythrocytes, and statistically efficient electrophysiological recordings of ion channel activity.
Collapse
Affiliation(s)
- Marieke von Lindern
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Stéphane Egée
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, UMR 8227, Sorbonne Université, Roscoff Cedex, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Paola Bianchi
- Pathophysiology of Anemia Unit, Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico of Milan, Milan, Italy
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
- *Correspondence: Lars Kaestner,
| |
Collapse
|
11
|
Egée S, Kaestner L. The Transient Receptor Potential Vanilloid Type 2 (TRPV2) Channel-A New Druggable Ca 2+ Pathway in Red Cells, Implications for Red Cell Ion Homeostasis. Front Physiol 2021; 12:677573. [PMID: 34177620 PMCID: PMC8222986 DOI: 10.3389/fphys.2021.677573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stéphane Egée
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff Cedex, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Saarbrucken, Germany
- Experimental Physics, Saarland University, Saarbrucken, Germany
| |
Collapse
|