1
|
Sola-Sevilla N, Garmendia-Berges M, Mera-Delgado MC, Puerta E. Context-dependent role of sirtuin 2 in inflammation. Neural Regen Res 2025; 20:682-694. [PMID: 38886935 PMCID: PMC11433891 DOI: 10.4103/nrr.nrr-d-23-02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has been involved in the modulation of key inflammatory signaling pathways and transcription factors by deacetylating specific targets, such as nuclear factor κB and nucleotide-binding oligomerization domain-leucine-rich-repeat and pyrin domain-containing protein 3 (NLRP3). However, whether sirtuin 2-mediated pathways induce a pro- or an anti-inflammatory response remains controversial. Sirtuin 2 has been implicated in promoting inflammation in conditions such as asthma and neurodegenerative diseases, suggesting that its inhibition in these conditions could be a potential therapeutic strategy. Conversely, arthritis and type 2 diabetes mellitus studies suggest that sirtuin 2 is essential at the peripheral level and, thus, its inhibition in these pathologies would not be recommended. Overall, the precise role of sirtuin 2 in inflammation appears to be context-dependent, and further investigation is needed to determine the specific molecular mechanisms and downstream targets through which sirtuin 2 influences inflammatory processes in various tissues and pathological conditions. The present review explores the involvement of sirtuin 2 in the inflammation associated with different pathologies to elucidate whether its pharmacological modulation could serve as an effective strategy for treating this prevalent symptom across various diseases.
Collapse
Affiliation(s)
- Noemí Sola-Sevilla
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maider Garmendia-Berges
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - MCarmen Mera-Delgado
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Elena Puerta
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
2
|
Yu H, Li X, Ning B, Feng L, Ren Y, Li S, Kang Y, Ma J, Zhao M. SIRT1: a potential therapeutic target for coronary heart disease combined with anxiety or depression. J Drug Target 2024:1-13. [PMID: 39470049 DOI: 10.1080/1061186x.2024.2422882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Coronary heart disease (CHD) combined with anxiety or depression is increasingly receiving attention in the clinical field of cardiology, and exploring the comorbidity pathological mechanisms of cardiovascular disease combined with psychological disorders is a hot research topic for scholars in this field. Current research suggests that Silent Information Regulatory Factor 1 (SIRT1) may serve as a potential biomarker for the comorbidity mechanism and treatment of CHD with anxiety or depression. SIRT1 is considered a promising therapeutic target for CHD combined with anxiety or depression, with the ability to regulate inflammatory cytokine levels, alleviate oxidative stress damage, activate multiple signalling pathways, reduce platelet hyperresponsiveness, and exert neuroprotective and cardioprotective effects. In this comprehensive review, we deeply studied the structure, function, and mechanism of SIRT1, and discussed its protective effects in the cardiovascular and nervous system. The latest progress in the mechanism of SIRT1's role in CHD combined with anxiety or depression was emphasised, including its specific mechanisms in regulating inflammatory response, alleviating oxidative stress, and mediating various signalling pathways. In addition, this article also summarises the therapeutic potential of SIRT1 as a potential biomarker in patients with CHD combined with anxiety or depression.
Collapse
Affiliation(s)
- Hubin Yu
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xinping Li
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Bo Ning
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lanshuan Feng
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yaolong Ren
- Department of Cardiology, Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shilin Li
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yalong Kang
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Ma
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Mingjun Zhao
- Department of Cardiology, Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
3
|
Shi J, Jin Y, Lin S, Li X, Zhang D, Wu J, Qi Y, Li Y. Mitochondrial non-energetic function and embryonic cardiac development. Front Cell Dev Biol 2024; 12:1475603. [PMID: 39435335 PMCID: PMC11491369 DOI: 10.3389/fcell.2024.1475603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The initial contraction of the heart during the embryonic stage necessitates a substantial energy supply, predominantly derived from mitochondrial function. However, during embryonic heart development, mitochondria influence beyond energy supplementation. Increasing evidence suggests that mitochondrial permeability transition pore opening and closing, mitochondrial fusion and fission, mitophagy, reactive oxygen species production, apoptosis regulation, Ca2+ homeostasis, and cellular redox state also play critical roles in early cardiac development. Therefore, this review aims to describe the essential roles of mitochondrial non-energetic function embryonic cardiac development.
Collapse
Affiliation(s)
- Jingxian Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuxi Jin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Jinlin Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
5
|
Campagna R, Mazzanti L, Pompei V, Alia S, Vignini A, Emanuelli M. The Multifaceted Role of Endothelial Sirt1 in Vascular Aging: An Update. Cells 2024; 13:1469. [PMID: 39273039 PMCID: PMC11394039 DOI: 10.3390/cells13171469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
NAD+-dependent deacetylase sirtuin-1 (Sirt1) belongs to the sirtuins family, known to be longevity regulators, and exerts a key role in the prevention of vascular aging. By aging, the expression levels of Sirt1 decline with a severe impact on vascular function, such as the rise of endothelial dysfunction, which in turn promotes the development of cardiovascular diseases. In this context, the impact of Sirt1 activity in preventing endothelial senescence is particularly important. Given the key role of Sirt1 in counteracting endothelial senescence, great efforts have been made to deepen the knowledge about the intricate cross-talks and interactions of Sirt1 with other molecules, in order to set up possible strategies to boost Sirt1 activity to prevent or treat vascular aging. The aim of this review is to provide a proper background on the regulation and function of Sirt1 in the vascular endothelium and to discuss the recent advances regarding the therapeutic strategies of targeting Sirt1 to counteract vascular aging.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Laura Mazzanti
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
- Fondazione Salesi, Ospedale G. Salesi, 60100 Ancona, Italy
| | - Veronica Pompei
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Sonila Alia
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| |
Collapse
|
6
|
Jiang YZ, Huang XR, Chang J, Zhou Y, Huang XT. SIRT1: An Intermediator of Key Pathways Regulating Pulmonary Diseases. J Transl Med 2024; 104:102044. [PMID: 38452903 DOI: 10.1016/j.labinv.2024.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Silent information regulator type-1 (SIRT1), a nicotinamide adenine dinucleotide+-dependent deacetylase, is a member of the sirtuins family and has unique protein deacetylase activity. SIRT1 participates in physiological as well as pathophysiological processes by targeting a wide range of protein substrates and signalings. In this review, we described the latest progress of SIRT1 in pulmonary diseases. We have introduced the basic information and summarized the prominent role of SIRT1 in several lung diseases, such as acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung cancer, and aging-related diseases.
Collapse
Affiliation(s)
- Yi-Zhu Jiang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xin-Ran Huang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Chang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, China.
| |
Collapse
|
7
|
Lonati C, Berezhnoy G, Lawler N, Masuda R, Kulkarni A, Sala S, Nitschke P, Zizmare L, Bucci D, Cannet C, Schäfer H, Singh Y, Gray N, Lodge S, Nicholson J, Merle U, Wist J, Trautwein C. Urinary phenotyping of SARS-CoV-2 infection connects clinical diagnostics with metabolomics and uncovers impaired NAD + pathway and SIRT1 activation. Clin Chem Lab Med 2024; 62:770-788. [PMID: 37955280 DOI: 10.1515/cclm-2023-1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES The stratification of individuals suffering from acute and post-acute SARS-CoV-2 infection remains a critical challenge. Notably, biomarkers able to specifically monitor viral progression, providing details about patient clinical status, are still not available. Herein, quantitative metabolomics is progressively recognized as a useful tool to describe the consequences of virus-host interactions considering also clinical metadata. METHODS The present study characterized the urinary metabolic profile of 243 infected individuals by quantitative nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography mass spectrometry (LC-MS). Results were compared with a historical cohort of noninfected subjects. Moreover, we assessed the concentration of recently identified antiviral nucleosides and their association with other metabolites and clinical data. RESULTS Urinary metabolomics can stratify patients into classes of disease severity, with a discrimination ability comparable to that of clinical biomarkers. Kynurenines showed the highest fold change in clinically-deteriorated patients and higher-risk subjects. Unique metabolite clusters were also generated based on age, sex, and body mass index (BMI). Changes in the concentration of antiviral nucleosides were associated with either other metabolites or clinical variables. Increased kynurenines and reduced trigonelline excretion indicated a disrupted nicotinamide adenine nucleotide (NAD+) and sirtuin 1 (SIRT1) pathway. CONCLUSIONS Our results confirm the potential of urinary metabolomics for noninvasive diagnostic/prognostic screening and show that the antiviral nucleosides could represent novel biomarkers linking viral load, immune response, and metabolism. Moreover, we established for the first time a casual link between kynurenine accumulation and deranged NAD+/SIRT1, offering a novel mechanism through which SARS-CoV-2 manipulates host physiology.
Collapse
Affiliation(s)
- Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Nathan Lawler
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Reika Masuda
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Aditi Kulkarni
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Samuele Sala
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Philipp Nitschke
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Daniele Bucci
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Claire Cannet
- Bruker BioSpin GmbH, AIC Division, Ettlingen, Germany
| | | | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Nicola Gray
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Samantha Lodge
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Jeremy Nicholson
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Julien Wist
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Bettiol A, Urban ML, Emmi G, Galora S, Argento FR, Fini E, Borghi S, Bagni G, Mattioli I, Prisco D, Fiorillo C, Becatti M. SIRT1 and thrombosis. Front Mol Biosci 2024; 10:1325002. [PMID: 38304233 PMCID: PMC10833004 DOI: 10.3389/fmolb.2023.1325002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
Thrombosis is a major cause of morbidity and mortality worldwide, with a complex and multifactorial pathogenesis. Recent studies have shown that SIRT1, a member of the sirtuin family of NAD + -dependent deacetylases, plays a crucial role in regulating thrombosis, modulating key pathways including endothelial activation, platelet aggregation, and coagulation. Furthermore, SIRT1 displays anti-inflammatory activity both in vitro, in vivo and in clinical studies, particularly via the reduction of oxidative stress. On these bases, several studies have investigated the therapeutic potential of targeting SIRT1 for the prevention of thrombosis. This review provides a comprehensive and critical overview of the main preclinical and clinical studies and of the current understanding of the role of SIRT1 in thrombosis.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Silvia Galora
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| |
Collapse
|
9
|
Xia Q, Zhang X, Zhan G, Zheng L, Mao M, Zhao Y, Zhao Y, Li X. A cell-penetrating peptide exerts therapeutic effects against ischemic stroke by mediating the lysosomal degradation of sirtuin 5. MedComm (Beijing) 2023; 4:e436. [PMID: 38093788 PMCID: PMC10716672 DOI: 10.1002/mco2.436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 10/17/2024] Open
Abstract
Stroke is a major public health concern worldwide. The lack of effective therapies heightens the need for new therapeutic agents. Previous study identified sirtuin 5 (SIRT5) as a positive regulator of microglia-induced excessive neuroinflammation following ischemic stroke. Interventions targeting SIRT5 should therefore alleviate neuroinflammation and protect against ischemic stroke. Here, we synthesized a membrane-permeable peptide specifically bound to SIRT5 through a chaperone-mediated autophagy targeting motif (Tat-SIRT5-CTM) and examined its therapeutic effect in vitro and in vivo. First, in primary microglia, Tat-SIRT5-CTM suppressed the binding of SIRT5 with annexin-A1 (ANXA1), leading to SIRT5 degradation and thus inhibition of SIRT5-mediated desuccinylation of ANXA1, followed by increased membrane accumulation and secretion of ANXA1. These changes, in turn, alleviated microglia-induced neuroinflammation. Moreover, following intravenous injection, Tat-SIRT5-CTM could efficiently pass through the blood‒brain barrier. Importantly, systemic administration of Tat-SIRT5-CTM reduced the brain infarct area and neuronal loss, mitigated neurological deficit scores, and improved long-term neurological functions in a mouse model of ischemic stroke. Furthermore, no toxicity was observed when high doses Tat-SIRT5-CTM were injected into nonischemic mice. Collectively, our study reveals the promising efficacy of the peptide-directed lysosomal degradation of SIRT5 and suggests it as an effective therapeutic approach for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qian Xia
- Department of AnesthesiologyHubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xue Zhang
- Department of AnesthesiologyHubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gaofeng Zhan
- Department of AnesthesiologyHubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lu Zheng
- Department of TransfusionThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Meng Mao
- Department of Anesthesiology and Perioperative MedicineZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Yin Zhao
- Department of OphthalmologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yilin Zhao
- Department of AnesthesiologyHubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xing Li
- Department of AnesthesiologyHubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
10
|
El-Ashmawy NE, Khedr EG, Khedr NF, El-Adawy SA. Emerging therapeutic strategy for mitigating cancer progression through inhibition of sirtuin-1 and epithelial-mesenchymal transition. Pathol Res Pract 2023; 251:154907. [PMID: 37925819 DOI: 10.1016/j.prp.2023.154907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
With 8.8 million deaths worldwide, cancer is the major reason for the high rate of fatalities. Malignancy's commencement, progression, development, metastasis, and therapy resistance have all been correlated with the epithelial-to-mesenchymal transition (EMT) pathway. EMT promotes the cancer cells' metastatic spread and starts the development of treatment resistance. Sirtuin-1 (SIRT1) is a histone deacetylase that is important for signaling, cell persistence, and apoptosis. It does this by deacetylating important cell signaling molecules and proteins that are associated with apoptosis. The function of SIRT1 in EMT and cancer progression, as well as the emerging therapeutic strategy of treating cancer through the inhibition of SIRT1 and EMT will be discussed in detail.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Samar A El-Adawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt.
| |
Collapse
|
11
|
Paula Ceballos M, Darío Quiroga A, Palma NF. Role of sirtuins in hepatocellular carcinoma progression and multidrug resistance: Mechanistical and pharmacological perspectives. Biochem Pharmacol 2023; 212:115573. [PMID: 37127248 DOI: 10.1016/j.bcp.2023.115573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of death from cancer worldwide. Therapeutic strategies are still challenging due to the high relapse rate after surgery and multidrug resistance (MDR). It is essential to better understand the mechanisms for HCC progression and MDR for the development of new therapeutic strategies. Mammalian sirtuins (SIRTs), a family of seven members, are related to tumor progression, MDR and prognosis and were proposed as potential prognostic markers, as well as therapeutic targets for treating cancer. SIRT1 is the most studied member and is overexpressed in HCC, playing an oncogenic role and predicting poor prognosis. Several manuscripts describe the role of SIRTs2-7 in HCC; most of them report an oncogenic role for SIRT2 and -7 and a suppressive role for SIRT3 and -4. The scenario is more confusing for SIRT5 and -6, since information is contradictory and scarce. For SIRT1 many inhibitors are available and they seem to hold therapeutic promise in HCC. For the other members the development of specific modulators has just started. This review is aimed to describe the features of SIRTs1-7 in HCC, and the role they play in the onset and progression of the disease. Also, when possible, we will depict the information related to the SIRTs modulators that have been tested in HCC and their possible implication in MDR. With this, we hope to clarify the role of each member in HCC and to shed some light on the most successful strategies to overcome MDR.
Collapse
Affiliation(s)
- María Paula Ceballos
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina.
| | - Ariel Darío Quiroga
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina
| | - Nicolás Francisco Palma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
12
|
Zeng J, Guo J, Huang S, Cheng Y, Luo F, Xu X, Chen R, Ma G, Wang Y. The roles of sirtuins in ferroptosis. Front Physiol 2023; 14:1131201. [PMID: 37153222 PMCID: PMC10157232 DOI: 10.3389/fphys.2023.1131201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Ferroptosis represents a novel non-apoptotic form of regulated cell death that is driven by iron-dependent lipid peroxidation and plays vital roles in various diseases including cardiovascular diseases, neurodegenerative disorders and cancers. Plenty of iron metabolism-related proteins, regulators of lipid peroxidation, and oxidative stress-related molecules are engaged in ferroptosis and can regulate this complex biological process. Sirtuins have broad functional significance and are targets of many drugs in the clinic. Recently, a growing number of studies have revealed that sirtuins can participate in the occurrence of ferroptosis by affecting many aspects such as redox balance, iron metabolism, and lipid metabolism. This article reviewed the studies on the roles of sirtuins in ferroptosis and the related molecular mechanisms, highlighting valuable targets for the prevention and treatment of ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jieqing Zeng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Junhao Guo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Si Huang
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Yisen Cheng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Fei Luo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Xusan Xu
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| | - Yajun Wang
- Institute of Respiratory, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| |
Collapse
|
13
|
Chojdak-Łukasiewicz J, Bizoń A, Waliszewska-Prosół M, Piwowar A, Budrewicz S, Pokryszko-Dragan A. Role of Sirtuins in Physiology and Diseases of the Central Nervous System. Biomedicines 2022; 10:2434. [PMID: 36289696 PMCID: PMC9598817 DOI: 10.3390/biomedicines10102434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 07/30/2023] Open
Abstract
Silent information regulators, sirtuins (SIRTs), are a family of enzymes which take part in major posttranslational modifications of proteins and contribute to multiple cellular processes, including metabolic and energetic transformations, as well as regulation of the cell cycle. Recently, SIRTs have gained increased attention as the object of research because of their multidirectional activity and possible role in the complex pathomechanisms underlying human diseases. The aim of this study was to review a current literature evidence of SIRTs' role in the physiology and pathology of the central nervous system (CNS). SIRTs have been demonstrated to be crucial players in the crosstalk between neuroinflammation, neurodegeneration, and metabolic alterations. The elucidation of SIRTs' role in the background of various CNS diseases offers a chance to define relevant markers of their progression and promising candidates for novel therapeutic targets. Possible diagnostic and therapeutic implications from SIRTs-related investigations are discussed, as well as their future directions and associated challenges.
Collapse
Affiliation(s)
| | - Anna Bizoń
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | | | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Anna Pokryszko-Dragan
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
14
|
Akan OD, Qin D, Guo T, Lin Q, Luo F. Sirtfoods: New Concept Foods, Functions, and Mechanisms. Foods 2022; 11:foods11192955. [PMID: 36230032 PMCID: PMC9563801 DOI: 10.3390/foods11192955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Sirtfood is a new concept food that compounds diets that can target sirtuins (SIRTs). SIRTs are nicotinamide adenine dinucleotide (NAD+)-dependent deacylases and ADP-ribosyltransferases (enzymes). SIRTs are mediators of calorie restriction (CR) and their activation can achieve some effects similar to CR. SIRTs play essential roles in ameliorating obesity and age-related metabolic diseases. Food ingredients such as resveratrol, piceatannol, anthocyanidin, and quinine are potential modulators of SIRTs. SIRT modulators are involved in autophagy, apoptosis, aging, inflammation, and energy homeostasis. Sirtfood proponents believe that natural Sirtfood recipes exert significant health effects.
Collapse
Affiliation(s)
- Otobong Donald Akan
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Microbiology Department, Faculty of Biological Science, Akwa-Ibom State University, Ikot Akpaden, Uyo 1167, Nigeria
| | - Dandan Qin
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tianyi Guo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: ; Tel.: +86-731-85623240
| |
Collapse
|
15
|
Renalase Challenges the Oxidative Stress and Fibroproliferative Response in COVID-19. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4032704. [PMID: 36132227 PMCID: PMC9484957 DOI: 10.1155/2022/4032704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 01/08/2023]
Abstract
The hallmark of the coronavirus disease 2019 (COVID-19) pathophysiology was reported to be an inappropriate and uncontrolled immune response, evidenced by activated macrophages, and a robust surge of proinflammatory cytokines, followed by the release of reactive oxygen species, that synergistically result in acute respiratory distress syndrome, fibroproliferative lung response, and possibly even death. For these reasons, all identified risk factors and pathophysiological processes of COVID-19, which are feasible for the prevention and treatment, should be addressed in a timely manner. Accordingly, the evolving anti-inflammatory and antifibrotic therapy for severe COVID-19 and hindering post-COVID-19 fibrosis development should be comprehensively investigated. Experimental evidence indicates that renalase, a novel amino-oxidase, derived from the kidneys, exhibits remarkable organ protection, robustly addressing the most powerful pathways of cell trauma: inflammation and oxidative stress, necrosis, and apoptosis. As demonstrated, systemic renalase administration also significantly alleviates experimentally induced organ fibrosis and prevents adverse remodeling. The recognition that renalase exerts cytoprotection via sirtuins activation, by raising their NAD+ levels, provides a “proof of principle” for renalase being a biologically impressive molecule that favors cell protection and survival and maybe involved in the pathogenesis of COVID-19. This premise supports the rationale that renalase's timely supplementation may prove valuable for pathologic conditions, such as cytokine storm and related acute respiratory distress syndrome. Therefore, the aim for this review is to acknowledge the scientific rationale for renalase employment in the experimental model of COVID-19, targeting the acute phase mechanisms and halting fibrosis progression, based on its proposed molecular pathways. Novel therapies for COVID-19 seek to exploit renalase's multiple and distinctive cytoprotective mechanisms; therefore, this review should be acknowledged as the thorough groundwork for subsequent research of renalase's employment in the experimental models of COVID-19.
Collapse
|
16
|
Zhang M, Fei S, Xia J, Wang Y, Wu H, Li X, Guo Y, Swevers L, Sun J, Feng M. Sirt5 Inhibits BmNPV Replication by Promoting a Relish-Mediated Antiviral Pathway in Bombyx mori. Front Immunol 2022; 13:906738. [PMID: 35693834 PMCID: PMC9186105 DOI: 10.3389/fimmu.2022.906738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Silent information regulators (Sirtuins) belong to the family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases (HDACs) that have diverse functions in cells. Mammalian Sirtuins have seven isoforms (Sirt1–7) which have been found to play a role in viral replication. However, Sirtuin members of insects are very different from mammals, and the function of insect Sirtuins in regulating virus replication is unclear. The silkworm, Bombyx mori, as a model species of Lepidoptera, is also an important economical insect. B. mori nucleopolyhedrovirus (BmNPV) is a major pathogen that specifically infects silkworms and causes serious losses in the sericulture industry. Here, we used the infection of the silkworm by BmNPV as a model to explore the effect of Sirtuins on virus replication. We initially knocked down all silkworm Sirtuins, and then infected with BmNPV to analyze its replication. Sirt2 and Sirt5 were found to have potential antiviral functions in the silkworm. We further confirmed the antiviral function of silkworm Sirt5 through its effects on viral titers during both knockdown and overexpression experiments. Additionally, Suramin, a Sirt5 inhibitor, was found to promote BmNPV replication. In terms of molecular mechanism, it was found that silkworm Sirt5 might promote the immune pathway mediated by Relish, thereby enhancing the host antiviral response. This study is the first to explore the role of Sirtuins in insect-virus interactions, providing new insights into the functional role of members of the insect Sirtuin family.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yeyuan Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongyun Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xian Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiyao Guo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Jingchen Sun, ; Min Feng,
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Jingchen Sun, ; Min Feng,
| |
Collapse
|
17
|
Mahmudpour M, Vahdat K, Keshavarz M, Nabipour I. The COVID-19-diabetes mellitus molecular tetrahedron. Mol Biol Rep 2022; 49:4013-4024. [PMID: 35067816 PMCID: PMC8784222 DOI: 10.1007/s11033-021-07109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023]
Abstract
Accumulating molecular evidence suggests that insulin resistance, rather than SARS-CoV-2- provoked beta-cell impairment, plays a major role in the observed rapid metabolic deterioration in diabetes, or new-onset hyperglycemia, during the COVID-19 clinical course. In order to clarify the underlying complexity of COVID-19 and diabetes mellitus interactions, we propose the imaginary diabetes-COVID-19 molecular tetrahedron with four lateral faces consisting of SARS-CoV-2 entry via ACE2 (lateral face 1), the viral hijacking and replication (lateral face 2), acute inflammatory responses (lateral face 3), and the resulting insulin resistance (lateral face 4). The entrance of SARS-CoV-2 using ACE2 receptor triggers an array of multiple molecular signaling beyond that of the angiotensin II/ACE2-Ang-(1-7) axis, such as down-regulation of PGC-1 α/irisin, increased SREBP-1c activity, upregulation of CD36 and Sirt1 inhibition leading to insulin resistance. In another arm of the molecular cascade, the SARS-CoV-2 hijacking and replication induces a series of molecular events in the host cell metabolic machinery, including upregulation of SREBP-2, decrement in Sirt1 expression, dysregulation in PPAR-ɣ, and LPI resulting in insulin resistance. The COVID-19-diabetes molecular tetrahedron may suggest novel targets for therapeutic interventions to overcome insulin resistance that underlies the pathophysiology of worsening metabolic control in patients with diabetes mellitus or the new-onset of hyperglycemia in COVID-19.
Collapse
Affiliation(s)
- Mehdi Mahmudpour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Katayoun Vahdat
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
18
|
Tu M, Saputo S. From Beginning to End: Expanding the SERINC3 Interactome Through an in silico Analysis. Bioinform Biol Insights 2022; 16:11779322221092944. [PMID: 35494555 PMCID: PMC9052817 DOI: 10.1177/11779322221092944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
The serine incorporator (SERINC) family of proteins are a family of multipass transmembrane proteins associated with biosynthesis of serine-containing phospholipids and sphingolipids. Humans have 5 paralogs, SERINC1-5, which have been linked to disease including variable expression in tumor lines and possessing activity as restriction factors against HIV-1. Despite recent studies, the cellular function of SERINC proteins have yet to be fully elucidated. The goal of this study as to investigate the role of SERINC3 by expanding upon its interactome. We used a variety of bioinformatic tools to identify cellular factors that interact with SERINC3 and assessed how sequence variation might alter these interactions. Analysis of the promoter region indicates that SERINC3 is putatively regulated by transcription factors involved in tissue-specific development. Analysis of the unique 3′-untranslated region of one variant of HsSERINC3 revealed that this region serves as a conserved site of regulation by both RNA binding proteins and miRNA. In addition, SERINC3 is putatively regulated at the protein level by several posttranslational modifications. Our results show that extra-membrane portions of SERINC3 are subject to variation in the coding sequence as well as areas of relatively low conservation. Overall, our data suggest that regions of low homology as well as presence of variations in the nucleotide and protein sequences of HsSERINC3 suggest that these variations may lead to aberrant function and alternative regulatory mechanisms in homologs. The functional consequences of these sequence and structural variations need to be explored systematically to fully appreciate the role of SERINC3 in both health and disease.
Collapse
Affiliation(s)
- Mckenzie Tu
- Department of Chemistry and Biochemistry, SUNY Brockport, Brockport, NY, USA
| | - Sarah Saputo
- Department of Chemistry and Biochemistry, SUNY Brockport, Brockport, NY, USA
| |
Collapse
|
19
|
Zheng W. The Zinc-Dependent HDACs: Non-Histone Substrates and Catalytic Deacylation Beyond Deacetylation. Mini Rev Med Chem 2022; 22:2478-2485. [PMID: 35362374 DOI: 10.2174/1389557522666220330144151] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
Protein lysine side chain Nε-acylation and -deacylation play an important regulatory role in both epigenetic and non-epigenetic processes via a structural and functional regulation of histone and non-histone proteins. The enzymes catalyzing deacylation were traditionally termed as the histone deacetylases (HDACs) since histone proteins were the first substrates identified and the deacetylation was the first type of deacylation identified. However, it has now been known that, besides the seven sirtuins (i.e. SIRT1-7, theβ-nicotinamide adenine dinucleotide (β-NAD+)-dependent class III HDACs), several of the other eleven members of the mammalian HDAC family (i.e. HDAC1-11, the zinc-dependent classes I, II, and IV HDACs) have been found to also accept non-histone proteins as native substrates and to also catalyze the removal of the acyl groups other than acetyl, such as formyl, crotonyl, and myristoyl. In this mini-review, I will first integrate the current literature coverage on the non-histone substrates and the catalytic deacylation (beyond deacetylation) of the zinc-dependent HDACs, which will be followed by an address on the functional interrogation and pharmacological exploitation (inhibitor design) of the zinc-dependent HDAC-catalyzed deacylation (beyond deacetylation).
Collapse
Affiliation(s)
- Weiping Zheng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P. R. China
| |
Collapse
|
20
|
Zhou Y, Zhang F, Ding J. As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases. Immune Netw 2022; 22:e21. [PMID: 35799705 PMCID: PMC9250864 DOI: 10.4110/in.2022.22.e21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yunxin Zhou
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Fan Zhang
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|
21
|
Gligorijevic N, Radomirovic M, Nedic O, Stojadinovic M, Khulal U, Stanic-Vucinic D, Cirkovic Velickovic T. Molecular Mechanisms of Possible Action of Phenolic Compounds in COVID-19 Protection and Prevention. Int J Mol Sci 2021; 22:12385. [PMID: 34830267 PMCID: PMC8625847 DOI: 10.3390/ijms222212385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
The worldwide outbreak of COVID-19 was caused by a pathogenic virus called Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Therapies against SARS-CoV-2 target the virus or human cells or the immune system. However, therapies based on specific antibodies, such as vaccines and monoclonal antibodies, may become inefficient enough when the virus changes its antigenicity due to mutations. Polyphenols are the major class of bioactive compounds in nature, exerting diverse health effects based on their direct antioxidant activity and their effects in the modulation of intracellular signaling. There are currently numerous clinical trials investigating the effects of polyphenols in prophylaxis and the treatment of COVID-19, from symptomatic, via moderate and severe COVID-19 treatment, to anti-fibrotic treatment in discharged COVID-19 patients. Antiviral activities of polyphenols and their impact on immune system modulation could serve as a solid basis for developing polyphenol-based natural approaches for preventing and treating COVID-19.
Collapse
Affiliation(s)
- Nikola Gligorijevic
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Mirjana Radomirovic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.R.); (M.S.); (D.S.-V.)
| | - Olgica Nedic
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Marija Stojadinovic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.R.); (M.S.); (D.S.-V.)
| | - Urmila Khulal
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 21985, Korea
| | - Dragana Stanic-Vucinic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.R.); (M.S.); (D.S.-V.)
| | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.R.); (M.S.); (D.S.-V.)
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 21985, Korea
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| |
Collapse
|
22
|
Sirtuins as Interesting Players in the Course of HIV Infection and Comorbidities. Cells 2021; 10:cells10102739. [PMID: 34685718 PMCID: PMC8534645 DOI: 10.3390/cells10102739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
The sirtuins (SIRTs) are a family of enzymes from the group of NAD+-dependent deacetylases. Through the reaction of splitting the acetyl group of various transcription factors and histones they regulate many processes in the organism. The activity of sirtuins is linked to metabolic control, oxidative stress, inflammation and apoptosis, and they also affect the course of viral infections. For this reason, they may participate in the pathogenesis and development of many diseases, but little is known about their role in the course of human immunodeficiency virus (HIV) infection, which is the subject of this review. In the course of HIV infection, comorbidities such as: neurodegenerative disorders, obesity, insulin resistance and diabetes, lipid disorders and cardiovascular diseases, renal and bone diseases developed more frequently and faster compared to the general population. The role of sirtuins in the development of accompanying diseases in the course of HIV infection may also be interesting. There is still a lack of detailed information on this subject. The role of sirtuins, especially SIRT1, SIRT3, SIRT6, are indicated to be of great importance in the course of HIV infection and the development of the abovementioned comorbidities.
Collapse
|
23
|
Kong F, Li Q, Zhang F, Li X, You H, Pan X, Zheng K, Tang R. Sirtuins as Potential Therapeutic Targets for Hepatitis B Virus Infection. Front Med (Lausanne) 2021; 8:751516. [PMID: 34708060 PMCID: PMC8542665 DOI: 10.3389/fmed.2021.751516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/15/2021] [Indexed: 01/15/2023] Open
Abstract
Sirtuins (SIRTs) are well-known histone deacetylases that are capable of modulating various cellular processes in numerous diseases, including the infection of hepatitis B virus (HBV), which is one of the primary pathogenic drivers of liver cirrhosis and hepatocellular carcinoma. Mounting evidence reveals that HBV can alter the expression levels of all SIRT proteins. In turn, all SIRTs regulate HBV replication via a cascade of molecular mechanisms. Furthermore, several studies suggest that targeting SIRTs using suitable drugs is a potential treatment strategy for HBV infection. Here, we discuss the molecular mechanisms associated with SIRT-mediated upregulation of viral propagation and the recent advances in SIRT-targeted therapy as potential therapeutic modalities against HBV infection.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Qi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- Laboratory Department, The People's Hospital of Funing, Yancheng, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|