1
|
Shao X. Roles of M1 and M2 macrophage infiltration in post-renal transplant antibody-mediated rejection. Transpl Immunol 2024; 85:102076. [PMID: 38955248 DOI: 10.1016/j.trim.2024.102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND We aimed to analyze the roles of M1 and M2 macrophage infiltration in post-renal transplant antibody-mediated rejection (AMR). METHODS A total of 102 recipients who underwent renal allotransplant from January 2020 to February 2023 were divided into an immune tolerance group (n = 56) and a rejection group (n = 46). The transplant renal biopsy specimens were harvested by ultrasound-guided puncture. The M1 and M2 macrophages in renal tissues were counted, and the M1/M2 ratio was calculated. The numbers of M1 and M2 macrophages and M1/M2 ratios in patients with different severities of interstitial fibrosis/tubular atrophy (IF/TA) and different degrees of tubulointerstitial inflammatory cell infiltration were compared. The predictive values of M1 and M2 macrophages and M1/M2 ratio for post-renal transplant AMR were clarified. RESULTS The rejection group had significantly more M1 and M2 macrophages and higher M1/M2 ratio than those of the immune tolerance group (P < 0.05). In the rejection group, infiltrating macrophages were mainly distributed in the glomerular and interstitial capillaries, with M1 macrophages being the predominant type. With increasing severity of IF/TA, the numbers of M1 and M2 macrophages and M1/M2 ratio rose in patients with post-renal transplant AMR (P < 0.05). The numbers and ratio had significant positive correlations with the levels of blood urea nitrogen and serum creatinine (P < 0.05). The areas under the curves (AUCs) of numbers and M1 and M2 macrophages and M1/M2 ratio for predicting post-renal transplant AMR were 0.856, 0.839 and 0.887, respectively. The combined detection had AUC of 0.911 (95% CI: 0.802-0.986), sensitivity of 90.43% and specificity of 83.42%. CONCLUSIONS Significant macrophage infiltration is present in the case of post-renal transplant AMR, and closely related to the severity of IF/TA and the degree of tubulointerstitial inflammatory cell infiltration.
Collapse
Affiliation(s)
- Xiaoxiao Shao
- The Second People's Hospital of Shanxi Province, Taiyuan 030001, Shanxi Province, China.
| |
Collapse
|
2
|
Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discov 2024; 10:229. [PMID: 38740765 DOI: 10.1038/s41420-024-01996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1β-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Angeletti A, Bruschi M, Kajana X, Spinelli S, Verrina E, Lugani F, Caridi G, Murtas C, Candiano G, Prunotto M, Ghiggeri GM. Mechanisms Limiting Renal Tissue Protection and Repair in Glomerulonephritis. Int J Mol Sci 2023; 24:ijms24098318. [PMID: 37176025 PMCID: PMC10179029 DOI: 10.3390/ijms24098318] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Glomerulonephritis are renal disorders resulting from different pathogenic mechanisms (i.e., autoimmunity, complement, inflammatory activation, etc.). Clarifying details of the pathogenic cascade is basic to limit the progression from starting inflammation to degenerative stages. The balance between tissue injury, activation of protective systems and renal tissue repair determines the final outcome. Induction of an oxidative stress is part of glomerular inflammation and activation of protective antioxidant systems has a crucial role in reducing tissue effects. The generation of highly reactive oxygen species can be evaluated in vivo by tracing the inner-layer content of phosphatidyl ethanolamine and phosphatidyl serine in cell membranes. Albumin is the major antioxidant in serum and the level of oxidized albumin is another indirect sign of oxidative stress. Studies performed in Gn, specifically in FSGS, showed a high degree of oxidation in most contexts. High levels of circulating anti-SOD2 antibodies, limiting the detoxyfing activity of SOD2, have been detected in autoimmune Gn(lupus nephritis and membranous nephropathy) in association with persistence of proteinuria and worsening of renal function. In renal transplant, high levels of circulating anti-Glutathione S-transferase antibodies have been correlated with chronic antibody rejection and progressive loss of renal function. Annexins, mainly ANXA1 and ANXA2, play a general anti-inflammatory effect by inhibiting neutrophil functions. Cytosolic ANXA1 is decreased in apoptotic neutrophils of patients with glomerular polyangitis in association with delayed apoptosis that is considered the mechanism for polyangitis. High circulating levels of anti-ANXA1 and anti-ANXA2 antibodies characterize lupus nephritis implying a reduced anti-inflammatory effect. High circulating levels of antibodies targeting Macrophages (anti-FMNL1) have been detected in Gn in association with proteinuria. They potentially modify the intra-glomerular presence of protective macrophages (M2a, M2c) thus acting on the composition of renal infiltrate and on tissue repair.
Collapse
Affiliation(s)
- Andrea Angeletti
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Maurizio Bruschi
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy
| | - Xuliana Kajana
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Sonia Spinelli
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Enrico Verrina
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Francesca Lugani
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Gialuca Caridi
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Corrado Murtas
- Nephrology and Dialysis Unit, Ospedale Belcolle, 01100 Viterbo, Italy
| | - Giovanni Candiano
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Gian Marco Ghiggeri
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| |
Collapse
|
4
|
Tang X, VanBeek C, Haas M, Cook HT, Zou J, Yang H, Fogo AB. Cell-Mediated Glomerulonephritis Without Immune Complexes in Native Kidney Biopsies: A Report of 7 Cases. Am J Kidney Dis 2022; 80:416-421. [PMID: 34974034 DOI: 10.1053/j.ajkd.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/07/2021] [Indexed: 02/08/2023]
Abstract
We report 7 native kidney biopsies with diffuse endocapillary hypercellularity without immune deposits, affecting 5 women and 2 men aged 52-85 years. All patients had acute kidney injury, and 4 had nephrotic-range proteinuria. Comorbidities included breast cancer in 2, pancreatitis in 1, and para-aortic lymphadenopathy and bilateral carpal tunnel syndrome in 1. Kidney biopsies were characterized by predominant T-cell and CD68-positive macrophage infiltration in glomerular capillaries without deposits. Coexisting lesions included small cellular crescents in 5, mild peritubular capillaritis in 1, mononuclear cell intimal arteritis in 1, acute tubulointerstitial nephritis in 4, and mild arteriolosclerosis in 1. During the mean follow-up duration of 24.8 months, 4 patients showed partial or complete initial remission in response to immunosuppression. However, 2 deteriorated when prednisone was rapidly tapered (1 of them achieved subsequent remission with increased prednisone). Three patients developed kidney failure. We propose that this unusual pattern of injury is mediated by abnormal cell-mediated immune response. The underlying causes and pathogenesis of this cell-mediated glomerulonephritis will require further study.
Collapse
Affiliation(s)
- Xi Tang
- Division of Nephrology, Kidney Research institute, West China Hospital of Sichuan University, Chengdu, China; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine VanBeek
- Department of Pathology & Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mark Haas
- Department of Pathology & Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - H Terence Cook
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Jun Zou
- Division of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haichun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
5
|
Garcia GE, Lu YJ, Truong LD, Roncal-Jiménez CA, Miyazaki M, Miyazaki-Anzai S, Cara-Fuentes G, Andres-Hernando A, Lanaspa M, Johnson RJ, Leamon CP. A Novel Treatment for Glomerular Disease: Targeting the Activated Macrophage Folate Receptor with a Trojan Horse Therapy in Rats. Cells 2021; 10:2113. [PMID: 34440885 PMCID: PMC8393837 DOI: 10.3390/cells10082113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Since activated macrophages express a functional folate receptor β (FRβ), targeting this macrophage population with folate-linked drugs could increase selectivity to treat inflammatory diseases. Using a macrophage-mediated anti-glomerular basement membrane (anti-GBM) glomerulonephritis (GN) in WKY rats, we investigated the effect of a novel folic acid-aminopterin (AMT) conjugate (EC2319) designed to intracellularly deliver AMT via the FR. We found that treatment with EC2319 significantly attenuated kidney injury and preserved renal function. Kidney protection with EC2319 was blocked by a folate competitor, indicating that its mechanism of action was specifically FRβ-mediated. Notably, treatment with methotrexate (MTX), another folic acid antagonist related to AMT, did not protect from kidney damage. EC2319 reduced glomerular and interstitial macrophage infiltration and decreased M1 macrophage recruitment but not M2 macrophages. The expression of CCL2 and the pro-fibrotic cytokine TGF-β were also reduced in nephritic glomeruli with EC2319 treatment. In EC2319-treated rats, there was a significant decrease in the deposition of collagens. In nephritic kidneys, FRβ was expressed on periglomerular macrophages and macrophages present in the crescents, but its expression was not observed in normal kidneys. These data indicate that selectively targeting the activated macrophage population could represent a novel means for treating anti-GBM GN and other acute crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Gabriela E. Garcia
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Yingjuan J. Lu
- Endocyte, Inc., Novartis Institutes for Biomedical Research, West Lafayette, IN 47906, USA; (Y.J.L.); (C.P.L.)
| | - Luan D. Truong
- Department of Pathology, The Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Carlos A. Roncal-Jiménez
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Makoto Miyazaki
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Shinobu Miyazaki-Anzai
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Gabriel Cara-Fuentes
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Ana Andres-Hernando
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Miguel Lanaspa
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Richard J. Johnson
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.A.R.-J.); (M.M.); (S.M.-A.); (G.C.-F.); (A.A.-H.); (M.L.); (R.J.J.)
| | - Christopher P. Leamon
- Endocyte, Inc., Novartis Institutes for Biomedical Research, West Lafayette, IN 47906, USA; (Y.J.L.); (C.P.L.)
| |
Collapse
|
6
|
Davidson A. Renal Mononuclear Phagocytes in Lupus Nephritis. ACR Open Rheumatol 2021; 3:442-450. [PMID: 34060247 PMCID: PMC8280821 DOI: 10.1002/acr2.11269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 01/16/2023] Open
Abstract
Renal mononuclear phagocytes are a highly pleiotropic group of immune cells of myeloid origin that play multiple protective and pathogenic roles in tissue homeostasis, inflammation, repair, and fibrosis. Infiltration of kidneys with these cells is a hallmark of lupus nephritis and is associated with more severe disease and with increased risk of progression to end‐stage renal disease. This review presents current knowledge of the diversity of these cells and their involvement in kidney inflammation and resolution and describes how they contribute to the chronic inflammation of lupus nephritis. A better understanding of the subset heterogeneity and diverse functions of mononuclear phagocytes in the lupus nephritis kidney should provide fertile ground for the development of new therapeutic approaches that promote the differentiation and survival of protective subsets while targeting pathogenic cell subsets that cause inflammation and fibrosis.
Collapse
Affiliation(s)
- Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, New York
| |
Collapse
|