1
|
Yang C, Geng H, Yang X, Ji S, Liu Z, Feng H, Li Q, Zhang T, Zhang S, Ma X, Zhu C, Xu N, Xia Y, Li Y, Wang H, Yu C, Du S, Miao B, Xu L, Wang H, Cao Y, Li B, Zhu L, Tang X, Zhang H, Zhu C, Huang Z, Leng C, Hu H, Chen X, Yuan S, Jin G, Bernards R, Sun C, Zheng Q, Qin W, Gao Q, Wang C. Targeting the immune privilege of tumor-initiating cells to enhance cancer immunotherapy. Cancer Cell 2024:S1535-6108(24)00396-9. [PMID: 39515328 DOI: 10.1016/j.ccell.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Tumor-initiating cells (TICs) possess the ability to evade anti-tumor immunity, potentially explaining many failures of cancer immunotherapy. Here, we identify CD49f as a prominent marker for discerning TICs in hepatocellular carcinoma (HCC), outperforming other commonly used TIC markers. CD49f-high TICs specifically recruit tumor-promoting neutrophils via the CXCL2-CXCR2 axis and create an immunosuppressive milieu in the tumor microenvironment (TME). Reciprocally, the neutrophils reprogram nearby tumor cells toward a TIC phenotype via secreting CCL4. These cells can evade CD8+ T cell-mediated killing through CCL4/STAT3-induced and CD49f-stabilized CD155 expression. Notably, while aberrant CD155 expression contributes to immune suppression, it also represents a TIC-specific vulnerability. We demonstrate that either CD155 deletion or antibody blockade significantly enhances sensitivity to anti-PD-1 therapy in preclinical HCC models. Our findings reveal a new mechanism of tumor immune evasion and provide a rationale for combining CD155 blockade with anti-PD-1/PD-L1 therapy in HCC.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Haigang Geng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xupeng Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuyi Ji
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China; Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Feng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuhui Ma
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuchen Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nuo Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Xia
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongye Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chune Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangce Du
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beiping Miao
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Botai Li
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Tang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Leng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Hu
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Guangzhi Jin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Chong Sun
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Sabag B, Puthenveetil A, Levy M, Joseph N, Doniger T, Yaron O, Karako-Lampert S, Lazar I, Awwad F, Ashkenazi S, Barda-Saad M. Dysfunctional natural killer cells can be reprogrammed to regain anti-tumor activity. EMBO J 2024; 43:2552-2581. [PMID: 38637625 PMCID: PMC11217363 DOI: 10.1038/s44318-024-00094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Natural killer (NK) cells are critical to the innate immune system, as they recognize antigens without prior sensitization, and contribute to the control and clearance of viral infections and cancer. However, a significant proportion of NK cells in mice and humans do not express classical inhibitory receptors during their education process and are rendered naturally "anergic", i.e., exhibiting reduced effector functions. The molecular events leading to NK cell anergy as well as their relation to those underlying NK cell exhaustion that arises from overstimulation in chronic conditions, remain unknown. Here, we characterize the "anergic" phenotype and demonstrate functional, transcriptional, and phenotypic similarities to the "exhausted" state in tumor-infiltrating NK cells. Furthermore, we identify zinc finger transcription factor Egr2 and diacylglycerol kinase DGKα as common negative regulators controlling NK cell dysfunction. Finally, experiments in a 3D organotypic spheroid culture model and an in vivo tumor model suggest that a nanoparticle-based delivery platform can reprogram these dysfunctional natural killer cell populations in their native microenvironment. This approach may become clinically relevant for the development of novel anti-tumor immunotherapeutic strategies.
Collapse
Affiliation(s)
- Batel Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Abhishek Puthenveetil
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Moria Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Tirtza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orly Yaron
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Sarit Karako-Lampert
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Itay Lazar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Fatima Awwad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shahar Ashkenazi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
3
|
Poniewierska-Baran A, Sobolak K, Niedźwiedzka-Rystwej P, Plewa P, Pawlik A. Immunotherapy Based on Immune Checkpoint Molecules and Immune Checkpoint Inhibitors in Gastric Cancer-Narrative Review. Int J Mol Sci 2024; 25:6471. [PMID: 38928174 PMCID: PMC11203505 DOI: 10.3390/ijms25126471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Due to its rapid progression to advanced stages and highly metastatic properties, gastric cancer (GC) is one of the most aggressive malignancies and the fourth leading cause of cancer-related deaths worldwide. The metastatic process includes local invasion, metastasis initiation, migration with colonisation at distant sites, and evasion of the immune response. Tumour growth involves the activation of inhibitory signals associated with the immune response, also known as immune checkpoints, including PD-1/PD-L1 (programmed death 1/programmed death ligand 1), CTLA-4 (cytotoxic T cell antigen 4), TIGIT (T cell immunoreceptor with Ig and ITIM domains), and others. Immune checkpoint molecules (ICPMs) are proteins that modulate the innate and adaptive immune responses. While their expression is prominent on immune cells, mainly antigen-presenting cells (APC) and other types of cells, they are also expressed on tumour cells. The engagement of the receptor by the ligand is crucial for inhibiting or stimulating the immune cell, which is an extremely important aspect of cancer immunotherapy. This narrative review explores immunotherapy, focusing on ICPMs and immune checkpoint inhibitors in GC. We also summarise the current clinical trials that are evaluating ICPMs as a target for GC treatment.
Collapse
Affiliation(s)
- Agata Poniewierska-Baran
- Center of Experimental Immunology and Immunobiology of Infectious and Cancer Diseases, University of Szczecin, 71-417 Szczecin, Poland; (A.P.-B.); (P.N.-R.)
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Karolina Sobolak
- Students Research Club of Immunobiology of Infectious and Cancer Diseases “NEUTROPHIL”, University of Szczecin, 71-417 Szczecin, Poland; (K.S.); (P.P.)
| | - Paulina Niedźwiedzka-Rystwej
- Center of Experimental Immunology and Immunobiology of Infectious and Cancer Diseases, University of Szczecin, 71-417 Szczecin, Poland; (A.P.-B.); (P.N.-R.)
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Paulina Plewa
- Students Research Club of Immunobiology of Infectious and Cancer Diseases “NEUTROPHIL”, University of Szczecin, 71-417 Szczecin, Poland; (K.S.); (P.P.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Czajka-Francuz P, Prendes MJ, Mankan A, Quintana Á, Pabla S, Ramkissoon S, Jensen TJ, Peiró S, Severson EA, Achyut BR, Vidal L, Poelman M, Saini KS. Mechanisms of immune modulation in the tumor microenvironment and implications for targeted therapy. Front Oncol 2023; 13:1200646. [PMID: 37427115 PMCID: PMC10325690 DOI: 10.3389/fonc.2023.1200646] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
The efficacy of cancer therapies is limited to a great extent by immunosuppressive mechanisms within the tumor microenvironment (TME). Numerous immune escape mechanisms have been identified. These include not only processes associated with tumor, immune or stromal cells, but also humoral, metabolic, genetic and epigenetic factors within the TME. The identification of immune escape mechanisms has enabled the development of small molecules, nanomedicines, immune checkpoint inhibitors, adoptive cell and epigenetic therapies that can reprogram the TME and shift the host immune response towards promoting an antitumor effect. These approaches have translated into series of breakthroughs in cancer therapies, some of which have already been implemented in clinical practice. In the present article the authors provide an overview of some of the most important mechanisms of immunosuppression within the TME and the implications for targeted therapies against different cancers.
Collapse
Affiliation(s)
| | | | | | - Ángela Quintana
- Breast Cancer Unit, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | | | | | | | - Sandra Peiró
- Breast Cancer Unit, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | | | | | | | | | - Kamal S. Saini
- Fortrea, Inc., Durham, NC, United States
- Addenbrooke’s Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|