1
|
Rademakers T, Sthijns MMJPE, Paulino da Silva Filho O, Joris V, Oosterveer J, Lam TW, van Doornmalen E, van Helden S, LaPointe VLS. Identification of Compounds Protecting Pancreatic Islets against Oxidative Stress using a 3D Pseudoislet Screening Platform. Adv Biol (Weinh) 2023; 7:e2300264. [PMID: 37566766 DOI: 10.1002/adbi.202300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Oxidative stress leads to a lower success rate of clinical islet transplantation. Here, FDA-approved compounds are screened for their potential to decrease oxidative stress and to protect or enhance pancreatic islet viability and function. Studies are performed on in vitro "pseudoislet" spheroids, which are pre-incubated with 1280 different compounds and subjected to oxidative stress. Cell viability and oxidative stress levels are determined using a high-throughput fluorescence microscopy pipeline. Initial screening on cell viability results in 59 candidates. The top ten candidates are subsequently screened for their potential to decrease induced oxidative stress, and eight compounds efficient reduction of induced oxidative stress in both alpha and beta cells by 25-50%. After further characterization, the compound sulfisoxazole is found to be the most capable of reducing oxidative stress, also at short pre-incubation times, which is validated in primary human islets, where low oxidative stress levels and islet function are maintained. This study shows an effective screening strategy with 3D cell aggregates based on cell viability and oxidative stress, which leads to the discovery of several compounds with antioxidant capacity. The top candidate, sulfisoxazole is effective after a 30 min pre-incubation, maintains baseline islet function, and may help alleviate oxidative stress in pancreatic islets.
Collapse
Affiliation(s)
- Timo Rademakers
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Mireille M J P E Sthijns
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
- Food Innovation and Health, Department of Human Biology, Maastricht University, Venlo, 5911 BV, the Netherlands
| | - Omar Paulino da Silva Filho
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Virginie Joris
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Jolien Oosterveer
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Tsang Wai Lam
- Pivot Park Screening Centre (PPSC), Oss, 5349 AB, the Netherlands
| | | | | | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| |
Collapse
|
2
|
Hu B, Shi Y, Lu C, Chen H, Zeng Y, Deng J, Zhang L, Lin Q, Li W, Chen Y, Zhong F, Xia X. Raspberry polyphenols alleviate neurodegenerative diseases: through gut microbiota and ROS signals. Food Funct 2023; 14:7760-7779. [PMID: 37555470 DOI: 10.1039/d3fo01835k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Neurodegenerative diseases are neurological disorders that become more prevalent with age, usually caused by damage or loss of neurons or their myelin sheaths, such as Alzheimer's disease and epilepsy. Reactive oxygen species (ROS) are important triggers for neurodegenerative disease development, and mitigation of oxidative stress caused by ROS imbalance in the human body is important for the treatment of these diseases. As a widespread delicious fruit, the raspberry is widely used in the field of food and medicine because of its abundant polyphenols and other bioactive substances. Polyphenols from a wide variety of raspberry sources could alleviate neurodegenerative diseases. This review aims to summarize the current roles of these polyphenols in maintaining neurological stability by regulating the composition and metabolism of the intestinal flora and the gut-brain axis signal transmission. Especially, we discuss the therapeutic effects on neurodegenerative diseases of raspberry polyphenols through intestinal microorganisms and ROS signals, by means of summary and analysis. Finally, methods of improving the digestibility and utilization of raspberry polyphenols are proposed, which will provide a potential way for raspberry polyphenols to guarantee the health of the human nervous system.
Collapse
Affiliation(s)
- Boyong Hu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yi Shi
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Chunyue Lu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Haixin Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yuqing Zeng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yuan Chen
- School of Life Science, Huizhou University, Huizhou 516007, China
| | - Feifei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
- Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - Xu Xia
- Huaihua Academy of Agricultural Sciences, Huaihua 418000, Hunan, China
| |
Collapse
|
3
|
Degtyareva NP, Placentra VC, Gabel SA, Klimczak LJ, Gordenin DA, Wagner BA, Buettner GR, Mueller GA, Smirnova TI, Doetsch PW. Changes in metabolic landscapes shape divergent but distinct mutational signatures and cytotoxic consequences of redox stress. Nucleic Acids Res 2023; 51:5056-5072. [PMID: 37078607 PMCID: PMC10250236 DOI: 10.1093/nar/gkad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/17/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Mutational signatures discerned in cancer genomes, in aging tissues and in cells exposed to toxic agents, reflect complex processes underlying transformation of cells from normal to dysfunctional. Due to its ubiquitous and chronic nature, redox stress contributions to cellular makeover remain equivocal. The deciphering of a new mutational signature of an environmentally-relevant oxidizing agent, potassium bromate, in yeast single strand DNA uncovered a surprising heterogeneity in the mutational signatures of oxidizing agents. NMR-based analysis of molecular outcomes of redox stress revealed profound dissimilarities in metabolic landscapes following exposure to hydrogen peroxide versus potassium bromate. The predominance of G to T substitutions in the mutational spectra distinguished potassium bromate from hydrogen peroxide and paraquat and mirrored the observed metabolic changes. We attributed these changes to the generation of uncommon oxidizing species in a reaction with thiol-containing antioxidants; a nearly total depletion of intracellular glutathione and a paradoxical augmentation of potassium bromate mutagenicity and toxicity by antioxidants. Our study provides the framework for understanding multidimensional processes triggered by agents collectively known as oxidants. Detection of increased mutational loads associated with potassium bromate-related mutational motifs in human tumors may be clinically relevant as a biomarker of this distinct type of redox stress.
Collapse
Affiliation(s)
- Natalya P Degtyareva
- Mutagenesis and DNA Repair Regulation Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| | - Victoria C Placentra
- Mutagenesis and DNA Repair Regulation Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| | - Scott A Gabel
- Nuclear Magnetic Resonance Research Core Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| | - Dmitry A Gordenin
- Mechanisms of Genome Dynamics Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology, ESR Facility, Department of Radiation Oncology, The University of Iowa, Iowa City, IA52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology, ESR Facility, Department of Radiation Oncology, The University of Iowa, Iowa City, IA52242, USA
| | - Geoffrey A Mueller
- Nuclear Magnetic Resonance Research Core Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| | | | - Paul W Doetsch
- Mutagenesis and DNA Repair Regulation Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC27709, USA
| |
Collapse
|
4
|
Kong X, Chen H, Li F, Zhang F, Jiang Y, Song J, Sun Y, Zhao B, Shi J. Three-dimension chitosan hydrogel loading melanin composite nanoparticles for wound healing by anti-bacteria, immune activation and macrophage autophagy promotion. Int J Biol Macromol 2023; 237:124176. [PMID: 37023589 DOI: 10.1016/j.ijbiomac.2023.124176] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Application of Combined photodynamic therapy (PDT) and photothermal therapy (PTT) has become one of the most promising strategy to replace antibiotics and avoid the epidemic of drug-resistant strains during wound healing. However, high amount of reactive oxygen species (ROS) and high temperature cause severe stress response to normal tissues, leading to potential risks of wound healing. Herein, a three-dimension chitosan hydrogel melanin-glycine-C60 nanoparticles (MGC NPs) were prepared to realized effective anti-bacterial activity, immune activation and macrophage autophagy promotion in three-dimensional wound space without triggering stress response. MGC NP is a composite polymer material composed of natural melanin polymer, oligopeptide and carbon-based material, which showed excellent biological safety. By regulating the peptide length between melanin and C60 and nanoparticle content, a high ROS/heat environment at the upper wound site and a low ROS/heat environment at the lower region adjacent to the wound tissue were established to obtain a three-dimension hydrogel with precise PDT and PTT efficiency in different regions. Highly effective PDT/PTT was used to kill microorganisms in upper region, thus providing a barrier to reduce microbial infection. Mild PDT/PTT in lower region promoted the polarization of M1 macrophage to M2 macrophage and activated autophagy of M2 macrophages, regulating the immune microenvironment and promoting wound repair. In conclusion, the novel three-dimensional PDT/PTT therapy based on natural macromolecules proposed in this study accelerates wound healing through dual pathways on the premise of avoiding wound stress response, which is of great significance for the development of clinical strategies for phototherapy.
Collapse
Affiliation(s)
- Xiaoying Kong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, China
| | - Haoyu Chen
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, China
| | - Fuqiang Li
- Department of Physics, Pukyong National University, Busan 48513, South Korea
| | - Fenglan Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, China
| | - Yuping Jiang
- School of medicine and pharmacy, Ocean University of China, No. 5 Yushan road, Qingdao, China
| | - Junyao Song
- Bassars college of future agricultural science and technology, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, China
| | - Yuanliang Sun
- Department of Spine Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu road, Qingdao, China.
| | - Bin Zhao
- Qingdao Shenkang Stem Cell Biotechnology Co., Ltd, Qingdao, China.
| | - Jinsheng Shi
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, China; Department of public course teaching, University of Health and Rehabilitation Sciences, Oingdao, China.
| |
Collapse
|
5
|
Abstract
RNA ligases are present across all forms of life. While enzymatic RNA ligation between 5'-PO4 and 3'-OH termini is prevalent in viruses, fungi, and plants, such RNA ligases are yet to be identified in vertebrates. Here, using a nucleotide-based chemical probe targeting human AMPylated proteome, we have enriched and identified the hitherto uncharacterised human protein chromosome 12 open reading frame 29 (C12orf29) as a human enzyme promoting RNA ligation between 5'-PO4 and 3'-OH termini. C12orf29 catalyses ATP-dependent RNA ligation via a three-step mechanism, involving tandem auto- and RNA AMPylation. Knock-out of C12ORF29 gene impedes the cellular resilience to oxidative stress featuring concurrent RNA degradation, which suggests a role of C12orf29 in maintaining RNA integrity. These data provide the groundwork for establishing a human RNA repair pathway.
Collapse
|
6
|
Wang Z, Liu P, Ye P, Dai S, Liu L, Yang P. Effects of semiquinone-rich surface on the behaviors of vascular cells. J Biomater Appl 2023; 37:1195-1204. [PMID: 36633217 DOI: 10.1177/08853282231151230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dopamine has been widely used for surface modification of cardiovascular medical devices as it forms films on most substrates that provide functional groups for surface chemical modification. However, under oxidative stress, the phenolic hydroxyl group on dopamine can undergo reversible transformation into phenol-semiquinone-quinone, which can cause cytotoxicity and immunotoxicity. In this study, we measured the effects of semiquinone on the behavior of vascular wall cells and inflammatory cells under oxidative stress via ultraviolet irradiation with a hydrogen peroxide diluent. Na2S2O3 was used as a stabilizer to obtain a semiquinone-rich poly-dopamine film, then phenol-semiquinone-quinone ratio on its surface was evaluated at three irradiation-oxidation time points. We found that the poly-dopamine film with ultraviolet irradiation in hydrogen peroxide solution for 15 min had the highest semiquinone occupancy of 19.18%. In the experimental group irradiated for 15 min, endothelial cells were cultured statically for 3 days and the number of surface adherent endothelial cells in the group with added semiquinone stabilizer was reduced to 73% of that in the group without stabilizer, indicating that semiquinone rich surface inhibits adhesion and proliferation of endothelial cells; Smooth muscle cells were cultured statically for 3 days, and the number of adherent smooth muscle on surfaces without stabilizer was reduced to 75% of that on surfaces with stabilizer added, indicating that semiquinone rich surfaces promote smooth muscle proliferation. These results demonstrate that semiquinone can adversely affect the repair effect after implantation of cardiovascular materials. Therefore, our study provides a reference for the application and optimization of dopamine in cardiovascular implant materials.
Collapse
Affiliation(s)
- Zhixing Wang
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials, Ministry of Education, 56711Southwest Jiaotong University, Chengdu, China
| | - Peng Liu
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials, Ministry of Education, 56711Southwest Jiaotong University, Chengdu, China
| | - Peng Ye
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials, Ministry of Education, 56711Southwest Jiaotong University, Chengdu, China
| | - Sheng Dai
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials, Ministry of Education, 56711Southwest Jiaotong University, Chengdu, China
| | - LuYing Liu
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials, Ministry of Education, 56711Southwest Jiaotong University, Chengdu, China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials, Ministry of Education, 56711Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
7
|
Cao X, Rao C, Cui H, Sun D, Li L, Guo S, Zhou J, Yuan R, Yang S, Chen J. Toxic effects of glyphosate on the intestine, liver, brain of carp and on epithelioma papulosum cyprinid cells: Evidence from in vivo and in vitro research. CHEMOSPHERE 2022; 302:134691. [PMID: 35489457 DOI: 10.1016/j.chemosphere.2022.134691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate (GLY) is the most widely used organophosphorus herbicide in agriculture. The present study aimed to analyze the comprehensive toxicological effects of GLY on juvenile common carp and an epithelioma papulosum cyprinid (EPC) cell line. In the in vivo experiments, exposure to GLY (5 and 15 mg/L) for 30 days induced liver inflammation and oxidative damage in common carp and changed the physical barrier of the intestine. Histopathological analysis of the intestine, liver, brain, and changes in oxidative stress biomarkers provided evidence of damage and immune system responses to GLY. Moreover, an inhibitory effect of 15 mg/L GLY on acetylcholinesterase (AChE) activity was found in the brain, which may be an important reason for the significant decrease in both swimming distance and average acceleration of common carp. Cell experiments showed that 0.65 and 3.25 mg/L GLY inhibited the viability of EPCs. Furthermore, oxidative DNA damage, mitochondrial dysfunction, and reactive oxygen species (ROS) production were observed in EPC cells following GLY exposure. Taken together, this study not only highlights the negative effects of GLY on common carp but also enriches the knowledge of the cytotoxicity mechanism to further clarify the comprehensive toxicity of GLY in common carp.
Collapse
Affiliation(s)
- Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Chenyang Rao
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Lulu Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Suqi Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Shuai Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
8
|
H2A.X Phosphorylation in Oxidative Stress and Risk Assessment in Plasma Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2060986. [PMID: 34938381 PMCID: PMC8687853 DOI: 10.1155/2021/2060986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
At serine139-phosphorylated gamma histone H2A.X (γH2A.X) has been established over the decades as sensitive evidence of radiation-induced DNA damage, especially DNA double-strand breaks (DSBs) in radiation biology. Therefore, γH2A.X has been considered a suitable marker for biomedical applications and a general indicator of direct DNA damage with other therapeutic agents, such as cold physical plasma. Medical plasma technology generates a partially ionized gas releasing a plethora of reactive oxygen and nitrogen species (ROS) simultaneously that have been used for therapeutic purposes such as wound healing and cancer treatment. The quantification of γH2A.X as a surrogate parameter of direct DNA damage has often been used to assess genotoxicity in plasma-treated cells, whereas no sustainable mutagenic potential of the medical plasma treatment could be identified despite H2A.X phosphorylation. However, phosphorylated H2A.X occurs during apoptosis, which is associated with exposure to cold plasma and ROS. This review summarizes the current understanding of γH2A.X induction and function in oxidative stress in general and plasma medicine in particular. Due to the progress towards understanding the mechanisms of H2A.X phosphorylation in the absence of DSB and ROS, observations of γH2A.X in medical fields should be carefully interpreted.
Collapse
|
9
|
Zeb A, Choubey V, Gupta R, Kuum M, Safiulina D, Vaarmann A, Gogichaishvili N, Liiv M, Ilves I, Tämm K, Veksler V, Kaasik A. A novel role of KEAP1/PGAM5 complex: ROS sensor for inducing mitophagy. Redox Biol 2021; 48:102186. [PMID: 34801863 PMCID: PMC8607199 DOI: 10.1016/j.redox.2021.102186] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
When ROS production exceeds the cellular antioxidant capacity, the cell needs to eliminate the defective mitochondria responsible for excessive ROS production. It has been proposed that the removal of these defective mitochondria involves mitophagy, but the mechanism of this regulation remains unclear. Here, we demonstrate that moderate mitochondrial superoxide and hydrogen peroxide production oxidates KEAP1, thus breaking the interaction between this protein and PGAM5, leading to the inhibition of its proteasomal degradation. Accumulated PGAM5 interferes with the processing of the PINK1 in the mitochondria leading to the accumulation of PINK1 on the outer mitochondrial membrane. In turn, PINK1 promotes Parkin recruitment to mitochondria and sensitizes mitochondria for autophagic removal. We also demonstrate that inhibitors of the KEAP1-PGAM5 protein-protein interaction (including CPUY192018) mimic the effect of mitochondrial ROS and sensitize mitophagy machinery, suggesting that these inhibitors could be used as pharmacological regulators of mitophagy. Together, our results show that KEAP1/PGAM5 complex senses mitochondrially generated superoxide/hydrogen peroxide to induce mitophagy.
Collapse
Affiliation(s)
- Akbar Zeb
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.
| | - Ruby Gupta
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Malle Kuum
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Dzhamilja Safiulina
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Annika Vaarmann
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Nana Gogichaishvili
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Mailis Liiv
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Ivar Ilves
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Kaido Tämm
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Vladimir Veksler
- University Paris-Saclay, INSERM UMR-S 1180, Laboratory of Signaling and Cardiovascular Pathophysiology, 92296, Châtenay-Malabry, France
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.
| |
Collapse
|