1
|
Prykhozhij SV, Berman JN. Mutation Knock-in Methods Using Single-Stranded DNA and Gene Editing Tools in Zebrafish. Methods Mol Biol 2024; 2707:279-303. [PMID: 37668920 DOI: 10.1007/978-1-0716-3401-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Introduction or knock-in of precise genomic modifications remains one of the most important applications of CRISPR/Cas9 in all model systems including zebrafish. The most widely used type of donor template containing the desired modification is single-stranded DNA (ssDNA), either in the form of single-stranded oligodeoxynucleotides (ssODN) (<150 nucleotides (nt)) or as long ssDNA (lssDNA) molecules (up to about 2000 nt). Despite the challenges posed by DNA repair after DNA double-strand breaks, knock-in of precise mutations is relatively straightforward in zebrafish. Knock-in efficiency can be enhanced by careful donor template design, using lssDNA as template or tethering the donor template DNA to the Cas9-guide RNA complex. Other point mutation methods such as base editing and prime editing are starting to be applied in zebrafish and many other model systems. However, these methods may not always be sufficiently accessible or may have limited capacity to perform all desired mutation knock-ins which are possible with ssDNA-based knock-in methods. Thus, it is likely that there will be complementarity in the technologies used for generating precise mutants. Here, we review and describe a suite of CRISPR/Cas9 knock-in procedures utilizing ssDNA as the donor template in zebrafish, point out the potential challenges and suggest possible approaches for their solution ultimately leading to successful generation of precise mutant lines.
Collapse
Affiliation(s)
- Sergey V Prykhozhij
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Jason N Berman
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
- Departments of Pediatrics and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Strawn IK, Steiner PJ, Newton MS, Baumer ZT, Whitehead TA. A method for generating user-defined circular single-stranded DNA from plasmid DNA using Golden Gate intramolecular ligation. Biotechnol Bioeng 2023; 120:3057-3066. [PMID: 37366288 PMCID: PMC10527171 DOI: 10.1002/bit.28471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Construction of user-defined long circular single stranded DNA (cssDNA) and linear single stranded DNA (lssDNA) is important for various biotechnological applications. Many current methods for synthesis of these ssDNA molecules do not scale to multikilobase constructs. Here we present a robust methodology for generating user-defined cssDNA employing Golden Gate assembly, a nickase, and exonuclease degradation. Our technique is demonstrated for three plasmids with insert sizes ranging from 2.1 to 3.4 kb, requires no specialized equipment, and can be accomplished in 5 h with a yield of 33%-43% of the theoretical. To produce lssDNA, we evaluated different CRISPR-Cas9 cleavage conditions and reported a 52 ± 8% cleavage efficiency of cssDNA. Thus, our current method does not compete with existing protocols for lssDNA generation. Nevertheless, our protocol can make long, user-defined cssDNA readily available to biotechnology researchers.
Collapse
Affiliation(s)
- Isabell K. Strawn
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| | - Paul J. Steiner
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| | - Matilda S. Newton
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
- Current address: Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Zachary T. Baumer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| | - Timothy A. Whitehead
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| |
Collapse
|
3
|
Eroglu M, Yu B, Derry WB. Efficient CRISPR/Cas9 mediated large insertions using long single-stranded oligonucleotide donors in C. elegans. FEBS J 2023; 290:4429-4439. [PMID: 37254814 DOI: 10.1111/febs.16876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Highly efficient generation of deletions, substitutions, and small insertions (up to ~ 150 bp) into the Caenorhabditis elegans genome by CRISPR/Cas9 has been facilitated by the use of single-stranded oligonucleotide donors as repair templates. However, insertion of larger sequences such as fluorescent markers and other functional domains remains challenging due to uncertainty of optimal performance between single-stranded or double-stranded repair templates and labor-intensive as well as inefficient protocols for their preparations. Here, we simplify the generation of long ssDNA as donors in CRISPR/Cas9. High yields of ssDNA can be rapidly generated using a standard PCR followed by a single enzymatic digest with lambda exonuclease. Comparison of long ssDNA donors obtained using this method to dsDNA demonstrates orders of magnitude increased insertion frequency for ssDNA donors. This can be leveraged to simultaneously generate multiple large insertions as well as successful edits without the use of selection or co-conversion (co-CRISPR) markers when necessary. Our approach complements the CRISPR/Cas9 toolkit for C. elegans to enable highly efficient insertion of longer sequences with a simple, standardized, and labor-minimal protocol.
Collapse
Affiliation(s)
- Matthew Eroglu
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - W Brent Derry
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| |
Collapse
|
4
|
Tompkins J, Lizhar E, Shokrani A, Wu X, Berley J, Kamali D, Hussey D, Cerneckis J, Kang TH, Wang J, Tsark W, Zeng D, Godatha S, Natarajan R, Riggs A. Engineering CpG island DNA methylation in pluripotent cells through synthetic CpG-free ssDNA insertion. CELL REPORTS METHODS 2023; 3:100465. [PMID: 37323577 PMCID: PMC10261899 DOI: 10.1016/j.crmeth.2023.100465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023]
Abstract
Cellular differentiation requires global changes to DNA methylation (DNAme), where it functions to regulate transcription factor, chromatin remodeling activity, and genome interpretation. Here, we describe a simple DNAme engineering approach in pluripotent stem cells (PSCs) that stably extends DNAme across target CpG islands (CGIs). Integration of synthetic CpG-free single-stranded DNA (ssDNA) induces a target CpG island methylation response (CIMR) in multiple PSC lines, Nt2d1 embryonal carcinoma cells, and mouse PSCs but not in highly methylated CpG island hypermethylator phenotype (CIMP)+ cancer lines. MLH1 CIMR DNAme spanned the CGI, was precisely maintained through cellular differentiation, suppressed MLH1 expression, and sensitized derived cardiomyocytes and thymic epithelial cells to cisplatin. Guidelines for CIMR editing are provided, and initial CIMR DNAme is characterized at TP53 and ONECUT1 CGIs. Collectively, this resource facilitates CpG island DNAme engineering in pluripotency and the genesis of novel epigenetic models of development and disease.
Collapse
Affiliation(s)
- Joshua Tompkins
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Elizabeth Lizhar
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Alireza Shokrani
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope, Duarte, CA 91010, USA
| | - Jordan Berley
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Diba Kamali
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Deborah Hussey
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jonas Cerneckis
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Tae Hyuk Kang
- Integrative Genomics Core, City of Hope, Duarte, CA 91010, USA
| | - Jinhui Wang
- Integrative Genomics Core, City of Hope, Duarte, CA 91010, USA
| | - Walter Tsark
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Defu Zeng
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Swetha Godatha
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Arthur Riggs
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Zhou Y, Li Y, Zhang Y, Yi Z, Jiang M. Establishment and application of a human osteosarcoma U-2OS cell line that can stably express Cas9 protein. Mol Cell Biochem 2022; 477:2183-2191. [PMID: 35445373 DOI: 10.1007/s11010-022-04434-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/05/2022] [Indexed: 12/19/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor, and U-2OS is a common osteosarcoma cell model. The study obtained a human osteosarcoma U-2OS tool cell line which could stably express Cas9 protein, and we reported its production method and application. Firstly, we introduced a Cas9 protein expression gene and an antibiotic screening marker gene through CRISPR/Cas9 system to construct a human osteosarcoma U-2OS tool cell line which could stably express Cas9 protein. Secondly, as the cell line could stably express Cas9 protein, it was only transfected alone a small sgRNA fragment for related gene editing, we then transfected, respectively, a small ETV4 and MALAT1 sgRNA fragment to U-2OS tool cell line for gene editing. Lastly, the Q-PCR results showed that the transcription levels of ETV4 and MALAT1 were significantly decreased, and western blotting result showed that the translation level of ETV4 was significantly decreased, these results indicated that the constructed U-2OS tool cell line could effectively edit protein-coding gene (ETV4) and long non-coding RNA gene (MALAT1). The results of this study also indicated that the constructed U-2OS tool cell line could greatly improve the efficiency of gene editing. Therefore, the genetic engineering cell line provided by the study is of great significance for studying the pathogenesis and regulatory network of osteosarcoma, and for preventing and treating bone tumor as soon as possible.
Collapse
Affiliation(s)
- Yonghua Zhou
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China.
| | - Yingjie Li
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Yu Zhang
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Zilin Yi
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Minggui Jiang
- Hunan Fenghui Biotechnology Co. Ltd, Changsha, 410000, China
| |
Collapse
|
6
|
Wang S, Li Y, Zhong L, Wu K, Zhang R, Kang T, Wu S, Wu Y. Efficient gene editing through an intronic selection marker in cells. Cell Mol Life Sci 2022; 79:111. [PMID: 35098362 PMCID: PMC8801403 DOI: 10.1007/s00018-022-04152-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Gene editing technology has provided researchers with the ability to modify genome sequences in almost all eukaryotes. Gene-edited cell lines are being used with increasing frequency in both bench research and targeted therapy. However, despite the great importance and universality of gene editing, the efficiency of homology-directed DNA repair (HDR) is too low, and base editors (BEs) cannot accomplish desired indel editing tasks. RESULTS AND DISCUSSION Our group has improved HDR gene editing technology to indicate DNA variation with an independent selection marker using an HDR strategy, which we named Gene Editing through an Intronic Selection marker (GEIS). GEIS uses a simple process to avoid nonhomologous end joining (NHEJ)-mediated false-positive effects and achieves a DsRed positive rate as high as 87.5% after two rounds of fluorescence-activated cell sorter (FACS) selection without disturbing endogenous gene splicing and expression. We re-examined the correlation of the conversion tract and efficiency, and our data suggest that GEIS has the potential to edit approximately 97% of gene editing targets in human and mouse cells. The results of further comprehensive analysis suggest that the strategy may be useful for introducing multiple DNA variations in cells.
Collapse
Affiliation(s)
- Shang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Yuqing Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, 515000, China
| | - Li Zhong
- Center of Digestive Diseases, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Kai Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Song Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China.
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, 515000, China.
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen, 518000, China.
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Targeting Neurons with Functional Oxytocin Receptors: A Novel Set of Simple Knock-In Mouse Lines for Oxytocin Receptor Visualization and Manipulation. eNeuro 2022; 9:ENEURO.0423-21.2022. [PMID: 35082173 PMCID: PMC8856715 DOI: 10.1523/eneuro.0423-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
The neuropeptide oxytocin (Oxt) plays important roles in modulating social behaviors. Oxt receptor (Oxtr) is abundantly expressed in the brain and its relationship to socio-behavioral controls has been extensively studied using mouse brains. Several genetic tools to visualize and/or manipulate Oxtr-expressing cells, such as fluorescent reporters and Cre recombinase drivers, have been generated by ES-cell based gene targeting or bacterial artificial chromosome (BAC) transgenesis. However, these mouse lines displayed some differences in their Oxtr expression profiles probably because of the complex context and integrity of their genomic configurations in each line. Here, we apply our sophisticated genome-editing techniques to the Oxtr locus, systematically generating a series of knock-in mouse lines, in which its endogenous transcriptional regulations are intactly preserved and evaluate their expression profiles to ensure the reliability of our new tools. We employ the epitope tagging strategy, with which C-terminally fused tags can be detected by highly specific antibodies, to successfully visualize the Oxtr protein distribution on the neural membrane with super-resolution imaging for the first time. By using T2A self-cleaving peptide sequences, we also induce proper expressions of tdTomato reporter, codon-improved Cre recombinase (iCre), and spatiotemporally inducible Cre-ERT2 in Oxtr-expressing neurons. Electrophysiological recordings from tdTomato-positive cells in the reporter mice support the validity of our tool design. Retro-orbital injections of AAV-PHP.eB vector into the Cre line further enabled visualization of recombinase activities in the appropriate brain regions. Moreover, the first-time Cre-ERT2 line drives Cre-mediated recombination in a spatiotemporally controlled manner on tamoxifen (TMX) administration. These tools thus provide an excellent resource for future functional studies in Oxt-responsive neurons and should prove of broad interest in the field.
Collapse
|
8
|
Smirnov A, Battulin N. Concatenation of Transgenic DNA: Random or Orchestrated? Genes (Basel) 2021; 12:genes12121969. [PMID: 34946918 PMCID: PMC8701086 DOI: 10.3390/genes12121969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022] Open
Abstract
Generation of transgenic organisms by pronuclear microinjection has become a routine procedure. However, while the process of DNA integration in the genome is well understood, we still do not know much about the recombination between transgene molecules that happens in the first moments after DNA injection. Most of the time, injected molecules are joined together in head-to-tail tandem repeats-the so-called concatemers. In this review, we focused on the possible concatenation mechanisms and how they could be studied with genetic reporters tracking individual copies in concatemers. We also discuss various features of concatemers, including palindromic junctions and repeat-induced gene silencing (RIGS). Finally, we speculate how cooperation of DNA repair pathways creates a multicopy concatenated insert.
Collapse
Affiliation(s)
- Alexander Smirnov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman Battulin
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Institute of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|