1
|
Wilbrink R, van der Weele L, Spoorenberg AJPL, de Vries N, Niewold ITG, Verstappen GM, Kroese FGM. B Cell Receptor Repertoire Analysis of the CD21 lo B Cell Compartment in Healthy Individuals, Patients With Sjögren's Disease, and Patients With Radiographic Axial Spondyloarthritis. Eur J Immunol 2024:e202451398. [PMID: 39707660 DOI: 10.1002/eji.202451398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
B cells with low or absent expression of CD21 (CD21lo B cells) gained attention due to their expansion in the peripheral blood of patients with immune-mediated, rheumatic diseases. This is not only observed in typical autoimmune diseases like systemic lupus erythematosus and Sjögren's disease (SjD) but also in radiographic axial spondyloarthritis (r-axSpA), which is considered an autoinflammatory disease. To gain more insight into the origins of the heterogeneous CD21lo B-cell population, and its relation to the plasmablast (PB) compartment, we profiled the B-cell-receptor (BCR) repertoire in CD27- and CD27+ fractions of CD21lo B cells and early PBs using next-generation sequencing. Populations were sorted from peripheral blood of healthy individuals, SjD patients, and r-axSpA patients (n = 10 for each group). In healthy individuals and both patient groups, our findings indicate that CD27-CD21lo B cells, which exhibit few mutations in their BCR, may develop into CD27+CD21lo B cells and PBs, both marked by considerably more mutations. Given the known expansion of circulating CD27-CD21lo B cells in SjD and r-axSpA patients and clonal relationships with both CD27+CD21lo B cells and early PBs, these cells might actively contribute to (pathological) immune responses in rheumatic diseases with autoimmune and/or autoinflammatory characteristics.
Collapse
Affiliation(s)
- Rick Wilbrink
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Linda van der Weele
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology and Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anneke J P L Spoorenberg
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Niek de Vries
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology and Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilse T G Niewold
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology and Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Gwenny M Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Alsuliman T, Marjanovic Z, Rimar D, Tarte K, Avcin T, Hagen M, Schett G, Farge D. Harnessing the potential of CAR-T cell in lupus treatment: From theory to practice. Autoimmun Rev 2024; 23:103687. [PMID: 39532175 DOI: 10.1016/j.autrev.2024.103687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is a rare, heterogeneous, potentially life-threatening autoimmune disease. Presence of kidney or other major organ (brain, heart or lung) involvement are predictors of poor outcome and in a subset of patients resistant to 1st or 2nd line conventional treatment. The 10-year mortality remains around 10-15 %. Chimeric Antigen Receptors (CAR) are molecules that allow to redirect the engineered immune cells towards specific target antigens and to simultaneously boost their activation. Following breakthrough results observed in the treatment of hematological malignancies, conventional CAR T-cell therapy has recently been applied to refractory SLE patients. Compared to the use of monoclonal antibodies, anti-CD19 CAR T-cells allow to achieve deeper depletion of autoreactive B cells, notably at site of inflamed tissues and lymphoid organs (i.e. lymph node), to suppress interferon signature and to restore the immune tolerance with the reemergence of naïve B-cells with a new repertoire. All clinical data reported in SLE patients so far showed that autologous anti-CD19 CAR T-cell treatment allowed impressive short- and longer-term resolution of lupus nephritis and other severe disease-related manifestations, without major toxicities and only mild cytokine-release syndrome. These clinical effects persisted after B-cell reconstitution and were associated with normalization of double-stranded DNA antibodies and complement levels in drug-free patients until three years after the procedure. Overall, these pioneering experiences show unique clinical and immunological response to CAR T-cell therapy in SLE, and the need for extended follow-up to determine its long-term efficacy.
Collapse
Affiliation(s)
- Tamim Alsuliman
- Saint-Antoine Hospital, AP-HP, Service d'hématologie et thérapie cellulaire, 75012 Paris, France; Sorbonne University, Paris, France
| | - Zora Marjanovic
- Saint-Antoine Hospital, AP-HP, Service d'hématologie et thérapie cellulaire, 75012 Paris, France; Sorbonne University, Paris, France
| | - Doron Rimar
- Rheumatology unit, Bnai Zion medical center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Karin Tarte
- SITI, CHU Rennes, UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, F-35000 Rennes, France
| | - Tadej Avcin
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Center Ljubljana and Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Melanie Hagen
- Department of Internal Medicine 3 - Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dominique Farge
- Internal Medicine Unit (04): CRMR MATHEC, Maladies Auto-immunes et Thérapie Cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France, AP-HP, St-Louis Hospital, France; Paris-Cité University, IRSL, Recherche clinique appliquée à l'hématologie, URP 3518, F-75010 Paris, France; Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Huang Y, Wang T, Wang F, Wu Y, Ai J, Zhang Y, Shao M, Fang L. Scientific issues with rodent models of neuromyelitis optic spectrum disorders. Front Immunol 2024; 15:1423107. [PMID: 39628487 PMCID: PMC11611858 DOI: 10.3389/fimmu.2024.1423107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) is a rare autoimmune disorder that causes severe inflammation in the central nervous system (CNS), primarily affecting the optic nerves, spinal cord, and brainstem. Aquaporin-4 immunoglobulin G antibodies (AQP4-IgG) are a diagnostic marker of the disease and play a significant role in its pathogenesis, though the exact mechanism is not yet fully understood. To develop rodent models that best simulate the in vivo pathological and physiological processes of NMOSD, researchers have been continuously exploring how to establish the ideal model. In this process, two key issues arise: 1) how the AQP4 antibody crosses the blood-brain barrier, and 2) the source of the AQP4 antibody. These two factors are critical for the successful development of rodent models of NMOSD. This paper reviews the current state of research on these two aspects.
Collapse
Affiliation(s)
- Yusen Huang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tianwei Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fangruyue Wang
- The Third Bethune Hospital of Jilin University, Changchun, China
| | - Yujing Wu
- The Third Bethune Hospital of Jilin University, Changchun, China
| | - Jia Ai
- The Third Bethune Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- The Third Bethune Hospital of Jilin University, Changchun, China
| | - Meiyan Shao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Fang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Cleaver J, Ceronie B, Strippel C, Handel A, Irani SR. The immunology underlying CNS autoantibody diseases. Rev Neurol (Paris) 2024; 180:916-930. [PMID: 39289136 DOI: 10.1016/j.neurol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
The past two decades have seen a considerable paradigm shift in the way autoimmune CNS disorders are considered, diagnosed, and treated; largely due to the discovery of novel autoantibodies directed at neuroglial surface or intracellular targets. This approach has enabled multiple bona fide CNS autoantibody-associated diseases to thoroughly infiltrate the sphere of clinical neurology, facilitating advances in patient outcomes. This review focusses on the fundamental immunological concepts behind CNS autoantibody-associated diseases. First, we briefly review the broad phenotypic profiles of these conditions. Next, we explore concepts around immune checkpoints and the related B cell lineage. Thirdly, the sources of autoantibody production are discussed alongside triggers of tolerance failure, including neoplasms, infections and iatrogenic therapies. Penultimately, the role of T cells and leucocyte trafficking into the CNS are reviewed. Finally, biological insights from responses to targeted immunotherapies in different CNS autoantibody-associated diseases are summarised. The continued and rapid expansion of the CNS autoantibody-associated field holds promise for further improved diagnostic and therapeutic paradigms, ultimately leading to further improvements in patient outcomes.
Collapse
Affiliation(s)
- J Cleaver
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - B Ceronie
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - C Strippel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - A Handel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - S R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK; Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
5
|
Nishat SMH, Alzaabi AA, Alzaabi FM, Al Tarawneh DJ, Al Tarawneh YJ, Khan A, Khan MAM, Siddiqui TW, Siddiqui RW, Siddiqui SW. Connecting the Dots: Exploring the Association Between Systemic Lupus Erythematosus and Thyroid Disorders. Cureus 2024; 16:e74469. [PMID: 39726471 PMCID: PMC11669916 DOI: 10.7759/cureus.74469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease marked by chronic inflammation and tissue damage that impacts multiple organ systems and diminishes the quality of life. Among the frequent comorbidities in SLE, thyroid dysfunction, including hypothyroidism and hyperthyroidism, stands out due to its high prevalence and common autoimmune basis. This review examines the epidemiological, genetic, and immunological factors that link SLE with autoimmune thyroid diseases such as Hashimoto's thyroiditis and Graves' disease. These overlapping mechanisms suggest a shared pathophysiological foundation that increases the risk of thyroid dysfunction in SLE patients. Clinically, distinguishing thyroid dysfunction from SLE symptoms, such as fatigue and cognitive difficulties, remains challenging, making regular thyroid screening in SLE patients essential. A multidisciplinary approach, bringing together rheumatologists and endocrinologists, is crucial to provide comprehensive care and improve outcomes for patients managing both conditions.
Collapse
Affiliation(s)
| | - Asma A Alzaabi
- Internal Medicine, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Fatema M Alzaabi
- Internal Medicine, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Dana J Al Tarawneh
- Internal Medicine, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Yusuf J Al Tarawneh
- Internal Medicine, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Abdallah Khan
- Internal Medicine, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, ARE
| | | | - Tabish W Siddiqui
- Internal Medicine, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Raqshan W Siddiqui
- Internal Medicine, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, ARE
| | | |
Collapse
|
6
|
Konitsioti AM, Prüss H, Laurent S, Fink GR, Heesen C, Warnke C. Chimeric antigen receptor T-cell therapy for autoimmune diseases of the central nervous system: a systematic literature review. J Neurol 2024; 271:6526-6542. [PMID: 39276207 PMCID: PMC11446985 DOI: 10.1007/s00415-024-12642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024]
Abstract
IMPORTANCE B-cell-targeting monoclonal antibodies have demonstrated safety and efficacy in multiple sclerosis or anti-aquaporin-4 IgG positive neuromyelitis optica spectrum disorder. However, these therapies do not facilitate drug-free remission, which may become possible with cell-based therapies, including chimeric antigen receptor (CAR) T cells. CAR T-cell therapy holds promise for addressing other antibody-mediated CNS disorders, e.g., MOG-associated disease or autoimmune encephalitis. OBJECTIVE To provide an overview of the current clinical knowledge on CAR T-cell therapy in central nervous system autoimmunity. EVIDENCE REVIEW We searched PubMed, Embase, Google Scholar, PsycINFO, and clinicaltrials.gov using the terms 'CAR T cell' and 'multiple sclerosis/MS' or 'neuromyelitis optica/spectrum diseases/NMOSD' or 'MOG-associated disease/MOGAD 'or' autoimmune encephalitis' or 'neuroimmunology'. FINDINGS An ongoing phase I clinical trial has indicated the safety and benefits of anti-BCMA CAR T cells in 12 patients with AQP4-IgG seropositive neuromyelitis optica spectrum disorder. Case reports involving two individuals with progressive multiple sclerosis and one patient with stiff-person syndrome demonstrated a manageable safety profile following treatment with anti-CD19 CAR T cells. Recruitment has commenced for two larger studies in MS, and a phase I open-label basket study is underway to evaluate BCMA-directed CAR T cells in various antibody-associated inflammatory diseases, including MOG-associated disease. Preclinical research on NMDA receptor antibody autoimmune encephalitis treated with chimeric autoantibody receptor T cells generated promising data. CONCLUSIONS AND RELEVANCE There is minimal evidence of the benefits of CAR T-cell therapy in individuals with central nervous system-directed autoimmunity. Nevertheless, multicenter controlled clinical trials with a manageable safety profile appear feasible and are warranted due to very promising case experiences.
Collapse
Affiliation(s)
- Agni M Konitsioti
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Laurent
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM3), Research Center Jülich, Jülich, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Christoph Heesen
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Clemens Warnke
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Bogers L, Rip J, Rijvers L, van Langelaar J, Koetzier SC, Kuiper KL, Meerdink V, Wierenga-Wolf AF, Melief MJ, Marques AM, Smolders J, van Luijn MM. Impact of coding risk variant IFNGR2 on the B cell-intrinsic IFN-γ signaling pathway in multiple sclerosis. J Autoimmun 2024; 148:103279. [PMID: 38972102 DOI: 10.1016/j.jaut.2024.103279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
B cells of people with multiple sclerosis (MS) are more responsive to IFN-γ, corresponding to their brain-homing potential. We studied how a coding single nucleotide polymorphism (SNP) in IFNGR2 (rs9808753) co-operates with Epstein-Barr virus (EBV) infection as MS risk factors to affect the IFN-γ signaling pathway in human B cells. In both cell lines and primary cells, EBV infection positively associated with IFN-γ receptor expression and STAT1 phosphorylation. The IFNGR2 risk SNP selectively promoted downstream signaling via STAT1, particularly in transitional B cells. Altogether, EBV and the IFNGR2 risk SNP independently amplify IFN-γ signaling, potentially driving B cells to enter the MS brain.
Collapse
Affiliation(s)
- Laurens Bogers
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jasper Rip
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liza Rijvers
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jamie van Langelaar
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Steven C Koetzier
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kirsten L Kuiper
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Veronique Meerdink
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ana M Marques
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Huang J, Luo G, Wang W, Lu Y, Wang M, Liu M, Zhu D, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Ou X, Tian B, Sun D, He Y, Wu Z, Cheng A, Jia R. Duck CD40L as an adjuvant enhances systemic immune responses of avian flavivirus DNA vaccine. NPJ Vaccines 2024; 9:135. [PMID: 39085226 PMCID: PMC11291490 DOI: 10.1038/s41541-024-00926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Under the dual pressure of emerging zoonoses and the difficulty in eliminating conventional zoonoses, the strategic management of bird diseases through vaccination represents a highly efficacious approach to disrupting the transmission of zoonotic pathogens to humans. Immunization with a DNA vaccine yielded limited protection against avian pathogen infection. To improve its immunogenicity, the extracellular domain of duck-derived CD40L (designated as dusCD40L) was employed as a bio-adjuvant. Our findings unequivocally established the evolutionary conservation of dusCD40L across avian species. Notably, dusCD40L exhibited a compelling capacity to elicit robust immune responses from both B and T lymphocytes. Furthermore, when employed as an adjuvant, dusCD40L demonstrated a remarkable capacity to significantly augment the titers of neutralizing antibodies and the production of IFNγ elicited by a DNA vaccine encoding the prM-E region of an avian flavivirus, namely, the Tembusu virus (TMUV). Moreover, dusCD40L could strengthen virus clearance of the prM-E DNA vaccine in ducks post-TMUV challenge. This research study presents a highly effective adjuvant for advancing the development of DNA vaccines targeting TMUV in avian hosts. Additionally, it underscores the pivotal role of duCD40L as a potent adjuvant in the context of vaccines designed to combat zoonotic infections in avian species.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Guiyuan Luo
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wanfa Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuxin Lu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
9
|
Santana-Sánchez P, Vaquero-García R, Legorreta-Haquet MV, Chávez-Sánchez L, Chávez-Rueda AK. Hormones and B-cell development in health and autoimmunity. Front Immunol 2024; 15:1385501. [PMID: 38680484 PMCID: PMC11045971 DOI: 10.3389/fimmu.2024.1385501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
The development of B cells into antibody-secreting plasma cells is central to the adaptive immune system as they induce protective and specific antibody responses against invading pathogens. Various studies have shown that, during this process, hormones can play important roles in the lymphopoiesis, activation, proliferation, and differentiation of B cells, and depending on the signal given by the receptor of each hormone, they can have a positive or negative effect. In autoimmune diseases, hormonal deregulation has been reported to be related to the survival, activation and/or differentiation of autoreactive clones of B cells, thus promoting the development of autoimmunity. Clinical manifestations of autoimmune diseases have been associated with estrogens, prolactin (PRL), and growth hormone (GH) levels. However, androgens, such as testosterone and progesterone (P4), could have a protective effect. The objective of this review is to highlight the links between different hormones and the immune response mediated by B cells in the etiopathogenesis of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). The data collected provide insights into the role of hormones in the cellular, molecular and/or epigenetic mechanisms that modulate the B-cell response in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Adriana Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México (CDMX), Mexico
| |
Collapse
|
10
|
Li C, Clauson R, Bugada LF, Ke F, He B, Yu Z, Chen H, Jacobovitz B, Hu H, Chuikov P, Hill BD, Rizvi SM, Song Y, Sun K, Axenov P, Huynh D, Wang X, Garmire L, Lei YL, Grigorova I, Wen F, Cascalho M, Gao W, Sun D. Antigen-Clustered Nanovaccine Achieves Long-Term Tumor Remission by Promoting B/CD 4 T Cell Crosstalk. ACS NANO 2024; 18:9584-9604. [PMID: 38513119 PMCID: PMC11130742 DOI: 10.1021/acsnano.3c13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Current cancer vaccines using T cell epitopes activate antitumor T cell immunity through dendritic cell/macrophage-mediated antigen presentation, but they lack the ability to promote B/CD4 T cell crosstalk, limiting their anticancer efficacy. We developed antigen-clustered nanovaccine (ACNVax) to achieve long-term tumor remission by promoting B/CD4 T cell crosstalk. The topographic features of ACNVax were achieved using an iron nanoparticle core attached with an optimal number of gold nanoparticles, where the clusters of HER2 B/CD4 T cell epitopes were conjugated on the gold surface with an optimal intercluster distance of 5-10 nm. ACNVax effectively trafficked to lymph nodes and cross-linked with BCR, which are essential for stimulating B cell antigen presentation-mediated B/CD4 T cell crosstalk in vitro and in vivo. ACNVax, combined with anti-PD-1, achieved long-term tumor remission (>200 days) with 80% complete response in mice with HER2+ breast cancer. ACNVax not only remodeled the tumor immune microenvironment but also induced a long-term immune memory, as evidenced by complete rejection of tumor rechallenge and a high level of antigen-specific memory B, CD4, and CD8 cells in mice (>200 days). This study provides a cancer vaccine design strategy, using B/CD4 T cell epitopes in an antigen clustered topography, to achieve long-term durable anticancer efficacy through promoting B/CD4 T cell crosstalk.
Collapse
Affiliation(s)
- Chengyi Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ryan Clauson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Luke F Bugada
- Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fang Ke
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bing He
- Department of Computational Medicine & Bioinformatics, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhixin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hongwei Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Binyamin Jacobovitz
- Microscopy Core, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Polina Chuikov
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brett Dallas Hill
- Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Syed M Rizvi
- Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yudong Song
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kai Sun
- Department of Materials Science and Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pasieka Axenov
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Daniel Huynh
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xinyi Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lana Garmire
- Department of Computational Medicine & Bioinformatics, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Leo Lei
- Departments of Head and Neck Surgery, Cancer Biology, and Translational Molecular Pathology, the University of Texas M.D. Anderson Cancer Center, Houston, Texas 77054, United States
| | - Irina Grigorova
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marilia Cascalho
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Liu Y, Tang S, Feng Y, Xue B, Cheng C, Su Y, Wei W, Zhang L, Huang Z, Shi X, Fang Y, Yang J, Zhang Y, Deng X, Wang L, Ren H, Wang C, Yuan H. Alteration in gut microbiota is associated with immune imbalance in Graves' disease. Front Cell Infect Microbiol 2024; 14:1349397. [PMID: 38533382 PMCID: PMC10963416 DOI: 10.3389/fcimb.2024.1349397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Background Graves' disease (GD), characterized by immune aberration, is associated with gut dysbiosis. Despite the growing interest, substantial evidence detailing the precise impact of gut microbiota on GD's autoimmune processes remains exceedingly rare. Objective This study was designed to investigate the influence of gut microbiota on immune dysregulation in GD. Methods It encompassed 52 GD patients and 45 healthy controls (HCs), employing flow cytometry and enzyme-linked immunosorbent assay to examine lymphocyte and cytokine profiles, alongside lipopolysaccharide (LPS) levels. Gut microbiota profiles and metabolic features were assessed using 16S rRNA gene sequencing and targeted metabolomics. Results Our observations revealed a disturbed B-cell distribution and elevated LPS and pro-inflammatory cytokines in GD patients compared to HCs. Significant differences in gut microbiota composition and a marked deficit in short-chain fatty acid (SCFA)-producing bacteria, including ASV263(Bacteroides), ASV1451(Dialister), and ASV503(Coprococcus), were observed in GD patients. These specific bacteria and SCFAs showed correlations with thyroid autoantibodies, B-cell subsets, and cytokine levels. In vitro studies further showed that LPS notably caused B-cell subsets imbalance, reducing conventional memory B cells while increasing naïve B cells. Additionally, acetate combined with propionate and butyrate showcased immunoregulatory functions, diminishing cytokine production in LPS-stimulated cells. Conclusion Overall, our results highlight the role of gut dysbiosis in contributing to immune dysregulation in GD by affecting lymphocyte status and cytokine production.
Collapse
Affiliation(s)
- Yalei Liu
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Tang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Feng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Binghua Xue
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaofei Cheng
- Stem Cell Research Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Su
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wei
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhoufeng Huang
- Institution of Hematology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyang Shi
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanyuan Fang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junpeng Yang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinru Deng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Limin Wang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyan Ren
- Shanghai Mobio Biomedical Technology Corporation Limited, Shanghai, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Tieck MP, Vasilenko N, Ruschil C, Kowarik MC. Peripheral memory B cells in multiple sclerosis vs. double negative B cells in neuromyelitis optica spectrum disorder: disease driving B cell subsets during CNS inflammation. Front Cell Neurosci 2024; 18:1337339. [PMID: 38385147 PMCID: PMC10879280 DOI: 10.3389/fncel.2024.1337339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
B cells are fundamental players in the pathophysiology of autoimmune diseases of the central nervous system, such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). A deeper understanding of disease-specific B cell functions has led to the differentiation of both diseases and the development of different treatment strategies. While NMOSD is strongly associated with pathogenic anti-AQP4 IgG antibodies and proinflammatory cytokine pathways, no valid autoantibodies have been identified in MS yet, apart from certain antigen targets that require further evaluation. Although both diseases can be effectively treated with B cell depleting therapies, there are distinct differences in the peripheral B cell subsets that influence CNS inflammation. An increased peripheral blood double negative B cells (DN B cells) and plasmablast populations has been demonstrated in NMOSD, but not consistently in MS patients. Furthermore, DN B cells are also elevated in rheumatic diseases and other autoimmune entities such as myasthenia gravis and Guillain-Barré syndrome, providing indirect evidence for a possible involvement of DN B cells in other autoantibody-mediated diseases. In MS, the peripheral memory B cell pool is affected by many treatments, providing indirect evidence for the involvement of memory B cells in MS pathophysiology. Moreover, it must be considered that an important effector function of B cells in MS may be the presentation of antigens to peripheral immune cells, including T cells, since B cells have been shown to be able to recirculate in the periphery after encountering CNS antigens. In conclusion, there are clear differences in the composition of B cell populations in MS and NMOSD and treatment strategies differ, with the exception of broad B cell depletion. This review provides a detailed overview of the role of different B cell subsets in MS and NMOSD and their implications for treatment options. Specifically targeting DN B cells and plasmablasts in NMOSD as opposed to memory B cells in MS may result in more precise B cell therapies for both diseases.
Collapse
Affiliation(s)
| | | | | | - M. C. Kowarik
- Department of Neurology and Stroke, Center for Neurology, and Hertie-Institute for Clinical Brain Research Eberhard-Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Reuschlé Q, Van Heddegem L, Bosteels V, Moncan M, Depauw S, Wadier N, Maréchal S, De Nolf C, Delgado V, Messai Y, Stolzenberg MC, Magérus A, Werck A, Olagne J, Li Q, Lefevre G, Korganow AS, Rieux-Laucat F, Janssens S, Soulas-Sprauel P. Loss of function of XBP1 splicing activity of IRE1α favors B cell tolerance breakdown. J Autoimmun 2024; 142:103152. [PMID: 38071801 DOI: 10.1016/j.jaut.2023.103152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 03/23/2024]
Abstract
Anti-nuclear antibodies are the hallmark of autoimmune diseases such as systemic lupus erythematosus (SLE) and scleroderma. However, the molecular mechanisms of B cell tolerance breakdown in these pathological contexts are poorly known. The study of rare familial forms of autoimmune diseases could therefore help to better describe common biological mechanisms leading to B cell tolerance breakdown. By Whole-Exome Sequencing, we identified a new heterozygous mutation (p.R594C) in ERN1 gene, encoding IRE1α (Inositol-Requiring Enzyme 1α), in a multiplex family with several members presenting autoantibody-mediated autoimmunity. Using human cell lines and a knock-in (KI) transgenic mouse model, we showed that this mutation led to a profound defect of IRE1α ribonuclease activity on X-Box Binding Protein 1 (XBP1) splicing. The KI mice developed a broad panel of autoantibodies, however in a subclinical manner. These results suggest that a decrease of spliced form of XBP1 (XBP1s) production could contribute to B cell tolerance breakdown and give new insights into the function of IRE1α which are important to consider for the development of IRE1α targeting strategies.
Collapse
Affiliation(s)
- Quentin Reuschlé
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, F-67000, Strasbourg, France; Strasbourg University, Faculty of Pharmacy and Faculty of Medicine, Strasbourg, France; Arthritis R&D, Neuilly sur Seine, France
| | - Laurien Van Heddegem
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Victor Bosteels
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Matthieu Moncan
- Université Paris Cité, Laboratoire d'immunogénétique des maladies auto-immunes pédiatriques, Institut Imagine, INSERM UMR_S1163, Paris, France
| | - Sabine Depauw
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, F-67000, Strasbourg, France; Strasbourg University, Faculty of Pharmacy and Faculty of Medicine, Strasbourg, France
| | - Nadège Wadier
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, F-67000, Strasbourg, France; Strasbourg University, Faculty of Pharmacy and Faculty of Medicine, Strasbourg, France
| | - Sandra Maréchal
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Clint De Nolf
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Barriers in Inflammation, VIB Center for Inflammation Research, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Virginia Delgado
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, F-67000, Strasbourg, France; Strasbourg University, Faculty of Pharmacy and Faculty of Medicine, Strasbourg, France
| | | | - Marie-Claude Stolzenberg
- Université Paris Cité, Laboratoire d'immunogénétique des maladies auto-immunes pédiatriques, Institut Imagine, INSERM UMR_S1163, Paris, France
| | - Aude Magérus
- Université Paris Cité, Laboratoire d'immunogénétique des maladies auto-immunes pédiatriques, Institut Imagine, INSERM UMR_S1163, Paris, France
| | - Angélique Werck
- Department of Pathology, University Hospital, Strasbourg, France
| | - Jérôme Olagne
- Department of Pathology, University Hospital, Strasbourg, France; Department of Adult Nephrology, University Hospital, Strasbourg, France
| | - Quan Li
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guillaume Lefevre
- Inserm, U1286 - INFINITE - Institute for Translational Research in Inflammation, University of Lille, CHU Lille, Lille, France
| | - Anne-Sophie Korganow
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, F-67000, Strasbourg, France; Strasbourg University, Faculty of Pharmacy and Faculty of Medicine, Strasbourg, France; Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France
| | - Frédéric Rieux-Laucat
- Université Paris Cité, Laboratoire d'immunogénétique des maladies auto-immunes pédiatriques, Institut Imagine, INSERM UMR_S1163, Paris, France
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Pauline Soulas-Sprauel
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, F-67000, Strasbourg, France; Strasbourg University, Faculty of Pharmacy and Faculty of Medicine, Strasbourg, France; Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France.
| |
Collapse
|
14
|
Morales-Núñez JJ, Muñoz-Valle JF, García-Chagollán M, Cerpa-Cruz S, Martínez-Bonilla GE, Medina-Rosales VM, Díaz-Pérez SA, Nicoletti F, Hernández-Bello J. Aberrant B-cell activation and B-cell subpopulations in rheumatoid arthritis: analysis by clinical activity, autoantibody seropositivity, and treatment. Clin Exp Immunol 2023; 214:314-327. [PMID: 37464892 PMCID: PMC10719220 DOI: 10.1093/cei/uxad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
Few studies analyze the role of B-cell subpopulations in rheumatoid arthritis (RA) pathophysiology. Therefore, this study aimed to analyze the differences in B-cell subpopulations and B-cell activation according to disease activity, RA subtype, and absence of disease-modifying antirheumatic drugs (DMARDs) therapy. These subgroups were compared with control subjects (CS). One hundred and thirty-nine subjects were included, of which 114 were RA patients, and 25 were controls. Patients were divided into 99 with seropositive RA, 6 with seronegative RA, and 9 without DMARDs. The patients with seropositive RA were subclassified based on the DAS28 index. A seven-color multicolor flow cytometry panel was used to identify B-cell immunophenotypes and cell activation markers. There were no changes in total B-cell frequencies between RA patients and controls. However, a lower frequency of memory B cells and pre-plasmablasts was observed in seropositive RA compared to controls (P < 0.0001; P = 0.0043, respectively). In contrast, a higher frequency of mature B cells was observed in RA than in controls (P = 0.0002). Among patients with RA, those with moderate activity had a higher percentage of B cells (P = 0.0021). The CD69+ marker was increased (P < 0.0001) in RA compared to controls, while the CD40+ frequency was decreased in patients (P < 0.0001). Transitional, naïve, and double-negative B-cell subpopulations were higher in seronegative RA than in seropositive (P < 0.01). In conclusion, in seropositive and seronegative RA patients, there are alterations in B-cell activation and B-cell subpopulations, independently of clinical activity and DMARDs therapy.
Collapse
Affiliation(s)
- José Javier Morales-Núñez
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Mariel García-Chagollán
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Sergio Cerpa-Cruz
- Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Servicio de Reumatología, Jalisco, Mexico
| | | | - Vianey Monserrat Medina-Rosales
- Centro Universitario de Ciencias de la Salud, Licenciatura en Médico, Cirujano y Partero, Universidad de Guadalajara, Jalisco, Mexico
| | - Saúl Alberto Díaz-Pérez
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jorge Hernández-Bello
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| |
Collapse
|
15
|
Kielbassa K, Van der Weele L, Voskuyl AE, de Vries N, Eldering E, Kuijpers TW. Differential expression pattern of Bcl-2 family members in B and T cells in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Res Ther 2023; 25:225. [PMID: 37993903 PMCID: PMC10664305 DOI: 10.1186/s13075-023-03203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the expression level of anti-apoptotic Bcl-2 family proteins in B and T cells in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) in relation to disease activity and the effect of various Bcl-2 family inhibitors (BH3 mimetics) as potential treatment. METHODS We included 14 SLE patients, 12 RA patients, and 13 healthy controls to study anti-apoptotic Bcl-2, Bcl-XL, and Mcl-1 expression and cell survival in different B and T cell subsets using stimulation assays and intracellular flow cytometry. Effect of various BH3 mimetics was assessed by cell viability analyses. RESULTS In SLE, significant differences in Bcl-2 family members were confined to the B cell compartment with decreased induction of Bcl-XL (p ≤ 0.05) and Mcl-1 (p ≤ 0.001) upon CpG stimulation. In RA, we did not observe any differences in expression levels of Bcl-2 family proteins. Expression patterns did not correlate with disease activity apart from decreased induction of Mcl-1 in B cells in active SLE. After in vitro stimulation with CpG, plasmablasts were more viable after treatment with three different BH3 mimetics compared to naïve or memory B cells in control and patient cells. After activation, Mcl-1 inhibition was most effective in reducing plasmablast and T cell viability, however, less in patients than controls. CONCLUSION Our study provides evidence for the increased differential expression pattern of Bcl-2 family members in B and T cell subsets of patients with SLE compared to controls. Tested BH3 mimetics showed higher efficacy in controls compared to both autoimmune diseases, though nonsignificant due to low patient numbers.
Collapse
Affiliation(s)
- K Kielbassa
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| | - L Van der Weele
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - A E Voskuyl
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - N de Vries
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Eldering
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| | - T W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Bogers L, Kuiper KL, Smolders J, Rip J, van Luijn MM. Epstein-Barr virus and genetic risk variants as determinants of T-bet + B cell-driven autoimmune diseases. Immunol Lett 2023; 261:66-74. [PMID: 37451321 DOI: 10.1016/j.imlet.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
B cells expressing the transcription factor T-bet are found to have a protective role in viral infections, but are also considered major players in the onset of different types of autoimmune diseases. Currently, the exact mechanisms driving such 'atypical' memory B cells to contribute to protective immunity or autoimmunity are unclear. In addition to general autoimmune-related factors including sex and age, the ways T-bet+ B cells instigate autoimmune diseases may be determined by the close interplay between genetic risk variants and Epstein-Barr virus (EBV). The impact of EBV on T-bet+ B cells likely relies on the type of risk variants associated with each autoimmune disease, which may affect their differentiation, migratory routes and effector function. In this hypothesis-driven review, we discuss the lines of evidence pointing to such genetic and/or EBV-mediated influence on T-bet+ B cells in a range of autoimmune diseases, including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). We provide examples of how genetic risk variants can be linked to certain signaling pathways and are differentially affected by EBV to shape T-bet+ B-cells. Finally, we propose options to improve current treatment of B cell-related autoimmune diseases by more selective targeting of pathways that are critical for pathogenic T-bet+ B-cell formation.
Collapse
Affiliation(s)
- Laurens Bogers
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Kirsten L Kuiper
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Joost Smolders
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands; MS Center ErasMS, Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands; Netherlands Institute for Neuroscience, Neuroimmunology research group, Amsterdam 1105 BA, The Netherlands
| | - Jasper Rip
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Marvin M van Luijn
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
17
|
Wang J, Li G, Liu S, Miao J, Sun Q, Gu W, Mao X. Activation of Toll-like receptor 4 by thyroid hormone triggers abnormal B-cell activation. Immun Inflamm Dis 2023; 11:e1007. [PMID: 37773690 PMCID: PMC10540142 DOI: 10.1002/iid3.1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVE Breakdown of tolerance and abnormal activation of B cells is an important mechanism in the pathogenesis of Graves' disease (GD). High levels of thyroid hormones (THs) play important roles in GD progression. However, the interactions between THs and abnormal activation of B cells remain elusive. This study aimed to explore the effect of high levels of THs on TLR4 expression and abnormal B cell differentiation. MATERIALS AND METHODS Blood samples were collected from patients with GD and healthy controls (HCs) to evaluate the frequency of B cells, their subsets, and TLR4 expression in B cells. A high-level T3 mouse model was used to study the interaction between THs and the TLR4 signalling pathway. RESULTS We found that the frequencies of CD19+ , CD19+ TLR4+ , CD19+ CD86+ , and CD19+ CD138+ B cells were significantly higher, as were the expression levels of MRP8/MRP14 and MRP6 and MRP8, MRP14, and MRP6 messenger RNA (mRNA) in peripheral blood mononuclear cells in patients with GD. In high-level T3 mice models, the serum MRP8/MRP14 and MRP6 levels and the TLR4 mRNA expression in PBMCs were significantly higher. TLR4 mRNA, protein expression, and cytokines downstream of TLR4, such as myeloid differentiation factor 88 (MyD88) and nuclear transcription factor-κB, were also increased in mouse spleen mononuclear cells. CONCLUSION The present study indicated that high levels of T3 can induce abnormal differentiation and activation of B cells by promoting TLR4 overexpression and provide novel insights into the roles of THs in the pathogenesis of GD.
Collapse
Affiliation(s)
- Jie Wang
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Guo‐Qing Li
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Shu Liu
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jing‐Jing Miao
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Qi Sun
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Wen‐Sha Gu
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Xiao‐Ming Mao
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
18
|
Steinmetz TD, Verstappen GM, Suurmond J, Kroese FGM. Targeting plasma cells in systemic autoimmune rheumatic diseases - Promises and pitfalls. Immunol Lett 2023; 260:44-57. [PMID: 37315847 DOI: 10.1016/j.imlet.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Plasma cells are the antibody secretors of the immune system. Continuous antibody secretion over years can provide long-term immune protection but could also be held responsible for long-lasting autoimmunity in case of self-reactive plasma cells. Systemic autoimmune rheumatic diseases (ARD) affect multiple organ systems and are associated with a plethora of different autoantibodies. Two prototypic systemic ARDs are systemic lupus erythematosus (SLE) and Sjögren's disease (SjD). Both diseases are characterized by B-cell hyperactivity and the production of autoantibodies against nuclear antigens. Analogues to other immune cells, different subsets of plasma cells have been described. Plasma cell subsets are often defined dependent on their current state of maturation, that also depend on the precursor B-cell subset from which they derived. But, a universal definition of plasma cell subsets is not available so far. Furthermore, the ability for long-term survival and effector functions may differ, potentially in a disease-specific manner. Characterization of plasma cell subsets and their specificity in individual patients can help to choose a suitable targeting approach for either a broad or more selective plasma cell depletion. Targeting plasma cells in systemic ARDs is currently challenging because of side effects or varying depletion efficacies in the tissue. Recent developments, however, like antigen-specific targeting and CAR-T-cell therapy might open up major benefits for patients beyond current treatment options.
Collapse
Affiliation(s)
- Tobit D Steinmetz
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Gwenny M Verstappen
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Kroese
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Hendriks RW, Corneth OBJ. B Cell Signaling and Activation in Autoimmunity. Cells 2023; 12:cells12030499. [PMID: 36766841 PMCID: PMC9914404 DOI: 10.3390/cells12030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Autoreactive B cells play a key role in the initiation or aggravation of many systemic and tissue-specific autoimmune disorders [...].
Collapse
|
20
|
Ly S, Nedosekin D, Wong HK. Review of an Anti-CD20 Monoclonal Antibody for the Treatment of Autoimmune Diseases of the Skin. Am J Clin Dermatol 2023; 24:247-273. [PMID: 36630066 PMCID: PMC9838371 DOI: 10.1007/s40257-022-00751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Biologic therapies targeting B-cells are emerging as an effective strategy to treat a variety of immune-mediated diseases. One of the most studied B-cell-targeted therapies is rituximab, an anti-CD20 monoclonal antibody that exemplifies B-cell depletion therapy and has served as the prototype for other anti-CD20 monoclonal antibodies and the development of biosimilars. While there are multiple studies on the use of rituximab in dermatology, a comprehensive review of rituximab therapy in autoimmune skin conditions is lacking. In this literature review, we summarize indications, treatment efficacy, and safety of rituximab among common autoimmune diseases of the skin: pemphigus vulgaris, cutaneous lupus erythematous, dermatomyositis, systemic sclerosis, thyroid dermopathy, autoimmune pemphigoid diseases, and cutaneous vasculitis diseases. Existing data on rituximab support the approach of rituximab, biosimilars, and newer B-cell-targeting therapies in immune-mediated cutaneous diseases. Overall, rituximab, which targets CD20, provides an effective alternative or concomitant option to traditional immunosuppressants in the management of various autoimmune diseases of the skin. Further studies are necessary to expand the understanding and possible utility of B-cell-targeted therapies among autoimmune skin diseases.
Collapse
Affiliation(s)
- Sophia Ly
- grid.241054.60000 0004 4687 1637College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Dmitry Nedosekin
- grid.241054.60000 0004 4687 1637College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Henry K. Wong
- grid.241054.60000 0004 4687 1637Department of Dermatology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot #576, Little Rock, AR 72205 USA
| |
Collapse
|
21
|
Wallace DJ, Dörner T, Pisetsky DS, Sanchez‐Guerrero J, Patel AC, Parsons‐Rich D, Le Bolay C, Drouin EE, Kao AH, Guehring H, Dall'Era M. Efficacy and Safety of the Bruton's Tyrosine Kinase Inhibitor Evobrutinib in Systemic Lupus Erythematosus: Results of a Phase II, Randomized, Double-Blind, Placebo-Controlled Dose-Ranging Trial. ACR Open Rheumatol 2022; 5:38-48. [PMID: 36530019 PMCID: PMC9837396 DOI: 10.1002/acr2.11511] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Evobrutinib is a highly selective, orally administered Bruton's tyrosine kinase (BTK) inhibitor. The objective of this phase II, multicenter, randomized, double-blind, placebo-controlled trial was to evaluate the efficacy and safety of evobrutinib in patients with active autoantibody-positive systemic lupus erythematosus (SLE). METHODS Patients were diagnosed with SLE by either the Systemic Lupus International Collaborating Clinics criteria or at least four American College of Rheumatology criteria 6 months or more prior to screening, had an SLE Disease Activity Index-2000 score of 6 or more, were autoantibody-positive and on standard-of-care therapy. Randomization was 1:1:1:1 to oral evobrutinib 25 mg once daily (QD), 75 mg QD, 50 mg twice daily, or placebo. Primary efficacy endpoints were SLE responder index (SRI)-4 response at week 52 and SRI-6 response at week 52 in the high disease activity subpopulation. Safety endpoints included treatment-emergent adverse events (TEAEs). RESULTS A total of 469 patients were randomized and received at least one dose of evobrutinib or placebo at the time of primary analysis. Mean (SD) age at baseline was 40.7 (±12.3) years; 94.9% of patients were female. Neither primary efficacy endpoint was met. All doses of evobrutinib were well tolerated, and there was no clear dose effect on the incidence of reported TEAEs, or serious TEAEs, including severe infections. CONCLUSION This phase II, dose-ranging trial in SLE failed to show a treatment effect of evobrutinib versus placebo at any dose. Evobrutinib was generally well tolerated, with no dose effect observed for TEAEs. These results suggest that BTK inhibition does not appear to be an effective therapeutic intervention for patients with SLE.
Collapse
Affiliation(s)
- Daniel J. Wallace
- Cedars‐Sinai Medical Center and David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Thomas Dörner
- Dept. Medicine/Rheumatology and Clinical ImmunologyCharité UniversitätsmedizinBerlinGermany
| | - David S. Pisetsky
- Division of Rheumatology and Immunology at Duke University Medical CenterDurhamNorth CarolinaUSA,Medical Research Service, Durham VAMCDurhamNorth CarolinaUSA
| | | | - Anand C. Patel
- Pioneering Medicines, Flagship Pioneering, Cambridge, Massachusetts, USA; ECD‐Early Clinical Development, Pfizer, Cambridge, Massachusetts, USA; EMD SeronoBillericaMassachusettsUSA
| | - Dana Parsons‐Rich
- Pioneering Medicines, Flagship Pioneering, Cambridge, Massachusetts, USA; ECD‐Early Clinical Development, Pfizer, Cambridge, Massachusetts, USA; EMD SeronoBillericaMassachusettsUSA
| | | | - Elise E. Drouin
- Pioneering Medicines, Flagship Pioneering, Cambridge, Massachusetts, USA; ECD‐Early Clinical Development, Pfizer, Cambridge, Massachusetts, USA; EMD SeronoBillericaMassachusettsUSA
| | - Amy H. Kao
- Pioneering Medicines, Flagship Pioneering, Cambridge, Massachusetts, USA; ECD‐Early Clinical Development, Pfizer, Cambridge, Massachusetts, USA; EMD SeronoBillericaMassachusettsUSA
| | - Hans Guehring
- The healthcare business of Merck KGaADarmstadtGermany
| | - Maria Dall'Era
- Division of RheumatologyRussell/Engleman Rheumatology Research Center, University of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
22
|
Ramasubramanian B, Reddy VS, Chellappan V, Ramakrishna S. Emerging Materials, Wearables, and Diagnostic Advancements in Therapeutic Treatment of Brain Diseases. BIOSENSORS 2022; 12:1176. [PMID: 36551143 PMCID: PMC9775999 DOI: 10.3390/bios12121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Among the most critical health issues, brain illnesses, such as neurodegenerative conditions and tumors, lower quality of life and have a significant economic impact. Implantable technology and nano-drug carriers have enormous promise for cerebral brain activity sensing and regulated therapeutic application in the treatment and detection of brain illnesses. Flexible materials are chosen for implantable devices because they help reduce biomechanical mismatch between the implanted device and brain tissue. Additionally, implanted biodegradable devices might lessen any autoimmune negative effects. The onerous subsequent operation for removing the implanted device is further lessened with biodegradability. This review expands on current developments in diagnostic technologies such as magnetic resonance imaging, computed tomography, mass spectroscopy, infrared spectroscopy, angiography, and electroencephalogram while providing an overview of prevalent brain diseases. As far as we are aware, there hasn't been a single review article that addresses all the prevalent brain illnesses. The reviewer also looks into the prospects for the future and offers suggestions for the direction of future developments in the treatment of brain diseases.
Collapse
Affiliation(s)
- Brindha Ramasubramanian
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| | - Vijila Chellappan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
23
|
Corneth OBJ, Neys SFH, Hendriks RW. Aberrant B Cell Signaling in Autoimmune Diseases. Cells 2022; 11:cells11213391. [PMID: 36359789 PMCID: PMC9654300 DOI: 10.3390/cells11213391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aberrant B cell signaling plays a critical in role in various systemic and organ-specific autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR) that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways have been implicated in autoimmune disease. These include reduced activity of several phosphates that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL, which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids, has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for autoimmune disease based on interfering with signal transduction in B cells.
Collapse
|
24
|
Muacevic A, Adler JR. Autoimmune Hepatitis Following mRNA COVID-19 Vaccination in a Very Old Patient With Preexisting Sjögren's Syndrome: A Case Report. Cureus 2022; 14:e30896. [PMID: 36465723 PMCID: PMC9711889 DOI: 10.7759/cureus.30896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 01/25/2023] Open
Abstract
A case of autoimmune hepatitis (AIH) following COVID-19 vaccination in a very old patient is presented. An 85-year-old woman who had preexisting Sjögren's syndrome (SS) but had never shown evidence of liver disease was admitted to our hospital due to jaundice and liver dysfunction. Further laboratory tests, imaging studies, and liver histology proved this to be a case of definite AIH. Eight weeks before the disease onset, she had received the second dose of mRNA COVID-19 vaccination. To our knowledge, this is the first case of AIH following COVID-19 vaccination in a patient with a history of SS.
Collapse
|
25
|
Targets of autoantibodies in acquired hemophilia A are not restricted to factor VIII: data from the GTH-AH 01/2010 study. Blood Adv 2022; 7:122-130. [PMID: 35947142 PMCID: PMC9830154 DOI: 10.1182/bloodadvances.2022008071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
The root cause of autoantibody formation against factor VIII (FVIII) in acquired hemophilia A (AHA) remains unclear. We aimed to assess whether AHA is exclusively associated with autoantibodies toward FVIII or whether patients also produce increased levels of autoantibodies against other targets. A case-control study was performed enrolling patients with AHA and age-matched controls. Human epithelial cell (HEp-2) immunofluorescence was applied to screen for antinuclear (ANA) and anticytoplasmic autoantibodies. Screening for autoantibodies against extractable nuclear antigens was performed by enzyme immunoassay detecting SS-A/Ro, SS-B/La, U1RNP, Scl-70, Jo-1, centromere B, Sm, double-stranded DNA, and α-fodrin (AF). Patients with AHA were more often positive for ANA than control patients (64% vs 30%; odds ratio [OR] 4.02, 1.98-8.18) and had higher ANA titers detected than controls. Cytoplasmic autoantibodies and anti-AF immunoglobulin A autoantibodies were also more frequent in patients with AHA compared with controls. Autoantibodies against any target other than FVIII were found in 78% of patients with AHA compared with 46% of controls (OR 4.16, 1.98-8.39). Results were similar preforming sensitivity analyses (excluding either subjects with autoimmune disorders, cancer, pregnancy, or immunosuppressive medication at baseline) and in multivariable binary logistic regression. To exclude that autoantibody staining was merely a result of cross-reactivity of anti-FVIII autoantibodies, we tested a mix of 7 well-characterized monoclonal anti-FVIII antibodies. These antibodies did not stain HEp-2 cells used for ANA detection. In conclusion, a diverse pattern of autoantibodies is associated with AHA, suggesting that a more general breakdown of immune tolerance might be involved in its pathology.
Collapse
|
26
|
Hui CW, Wu WC, Leung SO. Interleukins 4 and 21 Protect Anti-IgM Induced Cell Death in Ramos B Cells: Implication for Autoimmune Diseases. Front Immunol 2022; 13:919854. [PMID: 35911775 PMCID: PMC9326153 DOI: 10.3389/fimmu.2022.919854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 01/11/2023] Open
Abstract
Interleukins 4 (IL-4) and 21 (IL-21) belong to the common gamma chain cytokine family which are highly involved in the progression of autoimmune diseases. While IL-4 is well known to be involved in the suppression of apoptosis of autoreactive B cells, the role played by IL-21 remains unclear. In the current study, we activated the human Burkitt’s lymphoma Ramos B cells with anti-IgM to mimic B cell hyperactivation observed in patients of autoimmune diseases. Consistent with other reported findings, anti-IgM led to the downregulation of proteins involved in B cell survival and proliferation, as well as the activation of caspase 3 activity and DNA damage, resulting in apoptotic cell death after 48-hour treatment. Although both IL-4 and IL-21 reversed anti-IgM-induced apoptosis and cell cycle arrest, they did so via different mechanisms: while IL-4 could directly suppress anti-IgM-induced caspase 3 activation and marker indicative of DNA damage, IL-21 could induce B cell proliferation in the presence of anti-IgM. Importantly, IL-21 also suppressed activation induced cell death in human primary B cells. Pre-treatment with clinically validated JAK inhibitors completely reversed the effects of IL-4 and IL-21 to rescue anti-IgM induced cell death and DNA damage. The results indicate the underlying mechanisms of how IL-4 and IL-21 differentially promote survival of hyperactivated B cells and provide hints to treat autoimmune diseases.
Collapse
|
27
|
Inhibition of Bruton Tyrosine Kinase Reduces Neuroimmune Cascade and Promotes Recovery after Spinal Cord Injury. Int J Mol Sci 2021; 23:ijms23010355. [PMID: 35008785 PMCID: PMC8745213 DOI: 10.3390/ijms23010355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Abstract
Microglia/astrocyte and B cell neuroimmune responses are major contributors to the neurological deficits after traumatic spinal cord injury (SCI). Bruton tyrosine kinase (BTK) activation mechanistically links these neuroimmune mechanisms. Our objective is to use Ibrutinib, an FDA-approved BTK inhibitor, to inhibit the neuroimmune cascade thereby improving locomotor recovery after SCI. Rat models of contusive SCI, Western blot, immunofluorescence staining imaging, flow cytometry analysis, histological staining, and behavioral assessment were used to evaluate BTK activity, neuroimmune cascades, and functional outcomes. Both BTK expression and phosphorylation were increased at the lesion site at 2, 7, 14, and 28 days after SCI. Ibrutinib treatment (6 mg/kg/day, IP, starting 3 h post-injury for 7 or 14 days) reduced BTK activation and total BTK levels, attenuated the injury-induced elevations in Iba1, GFAP, CD138, and IgG at 7 or 14 days post-injury without reduction in CD45RA B cells, improved locomotor function (BBB scores), and resulted in a significant reduction in lesion volume and significant improvement in tissue-sparing 11 weeks post-injury. These results indicate that Ibrutinib exhibits neuroprotective effects by blocking excessive neuroimmune responses through BTK-mediated microglia/astroglial activation and B cell/antibody response in rat models of SCI. These data identify BTK as a potential therapeutic target for SCI.
Collapse
|