1
|
Koziol-White C, Gebski E, Cao G, Panettieri RA. Precision cut lung slices: an integrated ex vivo model for studying lung physiology, pharmacology, disease pathogenesis and drug discovery. Respir Res 2024; 25:231. [PMID: 38824592 PMCID: PMC11144351 DOI: 10.1186/s12931-024-02855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/18/2024] [Indexed: 06/03/2024] Open
Abstract
Precision Cut Lung Slices (PCLS) have emerged as a sophisticated and physiologically relevant ex vivo model for studying the intricacies of lung diseases, including fibrosis, injury, repair, and host defense mechanisms. This innovative methodology presents a unique opportunity to bridge the gap between traditional in vitro cell cultures and in vivo animal models, offering researchers a more accurate representation of the intricate microenvironment of the lung. PCLS require the precise sectioning of lung tissue to maintain its structural and functional integrity. These thin slices serve as invaluable tools for various research endeavors, particularly in the realm of airway diseases. By providing a controlled microenvironment, precision-cut lung slices empower researchers to dissect and comprehend the multifaceted interactions and responses within lung tissue, thereby advancing our understanding of pulmonary pathophysiology.
Collapse
Affiliation(s)
- Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA.
| | - Eric Gebski
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Gaoyaun Cao
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| |
Collapse
|
2
|
Wu W, Li J, Chen S, Ouyang S. The airway neuro-immune axis as a therapeutic target in allergic airway diseases. Respir Res 2024; 25:83. [PMID: 38331782 PMCID: PMC10854139 DOI: 10.1186/s12931-024-02702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Recent evidence has increasingly underscored the importance of the neuro-immune axis in mediating allergic airway diseases, such as allergic asthma and allergic rhinitis. The intimate spatial relationship between neurons and immune cells suggests that their interactions play a pivotal role in regulating allergic airway inflammation. Upon direct activation by allergens, neurons and immune cells engage in interactions, during which neurotransmitters and neuropeptides released by neurons modulate immune cell activity. Meanwhile, immune cells release inflammatory mediators such as histamine and cytokines, stimulating neurons and amplifying neuropeptide production, thereby exacerbating allergic inflammation. The dynamic interplay between the nervous and immune systems suggests that targeting the neuro-immune axis in the airway could represent a novel approach to treating allergic airway diseases. This review summarized recent evidence on the nervous system's regulatory mechanisms in immune responses and identified potential therapeutic targets along the peripheral nerve-immune axis for allergic asthma and allergic rhinitis. The findings will provide novel perspectives on the management of allergic airway diseases in the future.
Collapse
Affiliation(s)
- Wanhua Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, College of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Jianing Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, College of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Su Chen
- Liaobu Hospital of Dongguan City, Dongguan, 523430, China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, College of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
- Liaobu Hospital of Dongguan City, Dongguan, 523430, China.
| |
Collapse
|
3
|
Ahn S, Maarsingh H, Walker JK, Liu S, Hegde A, Sumajit HC, Kahsai AW, Lefkowitz RJ. Allosteric modulator potentiates β2AR agonist-promoted bronchoprotection in asthma models. J Clin Invest 2023; 133:e167337. [PMID: 37432742 PMCID: PMC10503797 DOI: 10.1172/jci167337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Asthma is a chronic inflammatory disease associated with episodic airway narrowing. Inhaled β2-adrenergic receptor (β2AR) agonists (β2-agonists) promote - with limited efficacy - bronchodilation in asthma. All β2-agonists are canonical orthosteric ligands that bind the same site as endogenous epinephrine. We recently isolated a β2AR-selective positive allosteric modulator (PAM), compound-6 (Cmpd-6), which binds outside of the orthosteric site and modulates orthosteric ligand functions. With the emerging therapeutic potential of G-protein coupled receptor allosteric ligands, we investigated the impact of Cmpd-6 on β2AR-mediated bronchoprotection. Consistent with our findings using human β2ARs, Cmpd-6 allosterically potentiated β2-agonist binding to guinea pig β2ARs and downstream signaling of β2ARs. In contrast, Cmpd-6 had no such effect on murine β2ARs, which lack a crucial amino acid in the Cmpd-6 allosteric binding site. Importantly, Cmpd-6 enhanced β2 agonist-mediated bronchoprotection against methacholine-induced bronchoconstriction in guinea pig lung slices, but - in line with the binding studies - not in mice. Moreover, Cmpd-6 robustly potentiated β2 agonist-mediated bronchoprotection against allergen-induced airway constriction in lung slices obtained from a guinea pig model of allergic asthma. Cmpd-6 similarly enhanced β2 agonist-mediated bronchoprotection against methacholine-induced bronchoconstriction in human lung slices. Our results highlight the potential of β2AR-selective PAMs in the treatment of airway narrowing in asthma and other obstructive respiratory diseases.
Collapse
Affiliation(s)
- Seungkirl Ahn
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Harm Maarsingh
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Julia K.L. Walker
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- School of Nursing, Duke University, Durham, North Carolina, USA
| | - Samuel Liu
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Akhil Hegde
- School of Nursing, Duke University, Durham, North Carolina, USA
| | - Hyeje C. Sumajit
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Alem W. Kahsai
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biochemistry and
- Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
Matera MG, Rinaldi B, Calzetta L, Rogliani P, Cazzola M. Advances in adrenergic receptors for the treatment of chronic obstructive pulmonary disease: 2023 update. Expert Opin Pharmacother 2023; 24:2133-2142. [PMID: 37955136 DOI: 10.1080/14656566.2023.2282673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION Strong scientific evidence and large experience support the use of β2-agonists for the symptomatic alleviation of COPD. Therefore, there is considerable effort in discovering highly potent and selective β2-agonists. AREAS COVERED Recent research on novel β2-agonists for the treatment of COPD. A detailed literature search was performed in two major databases (PubMed/MEDLINE and Scopus) up to September 2023." EXPERT OPINION Compounds that preferentially activate a Gs- or β-arrestin-mediated signaling pathway via β- adrenoceptors (ARs) are more innovative. Pepducins, which target the intracellular region of β2-AR to modulate receptor signaling output, have the most interesting profile from a pharmacological point of view. They stabilize the conformation of the β2-AR and influence its signaling by interacting with the intracellular receptor-G protein interface. New bifunctional drugs called muscarinic antagonist-β2 agonist (MABA), which have both muscarinic receptor (mAChR) antagonism and β2-agonist activity in the same molecule, are a new opportunity. However, all tested compounds have been shown to act predominantly as mAChR antagonists or β2-agonists. An intriguing idea is to utilize allosteric modulators that bind to β2-ARs at sites different than those bound by orthosteric ligands to augment or reduce the signaling transduced by the orthosteric ligand.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Diseases and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
5
|
Alkawadri T, Wong PY, Fong Z, Lundy FT, McGarvey LP, Hollywood MA, Thornbury KD, Sergeant GP. M2 Muscarinic Receptor-Dependent Contractions of Airway Smooth Muscle are Inhibited by Activation of β-Adrenoceptors. FUNCTION 2022; 3:zqac050. [PMID: 36325515 PMCID: PMC9617473 DOI: 10.1093/function/zqac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023] Open
Abstract
Beta-adrenoceptor (β-AR) agonists inhibit cholinergic contractions of airway smooth muscle (ASM), but the underlying mechanisms are unclear. ASM cells express M3 and M2 muscarinic receptors, but the bronchoconstrictor effects of acetylcholine are believed to result from activation of M3Rs, while the role of the M2Rs is confined to offsetting β-AR-dependent relaxations. However, a profound M2R-mediated hypersensitization of M3R-dependent contractions of ASM was recently reported, indicating an important role for M2Rs in cholinergic contractions of ASM. Here, we investigated if M2R-dependent contractions of murine bronchial rings were inhibited by activation of β-ARs. M2R-dependent contractions were apparent at low frequency (2Hz) electric field stimulation (EFS) and short (10s) stimulus intervals. The β1-AR agonist, denopamine inhibited EFS-evoked contractions of ASM induced by reduction in stimulus interval from 100 to 10 s and was more effective at inhibiting contractions evoked by EFS at 2 than 20 Hz. Denopamine also abolished carbachol-evoked contractions that were resistant to the M3R antagonist 4-DAMP, similar to the effects of the M2R antagonists, methoctramine and AFDX-116. The inhibitory effects of denopamine on EFS-evoked contractions of ASM were smaller in preparations taken from M2R -/- mice, compared to wild-type (WT) controls. In contrast, inhibitory effects of the β3-AR agonist, BRL37344, on EFS-evoked contractions of detrusor strips taken from M2R -/- mice were greater than WT controls. These data suggest that M2R-dependent contractions of ASM were inhibited by activation of β1-ARs and that genetic ablation of M2Rs decreased the efficacy of β-AR agonists on cholinergic contractions.
Collapse
Affiliation(s)
- Tuleen Alkawadri
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | - Pei Yee Wong
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | - Zhihui Fong
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | - Fionnuala T Lundy
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Lorcan P McGarvey
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | | |
Collapse
|