1
|
Abdel-Wahab BA, Zafaar D, Habeeb MS, El-Shoura EAM. Nicorandil mitigates arsenic trioxide-induced lung injury via modulating vital signalling pathways SIRT1/PGC-1α/TFAM, JAK1/STAT3, and miRNA-132 expression. Br J Pharmacol 2024; 181:3215-3231. [PMID: 38741475 DOI: 10.1111/bph.16414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/13/2024] [Accepted: 03/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Nicorandil, a selective opener of potassium channels, used to treat angina, has drawn attention for its potential in mitigating lung injury, positioning it as a promising therapeutic approach to treat drug-induced lung toxicity. This study aimed to explore the protective role of nicorandil in arsenic trioxide (ATO)-induced lung injury and to elucidate the underlying mechanistic pathways. EXPERIMENTAL APPROACH We assessed the effects of nicorandil (15 mg·kg-1, p.o.) in a rat model of pulmonary injury induced by ATO (5 mg·kg-1, i.p.). The assessment included oxidative stress biomarkers, inflammatory cytokine levels, and other biomarkers, including sirtuin-1, sirtuin-3, STAT3, TFAM, and JAK in lung tissue. Histological examination using H&E staining and molecular investigations using western blotting and PCR techniques were conducted. KEY RESULTS In our model of lung injury, treatment with nicorandil ameliorated pathological changes as seen with H&E staining, reduced tissue levels of toxicity markers, and exerted significant antioxidant and anti-inflammatory actions. On a molecular level, treatment with nicorandil down-regulated JAK, STAT3, PPARγ, Nrf2, VEGF, p53, and micro-RNA 132 while up-regulating Sirt1, 3, TFAM, AMPK, and ERR-α in lung tissue. CONCLUSIONS AND IMPLICATIONS The results presented here show nicorandil as a significant agent in attenuating lung injury induced by ATO in a rodent model. Nonetheless, further clinical studies are warranted to strengthen these findings.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Dalia Zafaar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University of Technology, and Information, Cairo, Egypt
| | | | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
2
|
Liu T, Ji W, Cheng X, Lv L, Yu X, Wang N, Li M, Hu T, Shi Z. Revealing a Novel Methylated Integrin Alpha-8 Related to Extracellular Matrix and Anoikis Resistance Using Proteomic Analysis in the Immune Microenvironment of Lung Adenocarcinoma. Mol Biotechnol 2024:10.1007/s12033-024-01114-9. [PMID: 38514598 DOI: 10.1007/s12033-024-01114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Genomic epigenetics of extracellular matrix (ECM) play an important role in lung adenocarcinoma (LUAD). Our study identified a signature of potential prognostic genes associated with ECM and constructed immune risk-related prognosis model in LUAD. We downloaded mRNAs transcriptome data, miRNAs expression data, and clinical patient information for LUAD based on The Cancer Genome Atlas. "Limma, clusterProfiler, ggplot2" R packages and GSEA were used to analyze meaningful genes and explore potential biological function. A competing endogenous RNA network was constructed to reveal the mechanism of ECM-related genes. Combined with clinical LUAD patients' characteristics, univariate and multivariate Cox regression analyses were used to build prognostic immune risk model. Next, we calculated AUC value of ROC curve, and explored survival probability of different risk groups. A total of 2966 mRNAs were differently expressed in LUAD samples and normal samples. Function enrichment analyses proved mRNAs were associated with many tumor pathways, such as cell adhesion, vascular smooth muscle contraction, and cell cycle. There were 18 mRNAs related to ECM receptor signaling pathway, and 7 mRNAs expressions were correlated with EGFR expression, but only 5mRNAs were associated with the long-term prognosis. Based on Integrin alpha-8 (ITGA8) molecule, we identified potential 3 miRNAs from several databases. The promoter of ITGA8 was higher-methylated and lower-expressed in LUAD. And lower-expressed group has poor prognosis for patients. 66 immunomodulators related to ITGA8 were performed to construct immune correlation prediction model (p < 0.05). Comprehensive analyses of ITGA8 revealed it combined focal adhesion kinase to activate PI3K/AKT signaling pathway to influence the occurrence and development of LUAD. A novel immune prognostic model about ITGA8 was constructed and verified in LUAD patients. Combined with non-coding genes and genomic epigenetics, identification of potential biomarkers provided new light on therapeutic strategy for clinical patients.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xian, Shanxi, China
| | - Wen Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xian, Shanxi, China
| | - Xue Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xian, Shanxi, China
| | - Lin Lv
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xian, Shanxi, China
| | - Xiaohui Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xian, Shanxi, China
| | - Na Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xian, Shanxi, China
| | - Mengcong Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xian, Shanxi, China
| | - Tinghua Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xian, Shanxi, China
| | - Zhihong Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xian, Shanxi, China.
| |
Collapse
|
3
|
Radzki D, Negri A, Kusiak A, Obuchowski M. Matrix Metalloproteinases in the Periodontium-Vital in Tissue Turnover and Unfortunate in Periodontitis. Int J Mol Sci 2024; 25:2763. [PMID: 38474009 DOI: 10.3390/ijms25052763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) is a complex non-cellular three-dimensional macromolecular network present within all tissues and organs, forming the foundation on which cells sit, and composed of proteins (such as collagen), glycosaminoglycans, proteoglycans, minerals, and water. The ECM provides a fundamental framework for the cellular constituents of tissue and biochemical support to surrounding cells. The ECM is a highly dynamic structure that is constantly being remodeled. Matrix metalloproteinases (MMPs) are among the most important proteolytic enzymes of the ECM and are capable of degrading all ECM molecules. MMPs play a relevant role in physiological as well as pathological processes; MMPs participate in embryogenesis, morphogenesis, wound healing, and tissue remodeling, and therefore, their impaired activity may result in several problems. MMP activity is also associated with chronic inflammation, tissue breakdown, fibrosis, and cancer invasion and metastasis. The periodontium is a unique anatomical site, composed of a variety of connective tissues, created by the ECM. During periodontitis, a chronic inflammation affecting the periodontium, increased presence and activity of MMPs is observed, resulting in irreversible losses of periodontal tissues. MMP expression and activity may be controlled in various ways, one of which is the inhibition of their activity by an endogenous group of tissue inhibitors of metalloproteinases (TIMPs), as well as reversion-inducing cysteine-rich protein with Kazal motifs (RECK).
Collapse
Affiliation(s)
- Dominik Radzki
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alessandro Negri
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
| | - Michał Obuchowski
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| |
Collapse
|
4
|
Wang Y, Chen S, Bao S, Yao L, Wen Z, Xu L, Chen X, Guo S, Pang H, Zhou Y, Zhou P. Deciphering the fibrotic process: mechanism of chronic radiation skin injury fibrosis. Front Immunol 2024; 15:1338922. [PMID: 38426100 PMCID: PMC10902513 DOI: 10.3389/fimmu.2024.1338922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-β) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Lixia Xu
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Xiaoman Chen
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Wang X, Deng X, Wu Y, Qian Z, Cai M, Li H, Lin H. Low-level ambient sulfur dioxide exposure and genetic susceptibility associated with incidence of idiopathic pulmonary fibrosis: A national prospective cohort study. CHEMOSPHERE 2023; 337:139362. [PMID: 37414299 DOI: 10.1016/j.chemosphere.2023.139362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND The association between long-term air pollution exposure and the development of idiopathic pulmonary fibrosis (IPF) has been established, but the evidence regarding the effect of low levels of air pollution, especially ambient sulfur dioxide (SO2), is limited. Besides, the combined effect and interaction between genetic susceptibility and ambient SO2 on IPF remain uncertain. METHODS This study retrieved data from 402,042 participants who were free of IPF at baseline in the UK Biobank. The annual mean concentration of ambient SO2 was estimated for each participant based on their residential addresses using a bilinear interpolation method. Cox proportional hazard models were used to examine the relationship between ambient SO2 and incident IPF. We further generated a polygenic risk score (PRS) for IPF and estimated the combined effects of genetic susceptibility and ambient SO2 on incident IPF. RESULTS After a median follow-up of 11.78 years, 2562 cases of IPF were identified. The results indicated that each 1 μg/m3 increase in ambient SO2 was associated with a hazard ratio (HR) (95% confidence interval [CI]) of 1.67 (1.58, 1.76) for incident IPF. The study found statistically significant synergistic additive interaction between genetic susceptibility and ambient SO2. Individuals with high genetic risk and high ambient SO2 exposure had a higher risk of developing IPF (HR = 7.48, 95% CI:5.66, 9.90). CONCLUSION The study suggests that long-term exposure to ambient SO2, even at concentrations lower than current air quality guidelines set by the Word Health Organization and European Union, may be an important risk factor for IPF. This risk is more pronounced among people with a high genetic risk. Therefore, these findings emphasize the need to consider the potential health effects of SO2 exposure and the necessity for stricter air quality standards.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, China
| | - Xu Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Yinglin Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, China
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, USA
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, China
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Shenzhen University General Hospital, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, China.
| |
Collapse
|
6
|
Xie B, Xiong W, Zhang F, Wang N, Luo Y, Chen Y, Cao J, Chen Z, Ma C, Chen H. The miR-103a-3p/TGFBR3 axis regulates TGF-β-induced orbital fibroblast activation and fibrosis in thyroid-eye disease. Mol Cell Endocrinol 2023; 559:111780. [PMID: 36179941 DOI: 10.1016/j.mce.2022.111780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 02/03/2023]
Abstract
Molecular pathways that contribute to orbital fibroblast activation during thyroid-eye disease (TED) may promote TED progression. Non-coding RNAs, especially miRNAs, play a critical role in the pathogenesis of TED. In the present study, miR-103a-3p was dramatically upregulated and TGFBR3 was downregulated within TED orbital tissue samples and TGF-β-stimulated TED orbital fibroblasts. miR-103a-3p inhibition in TGF-β-stimulated TED orbital fibroblasts partially abolished TGF-β-induced fibrotic alterations, as manifested by the impaired fibroblast cell viability and decreased vimentin and fibronectin levels. miR-103a-3p directly targeted TGFBR3 in TED orbital samples and TGF-β-stimulated TED orbital fibroblasts. In TGF-β-stimulated TED orbital fibroblasts, TGFBR3 overexpression inhibited fibroblast cell viability and decreased vimentin and fibronectin levels. TGFBR3 overexpression partially attenuated the inhibitory effects of miR-103a-3p overexpression on TGFBR3 expression and the promotive effects of miR-103a-3p overexpression on TGF-β-induced fibrotic alterations. Under TGF-β stimulation, miR-103a-3p overexpression significantly promoted, whereas TGFBR3 overexpression inhibited the phosphorylation of Erk1/2, JNK, Smad2, and Smad3. TGFBR3 overexpression also partially abolished the effects of miR-103a-3p overexpression on Erk1/2, JNK, Smad2, and Smad3 phosphorylation. In conclusion, the miR-103a-3p/TGFBR3 axis regulated TGF-β-induced TED orbital fibroblast activation and fibrosis in TED, with the possible involvement of the Erk/JNK and TGF-β/Smad signaling pathways.
Collapse
Affiliation(s)
- Bingyu Xie
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wei Xiong
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Feng Zhang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Nuo Wang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yong Luo
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yizhi Chen
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jiamin Cao
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhuokun Chen
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Chen Ma
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Haiyan Chen
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The study of microRNA in asthma has revealed a vibrant new level of gene regulation underlying asthma pathology. Several miRNAs have been shown to be important in asthma, influencing various biological mechanisms which lead to asthma pathology and symptoms. In addition, miRNAs have been proposed as biomarkers of asthma affection status, asthma severity, and asthma treatment response. We review all recent asthma-miRNA work, while also presenting comprehensive tables of all miRNA results related to asthma. RECENT FINDINGS We here reviewed 63 recent studies published reporting asthma and miRNA research, and an additional 14 reviews of the same. We summarized the information for both adult and childhood asthma, as well as research on miRNAs in asthma-COPD overlap syndrome (ACOs), and virus-induced asthma exacerbations. We attempted to present a comprehensive collection of recently published asthma-associated miRNAs as well as tables of all published asthma-related miRNA results.
Collapse
Affiliation(s)
- Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
9
|
Cadena-Suárez AR, Hernández-Hernández HA, Alvarado-Vásquez N, Rangel-Escareño C, Sommer B, Negrete-García MC. Role of MicroRNAs in Signaling Pathways Associated with the Pathogenesis of Idiopathic Pulmonary Fibrosis: A Focus on Epithelial-Mesenchymal Transition. Int J Mol Sci 2022; 23:ijms23126613. [PMID: 35743055 PMCID: PMC9224458 DOI: 10.3390/ijms23126613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with high mortality and unclear etiology. Previous evidence supports that the origin of this disease is associated with epigenetic alterations, age, and environmental factors. IPF initiates with chronic epithelial lung injuries, followed by basal membrane destruction, which promotes the activation of myofibroblasts and excessive synthesis of extracellular matrix (ECM) proteins, as well as epithelial-mesenchymal transition (EMT). Due to miRNAs’ role as regulators of apoptosis, proliferation, differentiation, and cell-cell interaction processes, some studies have involved miRNAs in the biogenesis and progression of IPF. In this context, the analysis and discussion of the probable association of miRNAs with the signaling pathways involved in the development of IPF would improve our knowledge of the associated molecular mechanisms, thereby facilitating its evaluation as a therapeutic target for this severe lung disease. In this work, the most recent publications evaluating the role of miRNAs as regulators or activators of signal pathways associated with the pathogenesis of IPF were analyzed. The search in Pubmed was made using the following terms: “miRNAs and idiopathic pulmonary fibrosis (IPF)”; “miRNAs and IPF and signaling pathways (SP)”; and “miRNAs and IPF and SP and IPF pathogenesis”. Additionally, we focus mainly on those works where the signaling pathways involved with EMT, fibroblast differentiation, and synthesis of ECM components were assessed. Finally, the importance and significance of miRNAs as potential therapeutic or diagnostic tools for the treatment of IPF are discussed.
Collapse
Affiliation(s)
- Ana Ruth Cadena-Suárez
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
| | - Hilda Arely Hernández-Hernández
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
| | - Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico;
| | - Claudia Rangel-Escareño
- Departamento de Genomica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col. Arenal Tepepan, Mexico City 14610, Mexico;
- Escuela de Ingenieria y Ciencias, Tecnológico de Monterrey, Epigmenio González 500, San Pablo 76130, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico;
| | - María Cristina Negrete-García
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
- Correspondence:
| |
Collapse
|
10
|
Savin IA, Markov AV, Zenkova MA, Sen’kova AV. Asthma and Post-Asthmatic Fibrosis: A Search for New Promising Molecular Markers of Transition from Acute Inflammation to Pulmonary Fibrosis. Biomedicines 2022; 10:biomedicines10051017. [PMID: 35625754 PMCID: PMC9138542 DOI: 10.3390/biomedicines10051017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Asthma is a heterogeneous pulmonary disorder, the progression and chronization of which leads to airway remodeling and fibrogenesis. To understand the molecular mechanisms of pulmonary fibrosis development, key genes forming the asthma-specific regulome and involved in lung fibrosis formation were revealed using a comprehensive bioinformatics analysis. The bioinformatics data were validated using a murine model of ovalbumin (OVA)-induced asthma and post-asthmatic fibrosis. The performed analysis revealed a range of well-known pro-fibrotic markers (Cat, Ccl2, Ccl4, Ccr2, Col1a1, Cxcl12, Igf1, Muc5ac/Muc5b, Spp1, Timp1) and a set of novel genes (C3, C3ar1, Col4a1, Col4a2, Cyp2e1, Fn1, Thbs1, Tyrobp) mediating fibrotic changes in lungs already at the stage of acute/subacute asthma-driven inflammation. The validation of genes related to non-allergic bleomycin-induced pulmonary fibrosis on asthmatic/fibrotic lungs allowed us to identify new universal genes (Col4a1 and Col4a2) associated with the development of lung fibrosis regardless of its etiology. The similarities revealed in the expression profiles of nodal fibrotic genes between asthma-driven fibrosis in mice and nascent idiopathic pulmonary fibrosis in humans suggest a tight association of identified genes with the early stages of airway remodeling and can be considered as promising predictors and early markers of pulmonary fibrosis.
Collapse
|
11
|
Cerón-Pisa N, Iglesias A, Shafiek H, Martín-Medina A, Esteva-Socias M, Muncunill J, Fleischer A, Verdú J, Cosío BG, Sauleda J. Hsa-Mir-320c, Hsa-Mir-200c-3p, and Hsa-Mir-449c-5p as Potential Specific miRNA Biomarkers of COPD: A Pilot Study. PATHOPHYSIOLOGY 2022; 29:143-156. [PMID: 35466228 PMCID: PMC9036303 DOI: 10.3390/pathophysiology29020013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease commonly induced by cigarette smoke. The expression of miRNAs can be altered in patients with COPD and could be used as a biomarker. We aimed to identify a panel of miRNAs in bronchoalveolar lavage (BAL) to differentiate COPD patients from smokers and non-smokers with normal lung function. Accordingly, forty-five subjects classified as COPD, smokers, and non-smokers (n = 15 per group) underwent clinical, functional characterization and bronchoscopy with BAL. The mean age of the studied population was 61.61 ± 12.95 years, BMI 25.72 ± 3.82 Kg/m2, FEV1/FVC 68.37 ± 12.00%, and FEV1 80.07 ± 23.63% predicted. According to microarray analysis, three miRNAs of the most upregulated were chosen: miR-320c, miR-200c-3p, and miR-449c-5p. These miRNAs were validated by qPCR and were shown to be differently expressed in COPD patients. ROC analysis showed that these three miRNAs together had an area under the curve of 0.89 in differentiating COPD from controls. Moreover, in silico analysis of candidate miRNAs by DIANA-miRPath showed potential involvement in the EGFR and Hippo pathways. These results suggest a specific 3-miRNA signature that could be potentially used as a biomarker to distinguish COPD patients from smokers and non-smoker subjects.
Collapse
Affiliation(s)
- Noemi Cerón-Pisa
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Amanda Iglesias
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Hanaa Shafiek
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Aina Martín-Medina
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Margalida Esteva-Socias
- Department of Molecular Biology, Wallenberg Centre for Molecular Medicine, Umea University, 90187 Umea, Sweden
| | - Josep Muncunill
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Aarne Fleischer
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Javier Verdú
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Borja G Cosío
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Jaume Sauleda
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
12
|
MicroRNA 148a Suppresses Tuberculous Fibrosis by Targeting NOX4 and POLDIP2. Int J Mol Sci 2022; 23:ijms23062999. [PMID: 35328424 PMCID: PMC8954251 DOI: 10.3390/ijms23062999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Extracellular matrix production by pleural mesothelial cells in response to Mycobacterium tuberculosis contributes to tuberculous fibrosis. NOX4 is involved in the pathogenesis of tuberculous fibrosis. In this study, we evaluated whether NOX4 gene-targeting microRNAs showed protective effects in tuberculosis fibrosis. TargetScan prediction software was used to identify candidate microRNAs that bind the 3′ UTRs of NOX4, and microRNA-148a (miR-148a) was selected as the best miRNA candidate. A repressed and forced expression assay in Met5A cells was performed to investigate the causal relationship between miR-148a and NOX4. The role of miR-148a in tuberculous pleural fibrosis was studied using a murine model of Mycobacterium bovis bacillus Calmette–Guérin (BCG) pleural infection. Heat-killed M. tuberculosis (HKMT) induces NOX4 and POLDIP2 expression. We demonstrated the inhibitory effect of miR-148a on NOX4 and POLDIP2 expression. The increased expression of miR-148a suppressed HKMT-induced collagen-1A synthesis in PMC cells. In the BCG pleurisy model, miR-148a significantly reduced fibrogenesis and epithelial mesenchymal transition. High levels of miR-148a in tuberculous pleural effusion can be interpreted as a self-limiting homeostatic response. Our data indicate that miR-148a may protect against tuberculous pleural fibrosis by regulating NOX4 and POLDIP2.
Collapse
|
13
|
Elliot S, Catanuto P, Pereira-simon S, Xia X, Shahzeidi S, Roberts E, Ludlow J, Hamdan S, Daunert S, Parra J, Stone R, Pastar I, Tomic-Canic M, Glassberg MK. Urine-derived exosomes from individuals with IPF carry pro-fibrotic cargo. eLife 2022; 11:79543. [PMID: 36454035 PMCID: PMC9714968 DOI: 10.7554/elife.79543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNA) and other components contained in extracellular vesicles may reflect the presence of a disease. Lung tissue, sputum, and sera of individuals with idiopathic pulmonary fibrosis (IPF) show alterations in miRNA expression. We designed this study to test whether urine and/or tissue derived exosomal miRNAs from individuals with IPF carry cargo that can promote fibrosis. METHODS Exosomes were isolated from urine (U-IPFexo), lung tissue myofibroblasts (MF-IPFexo), serum from individuals with IPF (n=16) and age/sex-matched controls without lung disease (n=10). We analyzed microRNA expression of isolated exosomes and their in vivo bio-distribution. We investigated the effect on ex vivo skin wound healing and in in vivo mouse lung models. RESULTS U-IPFexo or MF-IPFexo expressed miR-let-7d, miR-29a-5p, miR-181b-3p and miR-199a-3p consistent with previous reports of miRNA expression obtained from lung tissue/sera from patients with IPF. In vivo bio-distribution experiments detected bioluminescent exosomes in the lung of normal C57Bl6 mice within 5 min after intravenous infusion, followed by distribution to other organs irrespective of exosome source. Exosomes labeled with gold nanoparticles and imaged by transmission electron microscopy were visualized in alveolar epithelial type I and type II cells. Treatment of human and mouse lung punches obtained from control, non-fibrotic lungs with either U-IPFexo or MF-IPFexo produced a fibrotic phenotype. A fibrotic phenotype was also induced in a human ex vivo skin model and in in vivo lung models. CONCLUSIONS Our results provide evidence of a systemic feature of IPF whereby exosomes contain pro-fibrotic miRNAs when obtained from a fibrotic source and interfere with response to tissue injury as measured in skin and lung models. FUNDING This work was supported in part by Lester and Sue Smith Foundation and The Samrick Family Foundation and NIH grants R21 AG060338 (SE and MKG), U01 DK119085 (IP, RS, MTC).
Collapse
Affiliation(s)
- Sharon Elliot
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Paola Catanuto
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Simone Pereira-simon
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Xiaomei Xia
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
| | | | - Evan Roberts
- Cancer Modeling Shared Resource Sylvester Comprehensive Cancer Center, University of MiamiMiamiUnited States
| | | | - Suzana Hamdan
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of MedicineMiamiUnited States,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami Miller School of MedicineMiamiUnited States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of MedicineMiamiUnited States,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami Miller School of MedicineMiamiUnited States,Miami Clinical and Translational Science Institute, University of Miami Miller School of MedicineMiamiUnited States
| | - Jennifer Parra
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
| | - Rivka Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Marilyn K Glassberg
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States,Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States,Department of Medicine, Stritch School of Medicine, Loyola University ChicagoChicagoUnited States
| |
Collapse
|