1
|
Daumova L, Manakov D, Petrak J, Sovilj D, Behounek M, Andera L, Vit O, Souckova O, Havranek O, Dolnikova A, Renesova N, Tuskova L, Winkowska L, Bettazova N, Kupcova K, Kalbacova MH, Sikorova M, Trneny M, Klener P. Long-term adaptation of lymphoma cell lines to hypoxia is mediated by diverse molecular mechanisms that are targetable with specific inhibitors. Cell Death Discov 2025; 11:65. [PMID: 39966387 PMCID: PMC11836139 DOI: 10.1038/s41420-025-02341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
A large body of evidence suggests that hypoxia drives aggressive molecular features of malignant cells irrespective of cancer type. Non-Hodgkin lymphomas (NHL) are the most common hematologic malignancies characterized by frequent involvement of diverse hypoxic microenvironments. We studied the impact of long-term deep hypoxia (1% O2) on the biology of lymphoma cells. Only 2 out of 6 tested cell lines (Ramos, and HBL2) survived ≥ 4 weeks under hypoxia. The hypoxia-adapted (HA)b Ramos and HBL2 cells had a decreased proliferation rate accompanied by significant suppression of both oxidative phosphorylation and glycolytic pathways. Transcriptome and proteome analyses revealed marked downregulation of genes and proteins of the mitochondrial respiration complexes I and IV, and mitochondrial ribosomal proteins. Despite the observed suppression of glycolysis, the proteome analysis of both HA cell lines showed upregulation of several proteins involved in the regulation of glucose utilization including the active catalytic component of prolyl-4-hydroxylase P4HA1, an important druggable oncogene. HA cell lines demonstrated increased transcription of key regulators of auto-/mitophagy, e.g., neuritin, BCL2 interacting protein 3 (BNIP3), BNIP3-like protein, and BNIP3 pseudogene. Adaptation to hypoxia was further associated with deregulation of apoptosis, namely upregulation of BCL2L1/BCL-XL, overexpression of BCL2L11/BIM, increased binding of BIM to BCL-XL, and significantly increased sensitivity of both HA cell lines to A1155463, a BCL-XL inhibitor. Finally, in both HA cell lines AKT kinase was hyperphosphorylated and the cells showed increased sensitivity to copanlisib, a pan-PI3K inhibitor. In conclusion, our data report on several shared mechanisms of lymphoma cell adaptation to long-term hypoxia including: 1. Upregulation of proteins responsible for glucose utilization, 2. Degradation of mitochondrial proteins for potential mitochondrial recycling (by mitophagy), and 3. Increased dependence on BCL-XL and PI3K-AKT signaling for survival. In translation, inhibition of glycolysis, BCL-XL, or PI3K-AKT cascade may result in targeted elimination of HA lymphoma cells.
Collapse
Affiliation(s)
- Lenka Daumova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dmitry Manakov
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Petrak
- BIOCEV Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Dana Sovilj
- Institute of Biotechnology, Czech Academy of Sciences / BIOCEV, Vestec, Czech Republic
| | - Matej Behounek
- BIOCEV Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ladislav Andera
- Institute of Biotechnology, Czech Academy of Sciences / BIOCEV, Vestec, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Vit
- BIOCEV Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Olga Souckova
- OMICS Mass Spectrometry Core Facility, Biology Departments, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Ondrej Havranek
- BIOCEV Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alex Dolnikova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nicol Renesova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Liliana Tuskova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Winkowska
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Nardjas Bettazova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristyna Kupcova
- BIOCEV Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marie Hubalek Kalbacova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miriama Sikorova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Trneny
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Khalil NN, Rexius-Hall ML, Escopete S, Parker SJ, McCain ML. Distinct phenotypes induced by acute hypoxia and TGF-β1 in human adult cardiac fibroblasts. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100080. [PMID: 39329164 PMCID: PMC11423773 DOI: 10.1016/j.jmccpl.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 09/28/2024]
Abstract
Myocardial infarction (MI) causes hypoxic injury to downstream myocardial tissue, which initiates a wound healing response that replaces injured myocardial tissue with a scar. Wound healing is a complex process that consists of multiple phases, in which many different stimuli induce cardiac fibroblasts to differentiate into myofibroblasts and deposit new matrix. While this process is necessary to replace necrotic tissue, excessive and unresolved fibrosis is common post-MI and correlated with heart failure. Therefore, defining how cardiac fibroblast phenotypes are distinctly regulated by stimuli that are prevalent in the post-MI microenvironment, such as hypoxia and transforming growth factor-beta (TGF-β), is essential for understanding and ultimately mitigating pathological fibrosis. In this study, we acutely treated primary human adult cardiac fibroblasts with TGF-β1 or hypoxia and then characterized their phenotype through immunofluorescence, quantitative RT-PCR, and proteomic analysis. We found that fibroblasts responded to low oxygen with increased localization of hypoxia inducible factor 1 (HIF-1) to the nuclei after 4h, which was followed by increased gene expression of vascular endothelial growth factor A (VEGFA), a known target of HIF-1, by 24h. Both TGF-β1 and hypoxia inhibited proliferation after 24h. TGF-β1 treatment also upregulated various fibrotic pathways. In contrast, hypoxia caused a reduction in several protein synthesis pathways, including collagen biosynthesis. Collectively, these data suggest that TGF-β1, but not acute hypoxia, robustly induces the differentiation of human cardiac fibroblasts into myofibroblasts. Discerning the overlapping and distinctive outcomes of TGF-β1 and hypoxia treatment is important for elucidating their roles in fibrotic remodeling post-MI and provides insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Natalie N. Khalil
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L. Rexius-Hall
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Sean Escopete
- Department of Cardiology and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sarah J. Parker
- Department of Cardiology and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Megan L. McCain
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
3
|
Ren T, Chen C, Danilov AV, Liu S, Guan X, Du S, Wu X, Sherman MH, Spellman PT, Coussens LM, Adey AC, Mills GB, Wu LY, Xia Z. Supervised learning of high-confidence phenotypic subpopulations from single-cell data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533712. [PMID: 36993424 PMCID: PMC10055361 DOI: 10.1101/2023.03.23.533712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Accurately identifying phenotype-relevant cell subsets from heterogeneous cell populations is crucial for delineating the underlying mechanisms driving biological or clinical phenotypes. Here, by deploying a learning with rejection strategy, we developed a novel supervised learning framework called PENCIL to identify subpopulations associated with categorical or continuous phenotypes from single-cell data. By embedding a feature selection function into this flexible framework, for the first time, we were able to select informative features and identify cell subpopulations simultaneously, which enables the accurate identification of phenotypic subpopulations otherwise missed by methods incapable of concurrent gene selection. Furthermore, the regression mode of PENCIL presents a novel ability for supervised phenotypic trajectory learning of subpopulations from single-cell data. We conducted comprehensive simulations to evaluate PENCIĽs versatility in simultaneous gene selection, subpopulation identification and phenotypic trajectory prediction. PENCIL is fast and scalable to analyze 1 million cells within 1 hour. Using the classification mode, PENCIL detected T-cell subpopulations associated with melanoma immunotherapy outcomes. Moreover, when applied to scRNA-seq of a mantle cell lymphoma patient with drug treatment across multiple time points, the regression mode of PENCIL revealed a transcriptional treatment response trajectory. Collectively, our work introduces a scalable and flexible infrastructure to accurately identify phenotype-associated subpopulations from single-cell data.
Collapse
Affiliation(s)
- Tao Ren
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Canping Chen
- Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | | | - Susan Liu
- Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Xiangnan Guan
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, CA, USA
| | - Shunyi Du
- Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Xiwei Wu
- City of Hope National Medical Center, Duarte, CA, USA
| | - Mara H. Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Paul T. Spellman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Lisa M. Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Andrew C. Adey
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Gordon B. Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ling-Yun Wu
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
4
|
Jin Z, Xiang R, Dai J, Wang Y, Xu Z. HIF-1α mediates CXCR4 transcription to activate the AKT/mTOR signaling pathway and augment the viability and migration of activated B cell-like diffuse large B-cell lymphoma cells. Mol Carcinog 2023; 62:676-684. [PMID: 36789975 DOI: 10.1002/mc.23515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/16/2022] [Accepted: 01/28/2023] [Indexed: 02/16/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy with a high relapse rate. We previously found that C-X-C motif chemokine receptor 4 (CXCR4) was highly expressed in DLBCL and associated with poor prognosis. This study focused on the effect of hypoxia-inducible factor-1α (HIF-1α) on CXCR4 expression and the DLBCL progression. Two activated B cell-like DLBCL cell lines Ly-3 and SUDHL2 were transfected with overexpression and knockdown plasmids or HIF-1α. The viability and migration of DLBCL cells were significantly increased under hypoxic conditions, or upon HIF-1α overexpression under normoxic conditions, but the HIF-1α downregulation led to inverse trends. However, the promoting effects of HIF-1α overexpression on DLBCL cells were suppressed by Plerixafor (a CXCR4 inhibitor). The luciferase and chromatin immunoprecipitation assays revealed that HIF-1α bound to the functional site HRE1 on CXCR4 promoter to activate its transcription. HIF-1α-mediated CXCR4 activation further led to increased phosphorylation of AKT/mTOR under hypoxic conditions. Taken together, this work reports that HIF-1α promotes viability and migration of activated B cell-like cells under hypoxia, which might involve the transcription of CXCR4 and the activation of the AKT/mTOR pathway. The finding may provide novel lights in the management of DCBCL.
Collapse
Affiliation(s)
- Zhen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rufang Xiang
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Dai
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yefei Wang
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zizhen Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Adebayo AK, Nakshatri H. Modeling Preclinical Cancer Studies under Physioxia to Enhance Clinical Translation. Cancer Res 2022; 82:4313-4321. [PMID: 36169928 PMCID: PMC9722631 DOI: 10.1158/0008-5472.can-22-2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Oxygen (O2) plays a key role in cellular homeostasis. O2 levels are tightly regulated in vivo such that each tissue receives an optimal amount to maintain physiologic status. Physiologic O2 levels in various organs range between 2% and 9% in vivo, with the highest levels of 9% in the kidneys and the lowest of 0.5% in parts of the brain. This physiologic range of O2 tensions is disrupted in pathologic conditions such as cancer, where it can reach as low as 0.5%. Regardless of the state, O2 tension in vivo is maintained at significantly lower levels than ambient O2, which is approximately 21%. Yet, routine in vitro cellular manipulations are carried out in ambient air, regardless of whether or not they are eventually transferred to hypoxic conditions for subsequent studies. Even brief exposure of hematopoietic stem cells to ambient air can cause detrimental effects through a mechanism termed extraphysiologic oxygen shock/stress (EPHOSS), leading to reduced engraftment capabilities. Here, we provide an overview of the effects of ambient air exposure on stem and non-stem cell subtypes, with a focus on recent findings that reveal the impact of EPHOSS on cancer cells.
Collapse
Affiliation(s)
- Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Alva R, Moradi F, Liang P, Stuart JA. Culture of Cancer Cells at Physiological Oxygen Levels Affects Gene Expression in a Cell-Type Specific Manner. Biomolecules 2022; 12:1684. [PMID: 36421698 PMCID: PMC9688152 DOI: 10.3390/biom12111684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 02/26/2024] Open
Abstract
Standard cell culture is routinely performed at supraphysiological oxygen levels (~18% O2). Conversely, O2 levels in most mammalian tissues range from 1-6% (physioxia). Such hyperoxic conditions in cell culture can alter reactive oxygen species (ROS) production, metabolism, mitochondrial networks, and response to drugs and hormones. The aim of this study was to investigate the transcriptional response to different O2 levels and determine whether it is similar across cell lines, or cell line-specific. Using RNA-seq, we performed differential gene expression and functional enrichment analyses in four human cancer cell lines, LNCaP, Huh-7, PC-3, and SH-SY5Y cultured at either 5% or 18% O2 for 14 days. We found that O2 levels affected transcript abundance of thousands of genes, with the affected genes having little overlap between cell lines. Functional enrichment analysis also revealed different processes and pathways being affected by O2 in each cell line. Interestingly, most of the top differentially expressed genes are involved in cancer biology, which highlights the importance of O2 levels in cancer cell research. Further, we observed several hypoxia-inducible factor (HIF) targets, HIF-2α targets particularly, upregulated at 5% O2, consistent with a role for HIFs in physioxia. O2 levels also differentially induced the transcription of mitochondria-encoded genes in most cell lines. Finally, by comparing our transcriptomic data from LNCaP and PC-3 with datasets from the Prostate Cancer Transcriptome Atlas, a correlation between genes upregulated at 5% O2 in LNCaP cells and the in vivo prostate cancer transcriptome was found. We conclude that the transcriptional response to O2 over the range from 5-18% is robust and highly cell-type specific. This latter finding indicates that the effects of O2 levels are difficult to predict and thus highlights the importance of regulating O2 in cell culture.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Fereshteh Moradi
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Biotechnology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Jeffrey A. Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Biotechnology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
7
|
Alva R, Gardner GL, Liang P, Stuart JA. Supraphysiological Oxygen Levels in Mammalian Cell Culture: Current State and Future Perspectives. Cells 2022; 11:3123. [PMID: 36231085 PMCID: PMC9563760 DOI: 10.3390/cells11193123] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Most conventional incubators used in cell culture do not regulate O2 levels, making the headspace O2 concentration ~18%. In contrast, most human tissues are exposed to 2-6% O2 (physioxia) in vivo. Accumulating evidence has shown that such hyperoxic conditions in standard cell culture practices affect a variety of biological processes. In this review, we discuss how supraphysiological O2 levels affect reactive oxygen species (ROS) metabolism and redox homeostasis, gene expression, replicative lifespan, cellular respiration, and mitochondrial dynamics. Furthermore, we present evidence demonstrating how hyperoxic cell culture conditions fail to recapitulate the physiological and pathological behavior of tissues in vivo, including cases of how O2 alters the cellular response to drugs, hormones, and toxicants. We conclude that maintaining physioxia in cell culture is imperative in order to better replicate in vivo-like tissue physiology and pathology, and to avoid artifacts in research involving cell culture.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | | | | | | |
Collapse
|
8
|
Hub Gene and Its Key Effects on Diffuse Large B-Cell Lymphoma by Weighted Gene Coexpression Network Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8127145. [PMID: 34873574 PMCID: PMC8643236 DOI: 10.1155/2021/8127145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
Diffuse large B-cell lymphoma (DLBC) is a kind of tumor with rapid progress and poor prognosis. Therefore, it is necessary to explore new biomarkers or therapeutic targets to assist in diagnosis or treatment. This study is aimed at screening hub genes by weighted gene coexpression network analysis (WGCNA) and exploring the significance of overall survival (OS) in DLBC patients. Statistical data using WGCNA to analyze mRNA expression in DLBC patients came from The Cancer Genome Atlas (TCGA) dataset. After analyzing with clinical information, the biological functions of hub genes were detected. Survival analysis, Cox regression detection, and correlation analysis of the hub genes were carried out. The potential function of the hub gene related to prognosis was predicted by gene set enrichment analysis (GSEA). The results showed that APOE, CTSD, LGALS2, and TMEM176B expression in normal tissues was significantly higher than that in cancer tissues (P < 0.01). Survival analysis showed that patients with high APOE and CTSD were associated with better OS (P < 0.01). APOE and CTSD genes were mainly enriched in the regulation of ROS and oxidative stress. The two hub genes related to the prognosis of DLBC were identified and verified based on WGCNA. Survival analysis showed that the overexpression of APOE and CTSD in DLBC might be beneficial to the prognosis. These findings identified vital pathways and genes that may become new therapeutic targets and contribute to prognostic indicators.
Collapse
|