1
|
Blair GA, Depman M, Adams WP, Maisonneuve RO, Hoeker GS, Weinberg SH, Poelzing S. Sequence-Dependent Repolarization Is Modulated by Endogenous Action Potential Duration Gradients Rather Than Electrical Coupling in Ventricular Myocardium. J Am Heart Assoc 2024:e030433. [PMID: 39719415 DOI: 10.1161/jaha.123.030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Previous studies suggest the relationship between activation time (AT) and action potential duration (APD) in the heart is dependent on electrotonic coupling, but this has not been directly tested. This study assessed whether acute changes in electrical coupling, or other determinants of conduction or repolarization, modulate APD heterogeneity. METHODS AND RESULTS Langendorff-perfused guinea pig hearts were epicardially paced and optically mapped after treatment with the gap junction uncoupler carbenoxolone, ephaptic uncoupler mannitol, ephaptic enhancer dextran 2MDa, sodium channel inhibitor flecainide, or rapid component of the delayed rectifier potassium channel inhibitor E4031. SD of APD and the AT-APD slope and coefficient of determination were quantified as metrics of APD heterogeneity. SD of APD increased with carbenoxolone, mannitol, and altered activation sequence. The AT-APD slope was insensitive to carbenoxolone, mannitol, dextran, flecainide, or E4031 but changed in response to activation sequence. The coefficient of determination did not change with carbenoxolone; decreased with mannitol, E4031, and activation sequence; but increased with dextran and flecainide. APD heterogeneity changes were dependent on whether the estimation used SD of APD or the AT-APD relationship. The pacing stimulus increased APD at the site of stimulation, revealing a confounding stimulus effect on APD within the measurement area. Simulations predict that the stimulus artifact and endogenous APD gradients are stronger determinants of APD heterogeneity than AT. CONCLUSIONS APD dependence on conduction is relatively small. Furthermore, APD heterogeneity within a mapping field of view is dependent on endogenous gradients, the stimulus artifact, and the experimental approach, rather than electrical coupling.
Collapse
Affiliation(s)
- Grace A Blair
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech Roanoke VA USA
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - Madeline Depman
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech Roanoke VA USA
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - William P Adams
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - Rowan O Maisonneuve
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - Gregory S Hoeker
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - Seth H Weinberg
- Department of Biomedical Engineering Davis Heart and Lung Research Institute, The Ohio State University Columbus OH USA
| | - Steve Poelzing
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech Roanoke VA USA
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
- Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Blacksburg VA USA
| |
Collapse
|
2
|
Palmen R, Walton M, Wagner J. Pediatric flecainide pharmacogenomics: a roadmap to delivering precision-based care to pediatrics arrhythmias. Front Pharmacol 2024; 15:1477485. [PMID: 39741635 PMCID: PMC11686437 DOI: 10.3389/fphar.2024.1477485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025] Open
Abstract
Flecainide acetate is a Class 1c anti-arrhythmic with a potent sodium voltage gated channel blockade which is utilized for the second-line treatment of tachyarrhythmias in children and adults. Given its narrow therapeutic index, the individualization of drug therapy is of utmost importance for clinicians. Despite efforts to improve anti-arrhythmic drug therapy, there remain knowledge gaps regarding the impact of variation in the genes relevant to flecainide's disposition and response. This variability is compounded in developing children whose drug disposition and response pathways may remain immature. The purpose of this comprehensive review is to outline flecainide's disposition and response pathways while simultaneously highlighting opportunities for prospective investigation in the pediatric population.
Collapse
Affiliation(s)
- Ronald Palmen
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Mollie Walton
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
- Division of Cardiology, Kansas City, MO, United States
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy, Kansas City, MO, United States
| | - Jonathan Wagner
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
- Division of Cardiology, Kansas City, MO, United States
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy, Kansas City, MO, United States
| |
Collapse
|
3
|
Dan GA. Resurrection of classical antiarrhythmic drugs. Int J Cardiol 2024; 412:132300. [PMID: 38945371 DOI: 10.1016/j.ijcard.2024.132300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Affiliation(s)
- G Andrei Dan
- Carol Davila University of Medicine, Bucharest, Romania; Romanian Academy of Scientists, Romania.
| |
Collapse
|
4
|
Thekkedam CG, Dutka TL, Van der Poel C, Burgio G, Dulhunty AF. The RyR1 P3528S Substitution Alters Mouse Skeletal Muscle Contractile Properties and RyR1 Ion Channel Gating. Int J Mol Sci 2023; 25:434. [PMID: 38203604 PMCID: PMC10778724 DOI: 10.3390/ijms25010434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The recessive Ryanodine Receptor Type 1 (RyR1) P3527S mutation causes mild muscle weakness in patients and increased resting cytoplasmic [Ca2+] in transformed lymphoblastoid cells. In the present study, we explored the cellular/molecular effects of this mutation in a mouse model of the mutation (RyR1 P3528S). The results were obtained from 73 wild type (WT/WT), 82 heterozygous (WT/MUT) and 66 homozygous (MUT/MUT) mice with different numbers of observations in individual data sets depending on the experimental protocol. The results showed that WT/MUT and MUT/MUT mouse strength was less than that of WT/WT mice, but there was no difference between genotypes in appearance, weight, mobility or longevity. The force frequency response of extensor digitorum longus (EDL) and soleus (SOL) muscles from WT/MUT and MUT/MUT mice was shifter to higher frequencies. The specific force of EDL muscles was reduced and Ca2+ activation of skinned fibres shifted to a lower [Ca2+], with an increase in type I fibres in EDL muscles and in mixed type I/II fibres in SOL muscles. The relative activity of RyR1 channels exposed to 1 µM cytoplasmic Ca2+ was greater in WT/MUT and MUT/MUT mice than in WT/WT mice. We suggest the altered RyR1 activity due to the P2328S substitution could increase resting [Ca2+] in muscle fibres, leading to changes in fibre type and contractile properties.
Collapse
Affiliation(s)
- Chris G. Thekkedam
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| | - Travis L. Dutka
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, VIC 3086, Australia;
| | - Chris Van der Poel
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Gaetan Burgio
- Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| | - Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| |
Collapse
|
5
|
Siu A, Tandanu E, Ma B, Osas EE, Liu H, Liu T, Chou OHI, Huang H, Tse G. Precision medicine in catecholaminergic polymorphic ventricular tachycardia: Recent advances toward personalized care. Ann Pediatr Cardiol 2023; 16:431-446. [PMID: 38817258 PMCID: PMC11135882 DOI: 10.4103/apc.apc_96_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/12/2023] [Accepted: 01/14/2024] [Indexed: 06/01/2024] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited cardiac ion channelopathy where the initial disease presentation is during childhood or adolescent stages, leading to increased risks of sudden cardiac death. Despite advances in medical science and technology, several gaps remain in the understanding of the molecular mechanisms, risk prediction, and therapeutic management of patients with CPVT. Recent studies have identified and validated seven sets of genes responsible for various CPVT phenotypes, including RyR2, CASQ-2, TRDN, CALM1, 2, and 3, and TECRL, providing novel insights into the molecular mechanisms. However, more data on atypical CPVT genotypes are required to investigate the underlying mechanisms further. The complexities of the underlying genetics contribute to challenges in risk stratification as well as the uncertainty surrounding nongenetic modifiers. Therapeutically, although medical management involving beta-blockers and flecainide, or insertion of an implantable cardioverter defibrillator remains the mainstay of treatment, animal and stem cell studies on gene therapy for CPVT have shown promising results. However, its clinical applicability remains unclear. Current gene therapy studies have primarily focused on the RyR2 and CASQ-2 variants, which constitute 75% of all CPVT cases. Alternative approaches that target a broader population, such as CaMKII inhibition, could be more feasible for clinical implementation. Together, this review provides an update on recent research on CPVT, highlighting the need for further investigation of the molecular mechanisms, risk stratification, and therapeutic management of this potentially lethal condition.
Collapse
Affiliation(s)
- Anthony Siu
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, Powerhealth Research Institute, Hong Kong, China
- GKT School of Medical Education, King’s College London, London, United Kingdom
| | - Edelyne Tandanu
- GKT School of Medical Education, King’s College London, London, United Kingdom
| | - Brian Ma
- Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | | | - Haipeng Liu
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Tong Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Oscar Hou In Chou
- Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Helen Huang
- University of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gary Tse
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Kent and Medway Medical School, University of Kent, Canterbury, United Kingdom
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| |
Collapse
|
6
|
Richardson SJ, Thekkedam CG, Casarotto MG, Beard NA, Dulhunty AF. FKBP12 binds to the cardiac ryanodine receptor with negative cooperativity: implications for heart muscle physiology in health and disease. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220169. [PMID: 37122219 PMCID: PMC10150220 DOI: 10.1098/rstb.2022.0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Cardiac ryanodine receptors (RyR2) release the Ca2+ from intracellular stores that is essential for cardiac myocyte contraction. The ion channel opening is tightly regulated by intracellular factors, including the FK506 binding proteins, FKBP12 and FKBP12.6. The impact of these proteins on RyR2 activity and cardiac contraction is debated, with often apparently contradictory experimental results, particularly for FKBP12. The isoform that regulates RyR2 has generally been considered to be FKBP12.6, despite the fact that FKBP12 is the major isoform associated with RyR2 in some species and is bound in similar proportions to FKBP12.6 in others, including sheep and humans. Here, we show time- and concentration-dependent effects of adding FKBP12 to RyR2 channels that were partly depleted of FKBP12/12.6 during isolation. The added FKBP12 displaced most remaining endogenous FKBP12/12.6. The results suggest that FKBP12 activates RyR2 with high affinity and inhibits RyR2 with lower affinity, consistent with a model of negative cooperativity in FKBP12 binding to each of the four subunits in the RyR tetramer. The easy dissociation of some FKBP12/12.6 could dynamically alter RyR2 activity in response to changes in in vivo regulatory factors, indicating a significant role for FKBP12/12.6 in Ca2+ signalling and cardiac function in healthy and diseased hearts. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- S J Richardson
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| | - C G Thekkedam
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| | - M G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| | - N A Beard
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| | - A F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| |
Collapse
|
7
|
MATSUKAWA HIROYUKI, MURAYAMA TAKASHI. Development of Ryanodine Receptor (RyR) Inhibitors for Skeletal Muscle and Heart Diseases. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:180-187. [PMID: 38855953 PMCID: PMC11153067 DOI: 10.14789/jmj.jmj22-0045-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 06/11/2024]
Abstract
Ryanodine receptors (RyR) are intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum of skeletal and cardiac muscles that play a central role in excitation-contraction coupling. Genetic mutations or posttranslational modifications of RyR causes hyperactivation of the channel, leading to various skeletal muscle and heart diseases. Currently, no specific treatments exist for most RyR-associated diseases. Recently, high-throughput screening (HTS) assays have been developed to identify potential candidates for treating RyR-related muscle diseases. These assays have successfully identified several compounds as novel RyR inhibitors, which are effective in animal models. In this review, we will focus on recent progress in HTS assays and discuss future perspectives of these promising approaches.
Collapse
Affiliation(s)
| | - TAKASHI MURAYAMA
- Corresponding author: Takashi Murayama, Department of Pharmacology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, TEL: +81-3-5802-1035 E-mail: Research of the 4th Alumni Scientific Award for Medical Student, Juntendo University School of Medicine
| |
Collapse
|
8
|
Alomar FA, Tian C, Bidasee SR, Venn ZL, Schroder E, Palermo NY, AlShabeeb M, Edagwa BJ, Payne JJ, Bidasee KR. HIV-Tat Exacerbates the Actions of Atazanavir, Efavirenz, and Ritonavir on Cardiac Ryanodine Receptor (RyR2). Int J Mol Sci 2022; 24:ijms24010274. [PMID: 36613717 PMCID: PMC9820108 DOI: 10.3390/ijms24010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
The incidence of sudden cardiac death (SCD) in people living with HIV infection (PLWH), especially those with inadequate viral suppression, is high and the reasons for this remain incompletely characterized. The timely opening and closing of type 2 ryanodine receptor (RyR2) is critical for ensuring rhythmic cardiac contraction-relaxation cycles, and the disruption of these processes can elicit Ca2+ waves, ventricular arrhythmias, and SCD. Herein, we show that the HIV protein Tat (HIV-Tat: 0-52 ng/mL) and therapeutic levels of the antiretroviral drugs atazanavir (ATV: 0-25,344 ng/mL), efavirenz (EFV: 0-11,376 ng/mL), and ritonavir (RTV: 0-25,956 ng/mL) bind to and modulate the opening and closing of RyR2. Abacavir (0-14,315 ng/mL), bictegravir (0-22,469 ng/mL), Rilpivirine (0-14,360 ng/mL), and tenofovir disoproxil fumarate (0-18,321 ng/mL) did not alter [3H]ryanodine binding to RyR2. Pretreating RyR2 with low HIV-Tat (14 ng/mL) potentiated the abilities of ATV and RTV to bind to open RyR2 and enhanced their ability to bind to EFV to close RyR2. In silico molecular docking using a Schrodinger Prime protein-protein docking algorithm identified three thermodynamically favored interacting sites for HIV-Tat on RyR2. The most favored site resides between amino acids (AA) 1702-1963; the second favored site resides between AA 467-1465, and the third site resides between AA 201-1816. Collectively, these new data show that HIV-Tat, ATV, EFV, and RTV can bind to and modulate the activity of RyR2 and that HIV-Tat can exacerbate the actions of ATV, EFV, and RTV on RyR2. Whether the modulation of RyR2 by these agents increases the risk of arrhythmias and SCD remains to be explored.
Collapse
Affiliation(s)
- Fadhel A. Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Chengju Tian
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sean R. Bidasee
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zachary L. Venn
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Evan Schroder
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nicholas Y. Palermo
- Vice Chancellor for Research Cores, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohammad AlShabeeb
- Population Health Research Section, King Abdullah International Medical Research Center, King Saudi bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Benson J. Edagwa
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jason J. Payne
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Keshore R. Bidasee
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Nebraska Redox Biology Center, Lincoln, NE 68588, USA
- Correspondence: ; Tel.: +402-559-9018; Fax: +402-559-7495
| |
Collapse
|
9
|
Abstract
Flecainide, a cardiac class 1C blocker of the surface membrane sodium channel (NaV1.5), has also been reported to reduce cardiac ryanodine receptor (RyR2)-mediated sarcoplasmic reticulum (SR) Ca2+ release. It has been introduced as a clinical antiarrhythmic agent for catecholaminergic polymorphic ventricular tachycardia (CPVT), a condition most commonly associated with gain-of-function RyR2 mutations. Current debate concerns both cellular mechanisms of its antiarrhythmic action and molecular mechanisms of its RyR2 actions. At the cellular level, it targets NaV1.5, RyR2, Na+/Ca2+ exchange (NCX), and additional proteins involved in excitation-contraction (EC) coupling and potentially contribute to the CPVT phenotype. This Viewpoint primarily addresses the various direct molecular actions of flecainide on isolated RyR2 channels in artificial lipid bilayers. Such studies demonstrate different, multifarious, flecainide binding sites on RyR2, with voltage-dependent binding in the channel pore or voltage-independent binding at distant peripheral sites. In contrast to its single NaV1.5 pore binding site, flecainide may bind to at least four separate inhibitory sites on RyR2 and one activation site. None of these binding sites have been specifically located in the linear RyR2 sequence or high-resolution structure. Furthermore, it is not clear which of the inhibitory sites contribute to flecainide's reduction of spontaneous Ca2+ release in cellular studies. A confounding observation is that flecainide binding to voltage-dependent inhibition sites reduces cation fluxes in a direction opposite to physiological Ca2+ flow from SR lumen to cytosol. This may suggest that, rather than directly blocking Ca2+ efflux, flecainide can reduce Ca2+ efflux by blocking counter currents through the pore which otherwise limit SR membrane potential change during systolic Ca2+ efflux. In summary, the antiarrhythmic effects of flecainide in CPVT seem to involve multiple components of EC coupling and multiple actions on RyR2. Their clarification may identify novel specific drug targets and facilitate flecainide's clinical utilization in CPVT.
Collapse
Affiliation(s)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - James A. Fraser
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| |
Collapse
|
10
|
Li Y, Peng X, Lin R, Wang X, Liu X, Bai R, Ma C, Tang R, Ruan Y, Liu N. The Antiarrhythmic Mechanisms of Flecainide in Catecholaminergic Polymorphic Ventricular Tachycardia. Front Physiol 2022; 13:850117. [PMID: 35356081 PMCID: PMC8959698 DOI: 10.3389/fphys.2022.850117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe yet rare inherited arrhythmia disorder. The cornerstone of CPVT medical therapy is the use of β-blockers; 30% of patients with CPVT do not respond well to optimal β-blocker treatment. Studies have shown that flecainide effectively prevents life-threatening arrhythmias in CPVT. Flecainide is a class IC antiarrhythmic drug blocking cardiac sodium channels. RyR2 inhibition is proposed as the principal mechanism of antiarrhythmic action of flecainide in CPVT, while it is highly debated. In this article, we review the current progress of this issue.
Collapse
Affiliation(s)
- Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xiaodong Peng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Rong Lin
- North China Medical and Health Group XingTai Hospital, Xingtai, China
| | - Xuesi Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Xinmeng Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Rong Bai
- Banner – University Medical Center Phoenix, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Ribo Tang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
- Ribo Tang,
| | - Yanfei Ruan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
- Yanfei Ruan,
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
- *Correspondence: Nian Liu,
| |
Collapse
|
11
|
Dulhunty AF. Molecular Changes in the Cardiac RyR2 With Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). Front Physiol 2022; 13:830367. [PMID: 35222090 PMCID: PMC8867003 DOI: 10.3389/fphys.2022.830367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The cardiac ryanodine receptor Ca2+ release channel (RyR2) is inserted into the membrane of intracellular sarcoplasmic reticulum (SR) myocyte Ca2+ stores, where it releases the Ca2+ essential for contraction. Mutations in proteins involved in Ca2+ signaling can lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). The most common cellular phenotype in CPVT is higher than normal cytoplasmic Ca2+ concentrations during diastole due to Ca2+ leak from the SR through mutant RyR2. Arrhythmias are triggered when the surface membrane sodium calcium exchanger (NCX) lowers cytoplasmic Ca2+ by importing 3 Na+ ions to extrude one Ca2+ ion. The Na+ influx leads to delayed after depolarizations (DADs) which trigger arrhythmia when reaching action potential threshold. Present therapies use drugs developed for different purposes that serendipitously reduce RyR2 Ca2+ leak, but can adversely effect systolic Ca2+ release and other target processes. Ideal drugs would specifically reverse the effect of individual mutations, without altering normal channel function. Such drugs will depend on the location of the mutation in the 4967-residue monomer and the effect of the mutation on local structure, and downstream effects on structures along the conformational pathway to the pore. Such atomic resolution information is only now becoming available. This perspective provides a summary of known or predicted structural changes associated with a handful of CPVT mutations. Known molecular changes associated with RyR opening are discussed, as well one study where minute molecular changes with a particular mutation have been tracked from the N-terminal mutation site to gating residues in the channel pore.
Collapse
|
12
|
Arslanova A, Shafaattalab S, Ye K, Asghari P, Lin L, Kim B, Roston TM, Hove-Madsen L, Van Petegem F, Sanatani S, Moore E, Lynn F, Søndergaard M, Luo Y, Chen SRW, Tibbits GF. Using hiPSC-CMs to Examine Mechanisms of Catecholaminergic Polymorphic Ventricular Tachycardia. Curr Protoc 2021; 1:e320. [PMID: 34958715 DOI: 10.1002/cpz1.320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a potentially lethal inherited cardiac arrhythmia condition, triggered by physical or acute emotional stress, that predominantly expresses early in life. Gain-of-function mutations in the cardiac ryanodine receptor gene (RYR2) account for the majority of CPVT cases, causing substantial disruption of intracellular calcium (Ca2+ ) homeostasis particularly during the periods of β-adrenergic receptor stimulation. However, the highly variable penetrance, patient outcomes, and drug responses observed in clinical practice remain unexplained, even for patients with well-established founder RyR2 mutations. Therefore, investigation of the electrophysiological consequences of CPVT-causing RyR2 mutations is crucial to better understand the pathophysiology of the disease. The development of strategies for reprogramming human somatic cells to human induced pluripotent stem cells (hiPSCs) has provided a unique opportunity to study inherited arrhythmias, due to the ability of hiPSCs to differentiate down a cardiac lineage. Employment of genome editing enables generation of disease-specific cell lines from healthy and diseased patient-derived hiPSCs, which subsequently can be differentiated into cardiomyocytes. This paper describes the means for establishing an hiPSC-based model of CPVT in order to recapitulate the disease phenotype in vitro and investigate underlying pathophysiological mechanisms. The framework of this approach has the potential to contribute to disease modeling and personalized medicine using hiPSC-derived cardiomyocytes. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Alia Arslanova
- Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sanam Shafaattalab
- Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kevin Ye
- Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Lin
- Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - BaRun Kim
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Thomas M Roston
- British Columbia Children's Hospital Heart Center, Vancouver, British Columbia, Canada
| | - Leif Hove-Madsen
- Cardiac Rhythm and Contraction Group, IIBB-CSIC, CIBERCV, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shubhayan Sanatani
- British Columbia Children's Hospital Heart Center, Vancouver, British Columbia, Canada
| | - Edwin Moore
- Cardiac Rhythm and Contraction Group, IIBB-CSIC, CIBERCV, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Francis Lynn
- Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | | | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Glen F Tibbits
- Cellular and Regenerative Medicine Centre, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|