1
|
Jiang Y, Zou Y, Wang H. Review of research progress on different modalities of Macrophage death in Mycobacterium leprae infection. Int Immunopharmacol 2024; 142:113240. [PMID: 39332094 DOI: 10.1016/j.intimp.2024.113240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Leprosy, caused by Mycobacterium leprae (M. leprae), is a chronic infectious disease primarily affecting the skin and peripheral nerves. The interaction between M. leprae and macrophages, its primary host cell, plays a critical role in disease progression. This review explores the various forms of macrophage cell death induced by M. leprae infection, including apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis and necrosis. The regulation and implications of these cell death pathways on the host immune response are discussed. Apoptosis and autophagy are highlighted as mechanisms that may limit M. leprae proliferation, while necroptosis and pyroptosis contribute to inflammation and immune response. Notably, recent studies have identified CYBB-mediated ferroptosis as essential for macrophages infected with M. leprae to polarize towards the M2 phenotype, facilitating immune evasion by the pathogen. This review underscores the complexity of macrophage cell death in leprosy, and summarize their corresponding molecular mechanisms and potential impact on the host immunity.
Collapse
Affiliation(s)
- Yumeng Jiang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yidie Zou
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Hongsheng Wang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Cerqueira DDN, Pereira ALS, da Costa AEC, de Souza TJ, de Sousa Fernandes MS, Souto FO, Santos PDA. Xenophagy as a Strategy for Mycobacterium leprae Elimination during Type 1 or Type 2 Leprosy Reactions: A Systematic Review. Pathogens 2023; 12:1455. [PMID: 38133338 PMCID: PMC10747110 DOI: 10.3390/pathogens12121455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Mycobacterium leprae is an intracellular bacillus that causes leprosy, a neglected disease that affects macrophages and Schwann cells. Leprosy reactions are acute inflammatory responses to mycobacterial antigens, classified as type1 (T1R), a predominant cellular immune response, or type2 (T2R), a humoral phenomenon, leading to a high number of bacilli in infected cells and nerve structures. Xenophagy is a type of selective autophagy that targets intracellular bacteria for lysosomal degradation; however, its immune mechanisms during leprosy reactions are still unclear. This review summarizes the relationship between the autophagic process and M. leprae elimination during leprosy reactions. METHODS Three databases, PubMed/Medline (n = 91), Scopus (n = 73), and ScienceDirect (n = 124), were searched. After applying the eligibility criteria, articles were selected for independent peer reviewers in August 2023. RESULTS From a total of 288 studies retrieved, eight were included. In multibacillary (MB) patients who progressed to T1R, xenophagy blockade and increased inflammasome activation were observed, with IL-1β secretion before the reactional episode occurrence. On the other hand, recent data actually observed increased IL-15 levels before the reaction began, as well as IFN-γ production and xenophagy induction. CONCLUSION Our search results showed a dichotomy in the T1R development and their relationship with xenophagy. No T2R studies were found.
Collapse
Affiliation(s)
- Débora Dantas Nucci Cerqueira
- Department of Immunology, Keizo Asami Institute-iLIKA, Federal University of Pernambuco-UFPE, Recife 50670-901, Pernambuco, Brazil; (D.D.N.C.); (A.L.S.P.); (A.E.C.d.C.); (M.S.d.S.F.); (F.O.S.)
- Postgraduate Program in Biology Applied to Health-PPGBAS, Federal University of Pernambuco-UFPE, Recife 50670-901, Pernambuco, Brazil
| | - Ana Letícia Silva Pereira
- Department of Immunology, Keizo Asami Institute-iLIKA, Federal University of Pernambuco-UFPE, Recife 50670-901, Pernambuco, Brazil; (D.D.N.C.); (A.L.S.P.); (A.E.C.d.C.); (M.S.d.S.F.); (F.O.S.)
| | - Ana Elisa Coelho da Costa
- Department of Immunology, Keizo Asami Institute-iLIKA, Federal University of Pernambuco-UFPE, Recife 50670-901, Pernambuco, Brazil; (D.D.N.C.); (A.L.S.P.); (A.E.C.d.C.); (M.S.d.S.F.); (F.O.S.)
| | - Tarcísio Joaquim de Souza
- Life Sciences Center-NCV, Agreste Academic Center-CAA, Federal University of Pernambuco-UFPE, Caruaru 55014-900, Pernambuco, Brazil;
| | - Matheus Santos de Sousa Fernandes
- Department of Immunology, Keizo Asami Institute-iLIKA, Federal University of Pernambuco-UFPE, Recife 50670-901, Pernambuco, Brazil; (D.D.N.C.); (A.L.S.P.); (A.E.C.d.C.); (M.S.d.S.F.); (F.O.S.)
- Postgraduate Program in Biology Applied to Health-PPGBAS, Federal University of Pernambuco-UFPE, Recife 50670-901, Pernambuco, Brazil
| | - Fabrício Oliveira Souto
- Department of Immunology, Keizo Asami Institute-iLIKA, Federal University of Pernambuco-UFPE, Recife 50670-901, Pernambuco, Brazil; (D.D.N.C.); (A.L.S.P.); (A.E.C.d.C.); (M.S.d.S.F.); (F.O.S.)
- Postgraduate Program in Biology Applied to Health-PPGBAS, Federal University of Pernambuco-UFPE, Recife 50670-901, Pernambuco, Brazil
- Life Sciences Center-NCV, Agreste Academic Center-CAA, Federal University of Pernambuco-UFPE, Caruaru 55014-900, Pernambuco, Brazil;
| | - Patrícia d’Emery Alves Santos
- Department of Immunology, Keizo Asami Institute-iLIKA, Federal University of Pernambuco-UFPE, Recife 50670-901, Pernambuco, Brazil; (D.D.N.C.); (A.L.S.P.); (A.E.C.d.C.); (M.S.d.S.F.); (F.O.S.)
- Postgraduate Program in Biology Applied to Health-PPGBAS, Federal University of Pernambuco-UFPE, Recife 50670-901, Pernambuco, Brazil
- Life Sciences Center-NCV, Agreste Academic Center-CAA, Federal University of Pernambuco-UFPE, Caruaru 55014-900, Pernambuco, Brazil;
| |
Collapse
|
3
|
Silva BJDA, Krogstad PA, Teles RMB, Andrade PR, Rajfer J, Ferrini MG, Yang OO, Bloom BR, Modlin RL. IFN-γ-mediated control of SARS-CoV-2 infection through nitric oxide. Front Immunol 2023; 14:1284148. [PMID: 38162653 PMCID: PMC10755032 DOI: 10.3389/fimmu.2023.1284148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The COVID-19 pandemic has highlighted the need to identify mechanisms of antiviral host defense against SARS-CoV-2. One such mediator is interferon-g (IFN-γ), which, when administered to infected patients, is reported to result in viral clearance and resolution of pulmonary symptoms. IFN-γ treatment of a human lung epithelial cell line triggered an antiviral activity against SARS-CoV-2, yet the mechanism for this antiviral response was not identified. Methods Given that IFN-γ has been shown to trigger antiviral activity via the generation of nitric oxide (NO), we investigated whether IFN-γ induction of antiviral activity against SARS-CoV-2 infection is dependent upon the generation of NO in human pulmonary epithelial cells. We treated the simian epithelial cell line Vero E6 and human pulmonary epithelial cell lines, including A549-ACE2, and Calu-3, with IFN-γ and observed the resulting induction of NO and its effects on SARS-CoV-2 replication. Pharmacological inhibition of inducible nitric oxide synthase (iNOS) was employed to assess the dependency on NO production. Additionally, the study examined the effect of interleukin-1b (IL-1β) on the IFN-g-induced NO production and its antiviral efficacy. Results Treatment of Vero E6 cells with IFN-γ resulted in a dose-responsive induction of NO and an inhibitory effect on SARS-CoV-2 replication. This antiviral activity was blocked by pharmacologic inhibition of iNOS. IFN-γ also triggered a NO-mediated antiviral activity in SARS-CoV-2 infected human lung epithelial cell lines A549-ACE2 and Calu-3. IL-1β enhanced IFN-γ induction of NO, but it had little effect on antiviral activity. Discussion Given that IFN-g has been shown to be produced by CD8+ T cells in the early response to SARS-CoV-2, our findings in human lung epithelial cell lines, of an IFN-γ-triggered, NO-dependent, links the adaptive immune response to an innate antiviral pathway in host defense against SARS-CoV-2. These results underscore the importance of IFN-γ and NO in the antiviral response and provide insights into potential therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Bruno J. de Andrade Silva
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Paul A. Krogstad
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, United States
| | - Rosane M. B. Teles
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Priscila R. Andrade
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Jacob Rajfer
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Monica G. Ferrini
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Health and Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Otto O. Yang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Barry R. Bloom
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Robert L. Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|