1
|
Zhao C, Cheng L, Guo Y, Hui W, Niu J, Song S. An integrated quality, physiological and transcriptomic analysis reveals mechanisms of kiwifruit response to postharvest transport vibrational stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109285. [PMID: 39550990 DOI: 10.1016/j.plaphy.2024.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
The 'Xuxiang' kiwifruit, a leading cultivar in China known for its high quality and yield, experiences quality degradation due to vibration stress during postharvest transportation. This study simulated the postharvest transportation vibrations of 'Xuxiang' kiwifruits to investigate the effects on the fruit quality and physiology. Different vibration intensities (0.26, 0.79, and 1.5 m s-2) and durations (0, 24, 48, 72, and 96 h) were applied to analyze the quality, physiological and transcriptomic changes of fruits after vibration stress, as well as the association between quality deterioration, gene networks, and key genes. Results indicated that vibration stress significantly accelerated the deterioration of fruit quality and induced physiological changes. As vibration intensity and duration increased, there was a rapid decrease in fruit firmness and an increase in weight loss, soluble solid content, relative conductivity, ethylene production, respiratory rate, and malondialdehyde levels. The most severe deterioration in fruit quality occurred at a vibration intensity of 1.5 m s-2. Transcriptome sequencing analysis was conducted on samples from different durations of exposure to the 1.5 m s-2 vibration intensity. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses identified key genes associated with ethylene metabolism and softening. Weighted Gene Co-Expression Network Analysis (WGCNA) and correlation analysis further determined that 24 of these genes were regulated by vibrational stress, impacting ethylene metabolism and cell wall degradation. Vibration stress induced changes in genes related to ethylene metabolism and cell wall degradation, promoting lipid peroxidation and respiratory changes, which compromise cell membrane integrity and lead to quality deterioration. Compared with untreated fruits, vibration stress caused the quality deterioration, physiological changes and transcriptional regulation of kiwifruits, indicating that kiwifruits respond to vibration stress through multiple aspects. It proposes a fresh outlook on the understanding of the mechanism of transport vibration stress and further illustrates the importance of monitoring vibration intensity and duration as well as reducing vibration.
Collapse
Affiliation(s)
- Chenxu Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China
| | - Linlin Cheng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China
| | - Wei Hui
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Junpeng Niu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Shujie Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China.
| |
Collapse
|
2
|
Prasad K, Saroj N, Singh SK, Pradhan J, Prasad SS, Kumar S, Maurya S, Kumar A, Srivastava RK, Tiwari RK, Lal MK, Vijayan B, Kumar A, Samal I, Shah U, Kumar R. Postharvest quality and ripening behaviour of un-explored genotypes of Himalayan plain mango diversity. Heliyon 2024; 10:e33247. [PMID: 39027430 PMCID: PMC11254599 DOI: 10.1016/j.heliyon.2024.e33247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
India is renowned for its mango diversity, with more than 1000 genotypes reported. However, the Himalayan plains bear some elite genotypes which supposed to bear high postharvest value, the systemic postharvest study of which is yet to be attempted. The aim of present study is to evaluate the postharvest quality and ripening behviour of these important genotypes. Thus, 15 un-explored mango genotypes of this region were selected and evaluated for ripening behaviour and detailed postharvest profiling via internal (total phenolic and total flavonoid content), nutritional attributes (Brix: acid ratio, total carotenoid concentration, ascorbic acid content and antioxidant activity), sensory evaluation, fruit softening enzymes (polygalactouronase, pectin methylesterase and lipoxygenase), shelf life attributes (respiration rate, physiological loss in weight and storage life in days) external attributes (fruit weight, fruit firmness, peel thickness, fruit shape and dry seed weight) and mineral contents (Calcium, potassium and phosphorous) under ambient storage (25 ± 4 °C and 65 ± 5 % RH). The results revealed that the highest total flavonoid content (682.40 μg g-1), ascorbic acid (46.88 mg 100 g-1) and antioxidant activity (4.84 μmol TE g-1) exhibited by 'Sukul'. The total phenolic content was recorded as the highest in 'Safed Malda' (510.42 μg GAE g-1 FW), and total carotenoid concentration was recorded as the highest in 'Sipiya' (7.30 mg 100 g-1) 'Zardalu' (7.04 mg 100 g-1) and 'Mithua' (6.98 mg 100 g-1). Interestingly, genotypes such as 'Sukul', Sipiya' and 'Krishna Bhog 'exhibited a 4-5 days higher storage life than other selected genotypes. Screened genotypes exhibited a high diversity of nutritional and biochemical contents. The results of this study bear practical utility for research (quality improvement programme) and the processing industry.
Collapse
Affiliation(s)
- Killi Prasad
- Department of Horticulture, Tirhut College of Agriculture (TCA), Dr. Rajendra Prasad Central Agricultural University (RPCAU), PUSA, Bihar, 843121, India
| | - Neetu Saroj
- Department of Horticulture, Post-Graduate College of Agriculture (PGCA), RPCAU, PUSA, Bihar, 848125, India
| | | | - Jyostnarani Pradhan
- Department of Plant Botany, Plant Physiology and Biochemistry, College of Basic Science and Humanities, RPCAU, PUSA, Bihar, 848125, India
| | | | - Sunil Kumar
- Department of Production and Processing, ICAR-National Research Centre on Litchi, Muzaffarpur, Bihar, 842002, India
| | - Shubham Maurya
- Department of Horticulture, Post-Graduate College of Agriculture (PGCA), RPCAU, PUSA, Bihar, 848125, India
| | - Alok Kumar
- Department of Soil Science, TCA, RPCAU, PUSA, Bihar, 843121, India
| | | | - Rahul Kumar Tiwari
- Division of Crop Protection, Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002, India
| | - Milan Kumar Lal
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Bhagya Vijayan
- Department of Production and Processing, ICAR-National Research Centre on Litchi, Muzaffarpur, Bihar, 842002, India
| | - Ankit Kumar
- Department of Production and Processing, ICAR-National Research Centre on Litchi, Muzaffarpur, Bihar, 842002, India
| | - Ipsita Samal
- Department of Production and Processing, ICAR-National Research Centre on Litchi, Muzaffarpur, Bihar, 842002, India
| | - Upagya Shah
- Department of Production and Processing, ICAR-National Research Centre on Litchi, Muzaffarpur, Bihar, 842002, India
| | - Ravinder Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| |
Collapse
|
3
|
Pedrosa LDF, Nascimento KR, Soares CG, Oliveira DPD, de Vos P, Fabi JP. Unveiling Plant-Based Pectins: Exploring the Interplay of Direct Effects, Fermentation, and Technological Applications in Clinical Research with a Focus on the Chemical Structure. PLANTS (BASEL, SWITZERLAND) 2023; 12:2750. [PMID: 37514364 PMCID: PMC10384513 DOI: 10.3390/plants12142750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin's physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. Cancer cell cytotoxicity, important fermentation-related byproducts, immunomodulation, and technological application were found in cell culture, animal models, and preclinical and clinical assessments. One of the greater extents of recent pectin technological usage involves nanoencapsulation methods for many different compounds, ranging from chemotherapy and immunotherapy to natural extracts from fruits and other sources. Structural modification (modified pectin) is also utilized to enhance the use of dietary fiber. Although pectin is already recognized as a component of significant importance, there is still a need for a comprehensive review that delves into its intricate relationships with biological effects, which depend on the source and structure of pectin. This review covers all levels of clinical research, including cell culture, animal studies, and clinical trials, to understand how the plant source and pectin structures influence the biological effects in humans and some technological applications of pectin regarding human health.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Karen Rebouças Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Caroline Giacomelli Soares
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil
| |
Collapse
|
4
|
Zhou Y, Hu L, Chen Y, Liao L, Li R, Wang H, Mo Y, Lin L, Liu K. The combined effect of ascorbic acid and chitosan coating on postharvest quality and cell wall metabolism of papaya fruits. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Peng Z, Liu G, Li H, Wang Y, Gao H, Jemrić T, Fu D. Molecular and Genetic Events Determining the Softening of Fleshy Fruits: A Comprehensive Review. Int J Mol Sci 2022; 23:12482. [PMID: 36293335 PMCID: PMC9604029 DOI: 10.3390/ijms232012482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit softening that occurs during fruit ripening and postharvest storage determines the fruit quality, shelf life and commercial value and makes fruits more attractive for seed dispersal. In addition, over-softening results in fruit eventual decay, render fruit susceptible to invasion by opportunistic pathogens. Many studies have been conducted to reveal how fruit softens and how to control softening. However, softening is a complex and delicate life process, including physiological, biochemical and metabolic changes, which are closely related to each other and are affected by environmental conditions such as temperature, humidity and light. In this review, the current knowledge regarding fruit softening mechanisms is summarized from cell wall metabolism (cell wall structure changes and cell-wall-degrading enzymes), plant hormones (ETH, ABA, IAA and BR et al.), transcription factors (MADS-Box, AP2/ERF, NAC, MYB and BZR) and epigenetics (DNA methylation, histone demethylation and histone acetylation) and a diagram of the regulatory relationship between these factors is provided. It will provide reference for the cultivation of anti-softening fruits.
Collapse
Affiliation(s)
- Zhenzhen Peng
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tomislav Jemrić
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
6
|
Prasad K, Singh G, Singh SK, Pradhan J, Kumar U, Singh H. Plant extract and essential oil coating prolongs shelf life and maintains keeping quality of papaya fruit during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Killi Prasad
- Department of Horticulture, Tirhut College of Agriculture, Dholi Dr. Rajendra Prasad Central Agricultural University (RPCAU) Pusa Samastipur India
| | - Gurpreet Singh
- Department of Horticulture, Post‐Graduate College of Agriculture (PGCA) Dr. Rajendra Prasad Central Agricultural University (RPCAU) Pusa Samastipur India
| | - Sanjay Kumar Singh
- Department of Plant Pathology, Post‐Graduate College of Agriculture (PGCA) Dr. Rajendra Prasad Central Agricultural University (RPCAU) Pusa Samastipur India
| | - Jyostnarani Pradhan
- Department of Botany and Plant Physiology, Post‐Graduate College of Agriculture (PGCA) Dr. Rajendra Prasad Central Agricultural University (RPCAU) Pusa Samastipur India
| | - Udit Kumar
- Department of Horticulture, Post‐Graduate College of Agriculture (PGCA) Dr. Rajendra Prasad Central Agricultural University (RPCAU) Pusa Samastipur India
| | - Hemlata Singh
- Department of Botany and Plant Physiology, Post‐Graduate College of Agriculture (PGCA) Dr. Rajendra Prasad Central Agricultural University (RPCAU) Pusa Samastipur India
| |
Collapse
|
7
|
Paniagua C, Sinanaj B, Benitez-Alfonso Y. Plasmodesmata and their role in the regulation of phloem unloading during fruit development. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102145. [PMID: 34826657 PMCID: PMC8687135 DOI: 10.1016/j.pbi.2021.102145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 05/08/2023]
Abstract
Fruit consumption is fundamental to a balanced diet. The contemporary challenge of maintaining a steady food supply to meet the demands of a growing population is driving the development of strategies to improve the production and nutritional quality of fruit. Plasmodesmata, the structures that mediate symplasmic transport between plant cells, play an important role in phloem unloading and distribution of sugars and signalling molecules into developing organs. Targeted modifications to the structures and functioning of plasmodesmata have the potential to improve fruit development; however, knowledge on the mechanisms underpinning plasmodesmata regulation in this context is scarce. In this review, we have compiled current knowledge on plasmodesmata and their structural characterisation during the development of fruit organs. We discuss key questions on phloem unloading, including the pathway shift from symplasmic to apoplastic that takes place during the onset of ripening as potential targets for improving fruit quality.
Collapse
Affiliation(s)
- Candelas Paniagua
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Besiana Sinanaj
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|