1
|
Wang Z, Wang W, Luo Q, Song G. High matrix stiffness accelerates migration of hepatocellular carcinoma cells through the integrin β1-Plectin-F-actin axis. BMC Biol 2025; 23:8. [PMID: 39789506 PMCID: PMC11721467 DOI: 10.1186/s12915-025-02113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Abundant research indicates that increased extracellular matrix (ECM) stiffness significantly enhances the malignant characteristics of hepatocellular carcinoma (HCC) cells. Plectin, an essential cytoskeletal linker protein, has recently emerged as a promoter of cancer progression, particularly in the context of cancer cell invasion and metastasis. However, the responsiveness of plectin to changes in ECM stiffness and its impact on HCC progression remain unclear. In this study, we aimed to investigate whether plectin responds to variations in ECM stiffness and to explore its involved molecular mechanisms in regulating HCC cell migration. RESULTS Our results showed that, when compared with control group (7 kPa), high ECM stiffness (53 kPa) boosts HCC cell migration by upregulating plectin and integrin β1 expression and increasing F-actin polymerization. Knockdown of integrin β1 negated the high stiffness-upregulated plectin expression. Furthermore, reducing either plectin or integrin β1 levels, or using latrunculin A, effectively prevented the high ECM stiffness-induced F-actin polymerization and HCC cell migration. CONCLUSIONS These findings demonstrate that integrin β1-plectin-F-actin axis is necessary for high matrix stiffness-driven migration of HCC cells, and provide evidence for the critical role of plectin in mechanotransduction in HCC cells.
Collapse
Affiliation(s)
- Zhihui Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Wenbin Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Qing Luo
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Guanbin Song
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
2
|
Bigge J, Koebbe LL, Giel AS, Bornholdt D, Buerfent B, Dasmeh P, Zink AM, Maj C, Schumacher J. Expression quantitative trait loci influence DNA damage-induced apoptosis in cancer. BMC Genomics 2024; 25:1168. [PMID: 39623312 PMCID: PMC11613471 DOI: 10.1186/s12864-024-11068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Genomic instability and evading apoptosis are two fundamental hallmarks of cancer and closely linked to DNA damage response (DDR). By analyzing expression quantitative trait loci (eQTL) upon cell stimulation (called exposure eQTL (e2QTL)) it is possible to identify context specific gene regulatory variants and connect them to oncological diseases based on genome-wide association studies (GWAS). RESULTS We isolate CD8+ T cells from 461 healthy donors and stimulate them with high doses of 5 different carcinogens to identify regulatory mechanisms of DNA damage-induced apoptosis. Across all stimuli, we find 5,373 genes to be differentially expressed, with 85% to 99% of these genes being suppressed. While upregulated genes are specific to distinct stimuli, downregulated genes are shared across conditions but exhibit enrichment in biological processes depending on the DNA damage type. Analysis of eQTL reveals 654 regulated genes across conditions. Among them, 47 genes are significant e2QTL, representing a fraction of 4% to 5% per stimulus. To unveil disease relevant genetic variants, we compare eQTL and e2QTL with GWAS risk variants. We identify gene regulatory variants for KLF2, PIP4K2A, GPR160, RPS18, ARL17B and XBP1 that represent risk variants for oncological diseases. CONCLUSION Our study highlights the relevance of gene regulatory variants influencing DNA damage-induced apoptosis in cancer. The results provide new insights in cellular mechanisms and corresponding genes contributing to inter-individual effects in cancer development.
Collapse
Affiliation(s)
- Jessica Bigge
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | - Laura L Koebbe
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | - Ann-Sophie Giel
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | - Dorothea Bornholdt
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | - Benedikt Buerfent
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | - Pouria Dasmeh
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | | | - Carlo Maj
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | - Johannes Schumacher
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany.
| |
Collapse
|
3
|
Koskeridis F, Fancy N, Tan PF, Meena D, Evangelou E, Elliott P, Wang D, Matthews PM, Dehghan A, Tzoulaki I. Multi-trait association analysis reveals shared genetic loci between Alzheimer's disease and cardiovascular traits. Nat Commun 2024; 15:9827. [PMID: 39537608 PMCID: PMC11561119 DOI: 10.1038/s41467-024-53452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Several cardiovascular traits and diseases co-occur with Alzheimer's disease. We mapped their shared genetic architecture using multi-trait genome-wide association studies. Subsequent fine-mapping and colocalisation highlighted 16 genetic loci associated with both Alzheimer's and cardiovascular diseases. We prioritised rs11786896, which colocalised with Alzheimer's disease, atrial fibrillation and expression of PLEC in the heart left ventricle, and rs7529220, which colocalised with Alzheimer's disease, atrial fibrillation and expression of C1Q family genes. Single-cell RNA-sequencing data, co-expression network and protein-protein interaction analyses provided evidence for different mechanisms of PLEC, which is upregulated in left ventricular endothelium and cardiomyocytes with heart failure and in brain astrocytes with Alzheimer's disease. Similar common mechanisms are implicated for C1Q in heart macrophages with heart failure and in brain microglia with Alzheimer's disease. These findings highlight inflammatory and pleomorphic risk determinants for the co-occurrence of Alzheimer's and cardiovascular diseases and suggest PLEC, C1Q and their interacting proteins as potential therapeutic targets.
Collapse
Affiliation(s)
- Fotios Koskeridis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece.
- UK Dementia Research Institute, Imperial College London, London, UK.
| | - Nurun Fancy
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Pei Fang Tan
- Institute for Human Development and Potential, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Devendra Meena
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Dennis Wang
- Institute for Human Development and Potential, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Paul M Matthews
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
- Systems Biology, Biomedical Research Institute of the Academy of Athens, Athens, Greece
| |
Collapse
|
4
|
Lodde V, Zarbo IR, Farina G, Masia A, Solla P, Campesi I, Delogu G, Muroni MR, Tsitsipatis D, Gorospe M, Floris M, Idda ML. Identification of hsa_circ_0018905 as a New Potential Biomarker for Multiple Sclerosis. Cells 2024; 13:1668. [PMID: 39404430 PMCID: PMC11475351 DOI: 10.3390/cells13191668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by early onset, for which the interaction of genetic and environmental factors is crucial. Dysregulation of the immune system as well as myelinization-de-myelinization has been shown to correlate with changes in RNA, including non-coding RNAs. Recently, circular RNAs (circRNAs) have emerged as a key player in the complex network of gene dysregulation associated with MS. Despite several efforts, the mechanisms driving circRNA regulation and dysregulation in MS still need to be properly elucidated. Here, we explore the panorama of circRNA expression in PBMCs purified from five newly diagnosed MS patients and five healthy controls (HCs) using the Arraystar Human circRNAs microarray. Experimental validation was then carried out in a validation cohort, and a possible correlation with disease severity was tested. We identified 64 differentially expressed circRNAs, 53 of which were downregulated in PBMCs purified from MS compared to the HCs. The discovery dataset was subsequently validated using qRT-PCR with an independent cohort of 20 RRMS patients and 20 HCs. We validated seven circRNAs differentially expressed in the RRMS group versus the HC group. hsa_circ_0000518, hsa_circ_0000517, hsa_circ_0000514, and hsa_circ_0000511 were significantly upregulated in the MS group, while hsa_circ_0018905, hsa_circ_0048764, and hsa_circ_0003445 were significantly downregulated; Among them, the expression level of hsa_circ_0018905 was significantly decreased in patients showing a higher level of disability and in progressive forms of MS. We described the circRNAs expression profile of PBMCs in newly diagnosed MS patients and proposed hsa_circ_0018905 as potential MS biomarker.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| | - Ignazio Roberto Zarbo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy; (I.R.Z.); (A.M.); (P.S.); (M.R.M.)
- Unit of Clinical Neurology, AOU, Sassari 07100, Italy;
| | | | - Aurora Masia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy; (I.R.Z.); (A.M.); (P.S.); (M.R.M.)
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari 09042, Italy
| | - Paolo Solla
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy; (I.R.Z.); (A.M.); (P.S.); (M.R.M.)
- Unit of Clinical Neurology, AOU, Sassari 07100, Italy;
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| | - Giuseppe Delogu
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| | - Maria Rosaria Muroni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy; (I.R.Z.); (A.M.); (P.S.); (M.R.M.)
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA; (D.T.); (M.G.)
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA; (D.T.); (M.G.)
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| | - Maria Laura Idda
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| |
Collapse
|
5
|
Cullen PF, Gammerdinger WJ, Sui SJH, Mazumder AG, Sun D. Transcriptional profiling of retinal astrocytes identifies a specific marker and points to functional specialization. Glia 2024; 72:1604-1628. [PMID: 38785355 PMCID: PMC11262981 DOI: 10.1002/glia.24571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Astrocyte heterogeneity is an increasingly prominent research topic, and studies in the brain have demonstrated substantial variation in astrocyte form and function, both between and within regions. In contrast, retinal astrocytes are not well understood and remain incompletely characterized. Along with optic nerve astrocytes, they are responsible for supporting retinal ganglion cell axons and an improved understanding of their role is required. We have used a combination of microdissection and Ribotag immunoprecipitation to isolate ribosome-associated mRNA from retinal astrocytes and investigate their transcriptome, which we also compared to astrocyte populations in the optic nerve. Astrocytes from these regions are transcriptionally distinct, and we identified retina-specific astrocyte genes and pathways. Moreover, although they share much of the "classical" gene expression patterns of astrocytes, we uncovered unexpected variation, including in genes related to core astrocyte functions. We additionally identified the transcription factor Pax8 as a highly specific marker of retinal astrocytes and demonstrated that these astrocytes populate not only the retinal surface, but also the prelaminar region at the optic nerve head. These findings are likely to contribute to a revised understanding of the role of astrocytes in the retina.
Collapse
Affiliation(s)
- Paul F Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - William J Gammerdinger
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Shannan J Ho Sui
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
6
|
Anitha A, Banerjee M, Thanseem I, Prakash A, Melempatt N, Sumitha PS, Iype M, Thomas SV. Rare Pathogenic Variants Identified in Whole Exome Sequencing of Monozygotic Twins With Autism Spectrum Disorder. Pediatr Neurol 2024; 158:113-123. [PMID: 39038432 DOI: 10.1016/j.pediatrneurol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a childhood-onset complex neurodevelopmental disorder characterized by problems with communication and social interaction and restricted, repetitive, stereotyped behavior. The prevalence of ASD is one in 36 children. The genetic architecture of ASD is complex in spite of its high heritability. To identify the potential candidate genes of ASD, we carried out a comprehensive genetic study of monozygotic (MZ) twins concordant or discordant for ASD. METHODS Five MZ twins and their parents were recruited for the study. Four of the twins were concordant, whereas one was discordant for ASD. Whole exome sequencing was conducted for the twins and their parents. The exome DNA was enriched using Twist Human Customized Core Exome Kit, and paired-end sequencing was performed on HiSeq system. RESULTS We identified several rare and pathogenic variants (homozygous recessive, compound heterozygous, de novo) in ASD-affected individuals. CONCLUSION We report novel variants in individuals diagnosed with ASD. Several of these genes are involved in brain-related functions and not previously reported in ASD. Intriguingly, some of the variants were observed in the genes involved in sensory perception (auditory [MYO15A, PLEC, CDH23, UBR3, GPSM2], olfactory [OR9K2], gustatory [TAS2R31], and visual [CDH23, UBR3]). This is the first comprehensive genetic study of MZ twins in an Indian population. Further validation is required to determine whether these variants are associated with ASD.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India.
| | - Moinak Banerjee
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Anil Prakash
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nisha Melempatt
- Department of Audiology and Speech Language Pathology (ASLP), ICCONS, Palakkad, Kerala, India
| | - P S Sumitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Mary Iype
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India; Department of Pediatric Neurology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Sanjeev V Thomas
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India
| |
Collapse
|
7
|
Kantaputra P, Daroontum T, Kitiyamas K, Piyakhunakorn P, Kawasaki K, Sathienkijkanchai A, Wasant P, Vatanavicharn N, Yasanga T, Kaewgahya M, Tongsima S, Cox TC, Arold ST, Ohazama A, Ngamphiw C. Homozygosity for a Rare Plec Variant Suggests a Contributory Role in Congenital Insensitivity to Pain. Int J Mol Sci 2024; 25:6358. [PMID: 38928066 PMCID: PMC11203604 DOI: 10.3390/ijms25126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Congenital insensitivity to pain is a rare human condition in which affected individuals do not experience pain throughout their lives. This study aimed to identify the molecular etiology of congenital insensitivity to pain in two Thai patients. Clinical, radiographic, histopathologic, immunohistochemical, and molecular studies were performed. Patients were found to have congenital insensitivity to pain, self-mutilation, acro-osteolysis, cornea scars, reduced temperature sensation, tooth agenesis, root maldevelopment, and underdeveloped maxilla and mandible. The skin biopsies revealed fewer axons, decreased vimentin expression, and absent neurofilament expression, indicating lack of dermal nerves. Whole exome and Sanger sequencing identified a rare homozygous variant c.4039C>T; p.Arg1347Cys in the plakin domain of Plec, a cytolinker protein. This p.Arg1347Cys variant is in the spectrin repeat 9 region of the plakin domain, a region not previously found to harbor pathogenic missense variants in other plectinopathies. The substitution with a cysteine is expected to decrease the stability of the spectrin repeat 9 unit of the plakin domain. Whole mount in situ hybridization and an immunohistochemical study suggested that Plec is important for the development of maxilla and mandible, cornea, and distal phalanges. Additionally, the presence of dental anomalies in these patients further supports the potential involvement of Plec in tooth development. This is the first report showing the association between the Plec variant and congenital insensitivity to pain in humans.
Collapse
Affiliation(s)
- Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (M.K.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Teerada Daroontum
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kantapong Kitiyamas
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (M.K.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panat Piyakhunakorn
- Panare Hospital, Dental Public Health Division, Panare District, Surat Thani 94130, Thailand;
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2181, Japan; (K.K.); (A.O.)
| | - Achara Sathienkijkanchai
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand; (A.S.); (P.W.); (N.V.)
| | - Pornswan Wasant
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand; (A.S.); (P.W.); (N.V.)
| | - Nithiwat Vatanavicharn
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand; (A.S.); (P.W.); (N.V.)
| | - Thippawan Yasanga
- Medical Science Research Equipment Center, Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Massupa Kaewgahya
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (M.K.)
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (S.T.); (C.N.)
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
| | - Stefan T. Arold
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2181, Japan; (K.K.); (A.O.)
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (S.T.); (C.N.)
| |
Collapse
|
8
|
Ding EA, Kumar S. Neurofilament Biophysics: From Structure to Biomechanics. Mol Biol Cell 2024; 35:re1. [PMID: 38598299 PMCID: PMC11151108 DOI: 10.1091/mbc.e23-11-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Neurofilaments (NFs) are multisubunit, neuron-specific intermediate filaments consisting of a 10-nm diameter filament "core" surrounded by a layer of long intrinsically disordered protein (IDP) "tails." NFs are thought to regulate axonal caliber during development and then stabilize the mature axon, with NF subunit misregulation, mutation, and aggregation featuring prominently in multiple neurological diseases. The field's understanding of NF structure, mechanics, and function has been deeply informed by a rich variety of biochemical, cell biological, and mouse genetic studies spanning more than four decades. These studies have contributed much to our collective understanding of NF function in axonal physiology and disease. In recent years, however, there has been a resurgence of interest in NF subunit proteins in two new contexts: as potential blood- and cerebrospinal fluid-based biomarkers of neuronal damage, and as model IDPs with intriguing properties. Here, we review established principles and more recent discoveries in NF structure and function. Where possible, we place these findings in the context of biophysics of NF assembly, interaction, and contributions to axonal mechanics.
Collapse
Affiliation(s)
- Erika A. Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
9
|
Wainberg M, Forde NJ, Mansour S, Kerrebijn I, Medland SE, Hawco C, Tripathy SJ. Genetic architecture of the structural connectome. Nat Commun 2024; 15:1962. [PMID: 38438384 PMCID: PMC10912129 DOI: 10.1038/s41467-024-46023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Myelinated axons form long-range connections that enable rapid communication between distant brain regions, but how genetics governs the strength and organization of these connections remains unclear. We perform genome-wide association studies of 206 structural connectivity measures derived from diffusion magnetic resonance imaging tractography of 26,333 UK Biobank participants, each representing the density of myelinated connections within or between a pair of cortical networks, subcortical structures or cortical hemispheres. We identify 30 independent genome-wide significant variants after Bonferroni correction for the number of measures studied (126 variants at nominal genome-wide significance) implicating genes involved in myelination (SEMA3A), neurite elongation and guidance (NUAK1, STRN, DPYSL2, EPHA3, SEMA3A, HGF, SHTN1), neural cell proliferation and differentiation (GMNC, CELF4, HGF), neuronal migration (CCDC88C), cytoskeletal organization (CTTNBP2, MAPT, DAAM1, MYO16, PLEC), and brain metal transport (SLC39A8). These variants have four broad patterns of spatial association with structural connectivity: some have disproportionately strong associations with corticothalamic connectivity, interhemispheric connectivity, or both, while others are more spatially diffuse. Structural connectivity measures are highly polygenic, with a median of 9.1 percent of common variants estimated to have non-zero effects on each measure, and exhibited signatures of negative selection. Structural connectivity measures have significant genetic correlations with a variety of neuropsychiatric and cognitive traits, indicating that connectivity-altering variants tend to influence brain health and cognitive function. Heritability is enriched in regions with increased chromatin accessibility in adult oligodendrocytes (as well as microglia, inhibitory neurons and astrocytes) and multiple fetal cell types, suggesting that genetic control of structural connectivity is partially mediated by effects on myelination and early brain development. Our results indicate pervasive, pleiotropic, and spatially structured genetic control of white-matter structural connectivity via diverse neurodevelopmental pathways, and support the relevance of this genetic control to healthy brain function.
Collapse
Affiliation(s)
- Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Natalie J Forde
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Salim Mansour
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabel Kerrebijn
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Colin Hawco
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Shreejoy J Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Žugec M, Furlani B, Castañon MJ, Rituper B, Fischer I, Broggi G, Caltabiano R, Barbagallo GMV, Di Rosa M, Tibullo D, Parenti R, Vicario N, Simčič S, Pozo Devoto VM, Stokin GB, Wiche G, Jorgačevski J, Zorec R, Potokar M. Plectin plays a role in the migration and volume regulation of astrocytes: a potential biomarker of glioblastoma. J Biomed Sci 2024; 31:14. [PMID: 38263015 PMCID: PMC10807171 DOI: 10.1186/s12929-024-01002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The expression of aquaporin 4 (AQP4) and intermediate filament (IF) proteins is altered in malignant glioblastoma (GBM), yet the expression of the major IF-based cytolinker, plectin (PLEC), and its contribution to GBM migration and invasiveness, are unknown. Here, we assessed the contribution of plectin in affecting the distribution of plasmalemmal AQP4 aggregates, migratory properties, and regulation of cell volume in astrocytes. METHODS In human GBM, the expression of glial fibrillary acidic protein (GFAP), AQP4 and PLEC transcripts was analyzed using publicly available datasets, and the colocalization of PLEC with AQP4 and with GFAP was determined by immunohistochemistry. We performed experiments on wild-type and plectin-deficient primary and immortalized mouse astrocytes, human astrocytes and permanent cell lines (U-251 MG and T98G) derived from a human malignant GBM. The expression of plectin isoforms in mouse astrocytes was assessed by quantitative real-time PCR. Transfection, immunolabeling and confocal microscopy were used to assess plectin-induced alterations in the distribution of the cytoskeleton, the influence of plectin and its isoforms on the abundance and size of plasmalemmal AQP4 aggregates, and the presence of plectin at the plasma membrane. The release of plectin from cells was measured by ELISA. The migration and dynamics of cell volume regulation of immortalized astrocytes were assessed by the wound-healing assay and calcein labeling, respectively. RESULTS A positive correlation was found between plectin and AQP4 at the level of gene expression and protein localization in tumorous brain samples. Deficiency of plectin led to a decrease in the abundance and size of plasmalemmal AQP4 aggregates and altered distribution and bundling of the cytoskeleton. Astrocytes predominantly expressed P1c, P1e, and P1g plectin isoforms. The predominant plectin isoform associated with plasmalemmal AQP4 aggregates was P1c, which also affected the mobility of astrocytes most prominently. In the absence of plectin, the collective migration of astrocytes was impaired and the dynamics of cytoplasmic volume changes in peripheral cell regions decreased. Plectin's abundance on the plasma membrane surface and its release from cells were increased in the GBM cell lines. CONCLUSIONS Plectin affects cellular properties that contribute to the pathology of GBM. The observed increase in both cell surface and released plectin levels represents a potential biomarker and therapeutic target in the diagnostics and treatment of GBMs.
Collapse
Affiliation(s)
- Maja Žugec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Furlani
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maria J Castañon
- Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Boštjan Rituper
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Irmgard Fischer
- Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Giuseppe M V Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saša Simčič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Victorio Martin Pozo Devoto
- International Clinical Research Center (ICRC), St. Anne's University Hospital in Brno, 625 00, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Gorazd B Stokin
- Institute for Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Gloucestershire Royal Hospital, Gloucestershire NHS Foundation Trust, Gloucester, UK
- Celica Biomedical, Ljubljana, Slovenia
| | - Gerhard Wiche
- Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
- Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- Celica Biomedical, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Martins-Ferreira R, Leal B, Chaves J, Ciudad L, Samões R, Martins da Silva A, Pinho Costa P, Ballestar E. Circulating cell-free DNA methylation mirrors alterations in cerebral patterns in epilepsy. Clin Epigenetics 2022; 14:188. [PMID: 36575526 PMCID: PMC9795776 DOI: 10.1186/s13148-022-01416-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND DNA methylation profiling of circulating cell-free DNA (cfDNA) has rapidly become a promising strategy for biomarker identification and development. The cell-type-specific nature of DNA methylation patterns and the direct relationship between cfDNA and apoptosis can potentially be used non-invasively to predict local alterations. In addition, direct detection of altered DNA methylation patterns performs well as a biomarker. In a previous study, we demonstrated marked DNA methylation alterations in brain tissue from patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). RESULTS We performed DNA methylation profiling in cfDNA isolated from the serum of MTLE patients and healthy controls using BeadChip arrays followed by systematic bioinformatic analysis including deconvolution analysis and integration with DNase accessibility data sets. Differential cfDNA methylation analysis showed an overrepresentation of gene ontology terms and transcription factors related to central nervous system function and regulation. Deconvolution analysis of the DNA methylation data sets ruled out the possibility that the observed differences were due to changes in the proportional contribution of cortical neurons in cfDNA. Moreover, we found no overrepresentation of neuron- or glia-specific patterns in the described cfDNA methylation patterns. However, the MTLE-HS cfDNA methylation patterns featured a significant overrepresentation of the epileptic DNA methylation alterations previously observed in the hippocampus. CONCLUSIONS Our results support the use of cfDNA methylation profiling as a rational approach to seeking non-invasive and reproducible epilepsy biomarkers.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona Spain ,grid.5808.50000 0001 1503 7226Immunogenetics Laboratory, Molecular Pathology and Immunology Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Bárbara Leal
- grid.5808.50000 0001 1503 7226Immunogenetics Laboratory, Molecular Pathology and Immunology Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - João Chaves
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal ,grid.413438.90000 0004 0574 5247Neurology Service, Hospital de Santo António - Centro Hospitalar Universitário do Porto (HSA-CHUP), Porto, Portugal
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona Spain
| | - Raquel Samões
- grid.413438.90000 0004 0574 5247Neurology Service, Hospital de Santo António - Centro Hospitalar Universitário do Porto (HSA-CHUP), Porto, Portugal
| | - António Martins da Silva
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal ,Neurophysiology Service, HSA-CHUP, Porto, Portugal
| | - Paulo Pinho Costa
- grid.5808.50000 0001 1503 7226Immunogenetics Laboratory, Molecular Pathology and Immunology Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal ,grid.422270.10000 0001 2287 695XDepartment of Human Genetics, Instituto Nacional de Saúde Dr. Ricardo Jorge, Porto, Portugal
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona Spain ,grid.22069.3f0000 0004 0369 6365Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, 200241 China
| |
Collapse
|
13
|
Vahidnezhad H, Youssefian L, Harvey N, Tavasoli AR, Saeidian AH, Sotoudeh S, Varghaei A, Mahmoudi H, Mansouri P, Mozafari N, Zargari O, Zeinali S, Uitto J. Mutation update: The spectra of PLEC sequence variants and related plectinopathies. Hum Mutat 2022; 43:1706-1731. [PMID: 35815343 PMCID: PMC9771971 DOI: 10.1002/humu.24434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 01/24/2023]
Abstract
Plectin, encoded by PLEC, is a cytoskeletal linker of intermediate filaments expressed in many cell types. Plectin consists of three main domains that determine its functionality: the N-terminal domain, the Rod domain, and the C-terminal domain. Molecular defects of PLEC correlating with the functional aspects lead to a group of rare heritable disorders, plectinopathies. These multisystem disorders include an autosomal dominant form of epidermolysis bullosa simplex (EBS-Ogna), limb-girdle muscular dystrophy (LGMD), aplasia cutis congenita (ACC), and an autosomal recessive form of EBS, which may associate with muscular dystrophy (EBS-MD), pyloric atresia (EBS-PA), and/or congenital myasthenic syndrome (EBS-MyS). In this study, genotyping of over 600 Iranian patients with epidermolysis bullosa by next-generation sequencing identified 15 patients with disease-causing PLEC variants. This mutation update analyzes the clinical spectrum of PLEC in our cohort and in the literature and demonstrates the relationship between PLEC genotype and phenotypic manifestations. This study has integrated our seven novel PLEC variants and phenotypic findings with previously published data totaling 116 variants to provide the most complete overview of pathogenic PLEC variants and related disorders.
Collapse
Affiliation(s)
- Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Nailah Harvey
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Ali Reza Tavasoli
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- Pediatric Neurology Division, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Soheila Sotoudeh
- Department of Dermatology, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Varghaei
- Department of Dermatology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamidreza Mahmoudi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mansouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikoo Mozafari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
14
|
LncRNA-MEG3 attenuates hyperglycemia-induced damage by enhancing mitochondrial translocation of HSP90A in the primary hippocampal neurons. Exp Cell Res 2022; 419:113320. [PMID: 35998683 DOI: 10.1016/j.yexcr.2022.113320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022]
Abstract
The diabetic cognitive impairments are associated with high-glucose (HG)-induced mitochondrial dysfunctions in the brain. Our previous studies demonstrated that long non-coding RNA (lncRNA)-MEG3 alleviates diabetic cognitive impairments. However, the underlying mechanism has still remained elusive. Therefore, this study was designed to investigate whether the mitochondrial translocation of HSP90A and its phosphorylation are involved in lncRNA-MEG3-mediated neuroprotective effects of mitochondrial functions in HG-treated primary hippocampal neurons and diabetic rats. The primary hippocampal neurons were exposed to 75 mM glucose for 72 h to establish a HG model in vitro. Firstly, the RNA pull-down and RNA immunoprecipitation (RIP) assays clearly indicated that lncRNA-MEG3-associated mitochondrial proteins were Annexin A2, HSP90A, and Plectin. Although HG promoted the mitochondrial translocation of HSP90A and Annexin A2, lncRNA-MEG3 over-expression only enhanced the mitochondrial translocation of HSP90A, rather than Annexin A2, in the primary hippocampal neurons treated with or without HG. Meanwhile, Plectin mediated the mitochondrial localization of lncRNA-MEG3 and HSP90A. Furthermore, HSP90A threonine phosphorylation participated in regulating mitochondrial translocation of HSP90A, and lncRNA-MEG3 also enhanced mitochondrial translocation of HSP90A through suppressing HSP90A threonine phosphorylation. Finally, the anti-apoptotic role of mitochondrial translocation of HSP90A was found to be associated with inhibiting death receptor 5 (DR5) in HG-treated primary hippocampal neurons and diabetic rats. Taken together, lncRNA-MEG3 could improve mitochondrial functions in HG-exposed primary hippocampal neurons, and the underlying mechanisms were involved in enhanced mitochondrial translocation of HSP90A via suppressing HSP90A threonine phosphorylation, which may reveal a potential therapeutic target for diabetic cognitive impairments.
Collapse
|
15
|
D’Alessio S, Cheng H, Eaton L, Kraev I, Pamenter ME, Lange S. Acute Hypoxia Alters Extracellular Vesicle Signatures and the Brain Citrullinome of Naked Mole-Rats (Heterocephalus glaber). Int J Mol Sci 2022; 23:ijms23094683. [PMID: 35563075 PMCID: PMC9100269 DOI: 10.3390/ijms23094683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Peptidylarginine deiminases (PADs) and extracellular vesicles (EVs) may be indicative biomarkers of physiological and pathological status and adaptive responses, including to diseases and disorders of the central nervous system (CNS) and related to hypoxia. While these markers have been studied in hypoxia-intolerant mammals, in vivo investigations in hypoxia-tolerant species are lacking. Naked mole-rats (NMR) are among the most hypoxia-tolerant mammals and are thus a good model organism for understanding natural and beneficial adaptations to hypoxia. Thus, we aimed to reveal CNS related roles for PADs in hypoxia tolerance and identify whether circulating EV signatures may reveal a fingerprint for adaptive whole-body hypoxia responses in this species. We found that following in vivo acute hypoxia, NMR: (1) plasma-EVs were remodelled, (2) whole proteome EV cargo contained more protein hits (including citrullinated proteins) and a higher number of associated KEGG pathways relating to the total proteome of plasma-EVs Also, (3) brains had a trend for elevation in PAD1, PAD3 and PAD6 protein expression, while PAD2 and PAD4 were reduced, while (4) the brain citrullinome had a considerable increase in deiminated protein hits with hypoxia (1222 vs. 852 hits in normoxia). Our findings indicate that circulating EV signatures are modified and proteomic content is reduced in hypoxic conditions in naked mole-rats, including the circulating EV citrullinome, while the brain citrullinome is elevated and modulated in response to hypoxia. This was further reflected in elevation of some PADs in the brain tissue following acute hypoxia treatment. These findings indicate a possible selective role for PAD-isozymes in hypoxia response and tolerance.
Collapse
Affiliation(s)
- Stefania D’Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6 UW, UK;
| | - Hang Cheng
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
| | - Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Walton Hall, Milton Keynes MK7 6AA, UK;
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6 UW, UK;
- Correspondence: ; Tel.: +44-(0)-20-7911-5000 (ext. 64832)
| |
Collapse
|
16
|
Wiche G. Plectin in Health and Disease. Cells 2022; 11:cells11091412. [PMID: 35563718 PMCID: PMC9103199 DOI: 10.3390/cells11091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Gerhard Wiche
- Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|