1
|
Lo Conte M, Lucchino V, Scalise S, Zannino C, Valente D, Rossignoli G, Murfuni MS, Cicconetti C, Scaramuzzino L, Matassa DS, Procopio A, Martello G, Cuda G, Parrotta EI. Unraveling the impact of ZZZ3 on the mTOR/ribosome pathway in human embryonic stem cells homeostasis. Stem Cell Reports 2024; 19:729-743. [PMID: 38701777 PMCID: PMC11103890 DOI: 10.1016/j.stemcr.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Embryonic stem cells (ESCs) are defined as stem cells with self-renewing and differentiation capabilities. These unique properties are tightly regulated and controlled by complex genetic and molecular mechanisms, whose understanding is essential for both basic and translational research. A large number of studies have mostly focused on understanding the molecular mechanisms governing pluripotency and differentiation of ESCs, while the regulation of proliferation has received comparably less attention. Here, we investigate the role of ZZZ3 (zinc finger ZZ-type containing 3) in human ESCs homeostasis. We found that knockdown of ZZZ3 negatively impacts ribosome biogenesis, translation, and mTOR signaling, leading to a significant reduction in cell proliferation. This process occurs without affecting pluripotency, suggesting that ZZZ3-depleted ESCs enter a "dormant-like" state and that proliferation and pluripotency can be uncoupled also in human ESCs.
Collapse
Affiliation(s)
- Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Desirèe Valente
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giada Rossignoli
- Department of Biology (DiBio), University of Padua, Padua, Italy
| | - Maria Stella Murfuni
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Chiara Cicconetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Nizza 52, 10126 Torino, Italy; Italian Institute for Genomic Medicine (IIGM), 10060 Candiolo Torino, Italy
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Danilo Swann Matassa
- Department of Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Procopio
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | | | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy.
| | | |
Collapse
|
2
|
Han L, Ma C, Wu Z, Xu H, Li H, Pan G. AhR-STAT3-HO-1/COX-2 signalling pathway may restrict ferroptosis and improve hMSC accumulation and efficacy in mouse liver. Br J Pharmacol 2024; 181:125-141. [PMID: 37538043 DOI: 10.1111/bph.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The low efficacy of mesenchymal stem cells (MSCs) has restricted their application in the treatment of liver disease. Emerging evidence suggested that ferroptosis may provoke hepatocyte dysfunction and exacerbate damage to the liver microenvironment. Here, we have investigated the contribution of liver ferroptosis to the elimination and effectiveness of human MSC (hMSC). Furthermore, potential links between liver ferroptosis and aryl hydrocarbon receptors (AhR) were explored. EXPERIMENTAL APPROACH Two mouse models, iron supplement-induced hepatic ferroptosis and hepatic ischaemia/reperfusion (I/R) injury, were used to identify effects of ferroptosis on hMSC pharmacokinetics (PK)/pharmacodynamics (PD). KEY RESULTS AhR inhibition attenuated hepatic ferroptosis and improved survival of hMSCs. hMSC viability was decreased by iron supplementation or serum from I/R mice. The AhR antagonist CH223191 reversed iron overload and oxidative stress induced by ferroptosis and increased hMSC concentration and efficacy in mouse models. Effects of CH223191 were greater than those of deferoxamine, a conventional ferroptosis inhibitor. Transcriptomic results suggested that the AhR-signal transducer and activator of transcription 3 (STAT3)-haem oxygenase 1/COX-2 signalling pathway is critical to this process. These results were confirmed in a mouse model of hepatic I/R injury. In mice pre-treated with CH223191, hMSC exhibited more potent protective effects, linked to decreased hepatic ferroptosis. CONCLUSION AND IMPLICATIONS Our findings showed that ferroptosis was a critical factor in determining the fate of hMSCs. Inhibition of AhR decreased hepatic ferroptosis, thereby increasing survival and therapeutic effects of hMSCs in mouse models of liver disease.
Collapse
Affiliation(s)
- Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenhui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Li
- Department of Gastroenterology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Maklad A, Sedeeq M, Chan KM, Gueven N, Azimi I. Exploring Lin28 proteins: Unravelling structure and functions with emphasis on nervous system malignancies. Life Sci 2023; 335:122275. [PMID: 37984514 DOI: 10.1016/j.lfs.2023.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Cancer and stem cells share many characteristics related to self-renewal and differentiation. Both cell types express the same critical proteins that govern cellular stemness, which provide cancer cells with the growth and survival benefits of stem cells. LIN28 is an example of one such protein. LIN28 includes two main isoforms, LIN28A and LIN28B, with diverse physiological functions from tissue development to control of pluripotency. In addition to their physiological roles, LIN28A and LIN28B affect the progression of several cancers by regulating multiple cancer hallmarks. Altered expression levels of LIN28A and LIN28B have been proposed as diagnostic and/or prognostic markers for various malignancies. This review discusses the structure and modes of action of the different LIN28 proteins and examines their roles in regulating cancer hallmarks with a focus on malignancies of the nervous system. This review also highlights some gaps in the field that require further exploration to assess the potential of targeting LIN28 proteins for controlling cancer.
Collapse
Affiliation(s)
- Ahmed Maklad
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Kai Man Chan
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia; Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton 3168, Victoria, Australia.
| |
Collapse
|
4
|
Sacco A, Battaglia AM, Santamaria G, Buffone C, Barone S, Procopio A, Lavecchia AM, Aversa I, Giorgio E, Petriaggi L, Cristofaro MG, Biamonte F, Giudice A. SOX2 promotes a cancer stem cell-like phenotype and local spreading in oral squamous cell carcinoma. PLoS One 2023; 18:e0293475. [PMID: 38096163 PMCID: PMC10721099 DOI: 10.1371/journal.pone.0293475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/13/2023] [Indexed: 12/17/2023] Open
Abstract
Emerging evidence shows that oral squamous cell carcinoma (OSCC) invasiveness can be attributed to a small subpopulation of cancer stem cells (CSCs) in the bulk of the tumor. However, the presence of CSCs in the OSCC close resection margins is still poorly unexplored. Here, we found that BMI1, CD44, SOX2, OCT4, UBE2C, CXCR4 CSCs marker genes are significantly upregulated, while IGF1-R, KLF4, ALDH1A1, CD133, FAM3C are downregulated in the tumor core vs healthy mucosa of 24 patients with OSCC. Among these, SOX2 appears also upregulated in the tumor close margin vs healthy mucosa and this significantly correlates with tumor size and lymph node compromise. In vitro analyses in CAL27 and SCC15 tongue squamous cell carcinoma cell lines, show that SOX2 transient knockdown i) promotes the mesenchymal-to-epithelial transition, ii) smooths the invasiveness, iii) attenuates the 3D tumor sphere-forming capacity, and iv) partially increases the sensitivity to cisplatin treatment. Overall, our study highlights that the OSCC close margins can retain CSC-specific markers. Notably, SOX2 may represent a useful CSCs marker to predict a more aggressive phenotype and a suitable target to prevent local invasiveness.
Collapse
Affiliation(s)
- Alessandro Sacco
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Caterina Buffone
- Department of Health Sciences, School of Dentistry, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Selene Barone
- Department of Health Sciences, School of Dentistry, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Anna Procopio
- Department of Experimental and Clinical Medicine, Biomechatronics Laboratory, “Magna Græcia” University of Catanzaro, Catanzaro, Italy
| | | | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Lavinia Petriaggi
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Maria Giulia Cristofaro
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Center of Interdepartmental Services (CIS), "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Sciences, School of Dentistry, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Silva CS, Kudlyk T, Tryndyak VP, Twaddle NC, Robinson B, Gu Q, Beland FA, Fitzpatrick SC, Kanungo J. Gene expression analyses reveal potential mechanism of inorganic arsenic-induced apoptosis in zebrafish. J Appl Toxicol 2023; 43:1872-1882. [PMID: 37501093 DOI: 10.1002/jat.4520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Our previous study showed that sodium arsenite (200 mg/L) affected the nervous system and induced motor neuron development via the Sonic hedgehog pathway in zebrafish larvae. To gain more insight into the effects of arsenite on other signaling pathways, including apoptosis, we have performed quantitative polymerase chain reaction array-based gene expression analyses. The 96-well array plates contained primers for 84 genes representing 10 signaling pathways that regulate several biological functions, including apoptosis. We exposed eggs at 5 h postfertilization until the 72 h postfertilization larval stage to 200 mg/L sodium arsenite. In the Janus kinase/signal transducers and activators of transcription, nuclear factor κ-light-chain-enhancer of activated B cells, and Wingless/Int-1 signaling pathways, the expression of only one gene in each pathway was significantly altered. The expression of multiple genes was altered in the p53 and oxidative stress pathways. Sodium arsenite induced excessive apoptosis in the larvae. This compelled us to analyze specific genes in the p53 pathway, including cdkn1a, gadd45aa, and gadd45ba. Our data suggest that the p53 pathway is likely responsible for sodium arsenite-induced apoptosis. In addition, sodium arsenite significantly reduced global DNA methylation in the zebrafish larvae, which may indicate that epigenetic factors could be dysregulated after arsenic exposure. Together, these data elucidate potential mechanisms of arsenic toxicity that could improve understanding of arsenic's effects on human health.
Collapse
Affiliation(s)
- Camila S Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Tetyana Kudlyk
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Bonnie Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Suzanne C Fitzpatrick
- Office of the Center Director, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
6
|
Phu TA, Ng M, Vu NK, Gao AS, Raffai RL. ApoE expression in macrophages communicates immunometabolic signaling that controls hyperlipidemia-driven hematopoiesis & inflammation via extracellular vesicles. J Extracell Vesicles 2023; 12:e12345. [PMID: 37593979 PMCID: PMC10436255 DOI: 10.1002/jev2.12345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/19/2023] Open
Abstract
While apolipoprotein E (apoE) expression by myeloid cells is recognized to control inflammation, whether such benefits can be communicated via extracellular vesicles is not known. Through the study of extracellular vesicles produced by macrophages derived from the bone marrow of Wildtype (WT-BMDM-EV) and ApoE deficient (EKO-BMDM-EV) mice, we uncovered a critical role for apoE expression in regulating their cell signaling properties. WT-BMDM-EV communicated anti-inflammatory properties to recipient myeloid cells by increasing cellular levels of apoE and miR-146a-5p, that reduced NF-κB signalling. They also downregulated cellular levels of miR-142a-3p, resulting in increased levels of its target carnitine palmitoyl transferase 1A (CPT1A) which improved fatty acid oxidation (FAO) and oxidative phosphorylation (OxPHOS) in recipient cells. Such favorable metabolic polarization enhanced cell-surface MerTK levels and the phagocytic uptake of apoptotic cells. In contrast, EKO-BMDM-EV exerted opposite effects by reducing cellular levels of apoE and miR-146a-5p, which increased NF-κB-driven GLUT1-mediated glucose uptake, aerobic glycolysis, and oxidative stress. Furthermore, EKO-BMDM-EV increased cellular miR-142a-3p levels, which reduced CPT1A levels and impaired FAO and OxPHOS in recipient myeloid cells. When cultured with naïve CD4+ T lymphocytes, EKO-BMDM-EV drove their activation and proliferation, and fostered their transition to a Th1 phenotype. While infusions of WT-BMDM-EV into hyperlipidemic mice resolved inflammation, infusions of EKO-BMDM-EV increased hematopoiesis and drove inflammatory responses in myeloid cells and T lymphocytes. ApoE-dependent immunometabolic signaling by macrophage extracellular vesicles was dependent on transcriptional axes controlled by miR-146a-5p and miR-142a-3p that could be reproduced by infusing miR-146a mimics & miR-142a antagonists into hyperlipidemic apoE-deficient mice. Together, our findings unveil a novel property for apoE expression in macrophages that modulates the immunometabolic regulatory properties of their secreted extracellular vesicles.
Collapse
Affiliation(s)
- Tuan Anh Phu
- Department of Veterans AffairsSurgical Service (112G)San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Martin Ng
- Department of Veterans AffairsSurgical Service (112G)San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Ngan K. Vu
- Department of Veterans AffairsSurgical Service (112G)San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Alex S. Gao
- Department of Veterans AffairsSurgical Service (112G)San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Robert L. Raffai
- Department of Veterans AffairsSurgical Service (112G)San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
- Department of SurgeryDivision of Endovascular and Vascular SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
7
|
Battaglia AM, Sacco A, Aversa I, Santamaria G, Palmieri C, Botta C, De Stefano R, Bitetto M, Petriaggi L, Giorgio E, Faniello CM, Costanzo F, Biamonte F. Iron-mediated oxidative stress induces PD-L1 expression via activation of c-Myc in lung adenocarcinoma. Front Cell Dev Biol 2023; 11:1208485. [PMID: 37377735 PMCID: PMC10291098 DOI: 10.3389/fcell.2023.1208485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction: The PD-1/PD-L1 axis is hijacked by lung adenocarcinoma (LUAD) cells to escape immune surveillance. PD-L1 expression in LUAD is affected, among others, by the metabolic trafficking between tumor cells and the tumor microenvironment (TME). Methods: Correlation between PD-L1 expression and iron content within the TME was established on FFPE LUAD tissue samples. The effects of an iron rich microenvironment on PD-L1 mRNA and protein levels were assessed in vitro in H460 and A549 LUAD by using qPCR, western blot and flow citometry. c-Myc knockdown was performed to validate the role of this transcription factor on PD-L1 expression. The effects of iron-induced PD-L1 on T cell immune function was assessed by quantifying IFN-γ release in a co-colture system. TCGA dataset was used to analyse the correlation between PD-L1 and CD71 mRNA expression in LUAD patients. Results: In this study, we highlight a significant correlation between iron density within the TME and PD-L1 expression in 16 LUAD tissue specimens. In agreement, we show that a more pronounced innate iron-addicted phenotype, indicated by a higher transferrin receptor CD71 levels, significantly correlates with higher PD-L1 mRNA expression levels in LUAD dataset obtained from TCGA database. In vitro, we demonstrate that the addition of Fe3+ within the culture media promotes the significant overexpression of PD-L1 in A549 and H460 LUAD cells, through the modulation of its gene transcription mediated by c-Myc. The effects of iron lean on its redox activity since PD-L1 up-regulation is counteracted by treatment with the antioxidant compound trolox. When LUAD cells are co-cultured with CD3/CD28-stimulated T cells in an iron-rich culture condition, PD-L1 up-regulation causes the inhibition of T-lymphocytes activity, as demonstrated by the significant reduction of IFN-γ release. Discussion: Overall, in this study we demonstrate that iron abundance within the TME may enhance PD-L1 expression in LUAD and, thus, open the way for the identification of possible combinatorial strategies that take into account the iron levels within the TME to improve the outcomes of LUAD patients treated with anti-PD-1/PD-L1-based therapies.
Collapse
Affiliation(s)
- Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Ilenia Aversa
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Gianluca Santamaria
- Laboratory of Molecular Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Camillo Palmieri
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Cirino Botta
- Department of Health Promotion, Mother, and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Roberto De Stefano
- Operational Unit of Anatomic Pathology, Annunziata Hospital, Cosenza, Italy
| | - Maurizio Bitetto
- Operational Unit of Thoracic Surgery, Annunziata Hospital, Cosenza, Italy
| | - Lavinia Petriaggi
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Concetta Maria Faniello
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Francesco Costanzo
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Center of Interdepartmental Services (CIS), Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Center of Interdepartmental Services (CIS), Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
8
|
Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. Ferroptosis: The functions of Nrf2 in human embryonic stem cells. Cell Signal 2023; 106:110654. [PMID: 36906163 DOI: 10.1016/j.cellsig.2023.110654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Human embryonic stem cells (hESCs) have the capacity of self-renewal as well as differentiation towards three germ layer derivatives which makes them as a source of therapeutic application. hESCs are tremendously prone to cell death after dissociation into single cells. Therefore, it technically hinders their applications. Our recent study has revealed that hESCs can be prone to ferroptosis which differs from those in earlier explorations reporting that cellular detachment results in a process cited as anoikis. Ferroptosis occurs via increasing intracellular iron. Therefore, this form of programmed cell death is distinct from other cell deaths in terms of biochemistry, morphology, and genetics. Ferroptosis is found by excessive iron which plays an important part role in reactive oxygen species (ROS) generation through the Fenton reaction as a cofactor. Many genes are related to ferroptosis under the control of nuclear factor erythroid 2-related factor 2 (Nrf2) which is a transcription factor regulating the expression of genes to protect cells from oxidative stress. Nrf2 was demonstrated to take a perilous role in the suppression of ferroptosis by regulating the iron, antioxidant defense enzymes, usage, and restoration of glutathione, thioredoxin, and NADPH. Mitochondrial function is another target of Nrf2 to control cell homeostasis through the modulation of ROS production. In this review, we will give a succinct overview of lipid peroxidation and discuss the major players in the ferroptotic cascade. Additionally, we discussed the important role of the Nrf2 signaling pathway in mediating lipid peroxidation and ferroptosis, with a focus on known Nrf2 target genes that inhibit these processes and their possible role in hESCs.
Collapse
Affiliation(s)
- Shahnaz Babaei-Abraki
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
9
|
Abstract
Herpes simplex virus 1 (HSV-1) is a DNA virus belonging to the family Herpesviridae. HSV-1 infection causes severe neurological disease in the central nervous system (CNS), including encephalitis. Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. Here, we demonstrate that HSV-1 induces ferroptosis, as hallmarks of ferroptosis, including Fe2+ overload, reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, lipid peroxidation, and mitochondrion shrinkage, are observed in HSV-1-infected cultured human astrocytes, microglia cells, and murine brains. Moreover, HSV-1 infection enhances the E3 ubiquitin ligase Keap1 (Kelch-like ECH-related protein 1)-mediated ubiquitination and degradation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidative genes, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) and prostaglandin E2 (PGE2) plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by a ferroptosis inhibitor or a proteasome inhibitor to suppress Nrf2 degradation effectively alleviated HSV-1 encephalitis. Together, our findings demonstrate the interaction between HSV-1 infection and ferroptosis and provide novel insights into the pathogenesis of HSV-1 encephalitis. IMPORTANCE Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. In the current study, we demonstrate that HSV-1 infection induces ferroptosis, as Fe2+ overload, ROS accumulation, GSH depletion, lipid peroxidation, and mitochondrion shrinkage, all of which are hallmarks of ferroptosis, are observed in human cultured astrocytes, microglia cells, and murine brains infected with HSV-1. Moreover, HSV-1 infection enhances Keap1-dependent Nrf2 ubiquitination and degradation, which results in substantial reductions in the expression levels of antiferroptotic genes downstream of Nrf2, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of PTGS2 and PGE2 plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by either a ferroptosis inhibitor or a proteasome inhibitor to suppress HSV-1-induced Nrf2 degradation effectively alleviates HSV-1-caused neuro-damage and inflammation in infected mice. Overall, our findings uncover the interaction between HSV-1 infection and ferroptosis, shed novel light on the physiological impacts of ferroptosis on the pathogenesis of HSV-1 infection and encephalitis, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.
Collapse
|
10
|
Leroux S, Rodriguez-Duboc A, Arabo A, Basille-Dugay M, Vaudry D, Burel D. Intermittent hypoxia in a mouse model of apnea of prematurity leads to a retardation of cerebellar development and long-term functional deficits. Cell Biosci 2022; 12:148. [PMID: 36068642 PMCID: PMC9450451 DOI: 10.1186/s13578-022-00869-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background Apnea of prematurity (AOP) is caused by respiratory control immaturity and affects nearly 50% of premature newborns. This pathology induces perinatal intermittent hypoxia (IH), which leads to neurodevelopmental disorders. The impact on the brain has been well investigated. However, despite its functional importance and immaturity at birth, the involvement of the cerebellum remains poorly understood. Therefore, this study aims to identify the effects of IH on cerebellar development using a mouse model of AOP consisting of repeated 2-min cycles of hypoxia and reoxygenation over 6 h and for 10 days starting on postnatal day 2 (P2). Results At P12, IH-mice cerebella present higher oxidative stress associated with delayed maturation of the cerebellar cortex and decreased dendritic arborization of Purkinje cells. Moreover, mice present with growth retardation and motor disorders. In response to hypoxia, the developing cerebellum triggers compensatory mechanisms resulting in the unaltered organization of the cortical layers from P21 onwards. Nevertheless, some abnormalities remain in adult Purkinje cells, such as the dendritic densification, the increase in afferent innervation, and axon hypomyelination. Moreover, this compensation seems insufficient to allow locomotor recovery because adult mice still show motor impairment and significant disorders in spatial learning. Conclusions All these findings indicate that the cerebellum is a target of intermittent hypoxia through alterations of developmental mechanisms leading to long-term functional deficits. Thus, the cerebellum could contribute, like others brain structures, to explaining the pathophysiology of AOP. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00869-5.
Collapse
|
11
|
Ginsenoside Rh4 Inhibits Colorectal Cancer Cell Proliferation by Inducing Ferroptosis via Autophagy Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6177553. [PMID: 35677385 PMCID: PMC9168088 DOI: 10.1155/2022/6177553] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) is a severe threat to human health. Ginsenosides such as ginsenoside Rh4 have been widely studied in the antitumor field. Here, we investigated the antiproliferative activity and mechanism of Rh4 against CRC in vivo and in vitro. The CRC xenograft model showed that Rh4 inhibited xenograft tumor growth with few side effects (p < 0.05). As determined by MTT colorimetric assays, Western blotting, and immunohistochemical analysis, Rh4 effectively inhibited CRC cell proliferation through autophagy and ferroptosis (p < 0.05). Rh4 significantly upregulated autophagy and ferroptosis marker expression in CRC cells and xenograft tumor tissues in the present study (p < 0.05). Interestingly, the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed Rh4-induced ferroptosis (p < 0.05). Moreover, the autophagy inhibitor 3-methyladenine (3-MA) also reversed Rh4-induced ferroptosis (p < 0.05). These results indicate that Rh4-induced ferroptosis is regulated via the autophagy pathway. In addition, Rh4 increased reactive oxygen species (ROS) accumulation, leading to the activation of the ROS/p53 signaling pathway (p < 0.05). Transcriptome sequencing also confirmed this (p < 0.05). Moreover, the ROS scavenger N-acetyl-cysteine (NAC) reversed the inhibitory effect of Rh4 on CRC cells (p < 0.05). Therefore, this study proves that Rh4 inhibits cancer cell proliferation by activating the ROS/p53 signaling pathway and activating autophagy to induce ferroptosis, which provides necessary scientific evidence of the great anticancer potential of Rh4.
Collapse
|
12
|
Cosialls E, El Hage R, Dos Santos L, Gong C, Mehrpour M, Hamaï A. Ferroptosis: Cancer Stem Cells Rely on Iron until "to Die for" It. Cells 2021; 10:cells10112981. [PMID: 34831207 PMCID: PMC8616391 DOI: 10.3390/cells10112981] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are a distinct subpopulation of tumor cells with stem cell-like features. Able to initiate and sustain tumor growth and mostly resistant to anti-cancer therapies, they are thought responsible for tumor recurrence and metastasis. Recent accumulated evidence supports that iron metabolism with the recent discovery of ferroptosis constitutes a promising new lead in the field of anti-CSC therapeutic strategies. Indeed, iron uptake, efflux, storage and regulation pathways are all over-engaged in the tumor microenvironment suggesting that the reprogramming of iron metabolism is a crucial occurrence in tumor cell survival. In particular, recent studies have highlighted the importance of iron metabolism in the maintenance of CSCs. Furthermore, the high concentration of iron found in CSCs, as compared to non-CSCs, underlines their iron addiction. In line with this, if iron is an essential macronutrient that is nevertheless highly reactive, it represents their Achilles’ heel by inducing ferroptosis cell death and therefore providing opportunities to target CSCs. In this review, we first summarize our current understanding of iron metabolism and its regulation in CSCs. Then, we provide an overview of the current knowledge of ferroptosis and discuss the role of autophagy in the (regulation of) ferroptotic pathways. Finally, we discuss the potential therapeutic strategies that could be used for inducing ferroptosis in CSCs to treat cancer.
Collapse
Affiliation(s)
- Emma Cosialls
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
| | - Rima El Hage
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
| | - Leïla Dos Santos
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
| | - Chang Gong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Guangzhou 510120, China;
| | - Maryam Mehrpour
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
- Correspondence: (M.M.); (A.H.)
| | - Ahmed Hamaï
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
- Correspondence: (M.M.); (A.H.)
| |
Collapse
|