1
|
Abed S, Ebrahimi A, Fattahi F, Kouchakali G, Shekari-Khaniani M, Mansoori-Derakhshan S. The Role of Non-Coding RNAs in Mitochondrial Dysfunction of Alzheimer's Disease. J Mol Neurosci 2024; 74:100. [PMID: 39466447 DOI: 10.1007/s12031-024-02262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/25/2024] [Indexed: 10/30/2024]
Abstract
Although brain amyloid-β (Aβ) peptide buildup is the main cause of Alzheimer's disease (AD), mitochondrial abnormalities can also contribute to the illness's development, as either a primary or secondary factor, as programmed cell death and efficient energy generation depend on the proper operation of mitochondria. As a result, non-coding RNAs (ncRNAs) may play a crucial role in ensuring that nuclear genes related to mitochondria and mitochondrial genes function normally. Interestingly, a significant number of recent studies have focused on the impact of ncRNAs on the expression of nucleus and mitochondrial genes. Additionally, researchers have proposed some intriguing therapeutic approaches to treat and reduce the severity of AD by adjusting the levels of these ncRNAs. The goal of this work was to consolidate the existing knowledge in this field of study by systematically investigating ncRNAs, with a particular emphasis on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs). Therefore, the impact and processes by which ncRNAs govern mitochondrial activity in the onset and progression of AD are thoroughly reviewed in this article. Collectively, the effects of ncRNAs on physiological and molecular mechanisms associated with mitochondrial abnormalities that exacerbate AD are thoroughly reviewed in the current research, while also emphasizing the relationship between disturbed mitophagy in AD and ncRNAs.
Collapse
Affiliation(s)
- Samin Abed
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Fatemeh Fattahi
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Ghazal Kouchakali
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | | | | |
Collapse
|
2
|
Kim JM, Kim WR, Park EG, Lee DH, Lee YJ, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Regulatory Landscape of Dementia: Insights from Non-Coding RNAs. Int J Mol Sci 2024; 25:6190. [PMID: 38892378 PMCID: PMC11172830 DOI: 10.3390/ijms25116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Dementia, a multifaceted neurological syndrome characterized by cognitive decline, poses significant challenges to daily functioning. The main causes of dementia, including Alzheimer's disease (AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), and vascular dementia (VD), have different symptoms and etiologies. Genetic regulators, specifically non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are known to play important roles in dementia pathogenesis. MiRNAs, small non-coding RNAs, regulate gene expression by binding to the 3' untranslated regions of target messenger RNAs (mRNAs), while lncRNAs and circRNAs act as molecular sponges for miRNAs, thereby regulating gene expression. The emerging concept of competing endogenous RNA (ceRNA) interactions, involving lncRNAs and circRNAs as competitors for miRNA binding, has gained attention as potential biomarkers and therapeutic targets in dementia-related disorders. This review explores the regulatory roles of ncRNAs, particularly miRNAs, and the intricate dynamics of ceRNA interactions, providing insights into dementia pathogenesis and potential therapeutic avenues.
Collapse
Affiliation(s)
- Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Pereira JD, Teixeira LCR, Mamede I, Alves MT, Caramelli P, Luizon MR, Veloso AA, Gomes KB. miRNAs in cerebrospinal fluid associated with Alzheimer's disease: A systematic review and pathway analysis using a data mining and machine learning approach. J Neurochem 2024; 168:977-994. [PMID: 38390627 DOI: 10.1111/jnc.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 02/24/2024]
Abstract
Alzheimer's disease (AD) is the most common type and accounts for 60%-70% of the reported cases of dementia. MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in gene expression regulation. Although the diagnosis of AD is primarily clinical, several miRNAs have been associated with AD and considered as potential markers for diagnosis and progression of AD. We sought to match AD-related miRNAs in cerebrospinal fluid (CSF) found in the GeoDataSets, evaluated by machine learning, with miRNAs listed in a systematic review, and a pathway analysis. Using machine learning approaches, we identified most differentially expressed miRNAs in Gene Expression Omnibus (GEO), which were validated by the systematic review, using the acronym PECO-Population (P): Patients with AD, Exposure (E): expression of miRNAs, Comparison (C): Healthy individuals, and Objective (O): miRNAs differentially expressed in CSF. Additionally, pathway enrichment analysis was performed to identify the main pathways involving at least four miRNAs selected. Four miRNAs were identified for differentiating between patients with and without AD in machine learning combined to systematic review, and followed the pathways analysis: miRNA-30a-3p, miRNA-193a-5p, miRNA-143-3p, miRNA-145-5p. The pathways epidermal growth factor, MAPK, TGF-beta and ATM-dependent DNA damage response, were regulated by these miRNAs, but only the MAPK pathway presented higher relevance after a randomic pathway analysis. These findings have the potential to assist in the development of diagnostic tests for AD using miRNAs as biomarkers, as well as provide understanding of the relationship between different pathophysiological mechanisms of AD.
Collapse
Affiliation(s)
- Jessica Diniz Pereira
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Izabela Mamede
- Intituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Paulo Caramelli
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Intituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriano Alonso Veloso
- Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Liu G, Yang C, Wang X, Chen X, Wang Y, Le W. Oxygen metabolism abnormality and Alzheimer's disease: An update. Redox Biol 2023; 68:102955. [PMID: 37956598 PMCID: PMC10665957 DOI: 10.1016/j.redox.2023.102955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Oxygen metabolism abnormality plays a crucial role in the pathogenesis of Alzheimer's disease (AD) via several mechanisms, including hypoxia, oxidative stress, and mitochondrial dysfunction. Hypoxia condition usually results from living in a high-altitude habitat, cardiovascular and cerebrovascular diseases, and chronic obstructive sleep apnea. Chronic hypoxia has been identified as a significant risk factor for AD, showing an aggravation of various pathological components of AD, such as amyloid β-protein (Aβ) metabolism, tau phosphorylation, mitochondrial dysfunction, and neuroinflammation. It is known that hypoxia and excessive hyperoxia can both result in oxidative stress and mitochondrial dysfunction. Oxidative stress and mitochondrial dysfunction can increase Aβ and tau phosphorylation, and Aβ and tau proteins can lead to redox imbalance, thus forming a vicious cycle and exacerbating AD pathology. Hyperbaric oxygen therapy (HBOT) is a non-invasive intervention known for its capacity to significantly enhance cerebral oxygenation levels, which can significantly attenuate Aβ aggregation, tau phosphorylation, and neuroinflammation. However, further investigation is imperative to determine the optimal oxygen pressure, duration of exposure, and frequency of HBOT sessions. In this review, we explore the prospects of oxygen metabolism in AD, with the aim of enhancing our understanding of the underlying molecular mechanisms in AD. Current research aimed at attenuating abnormalities in oxygen metabolism holds promise for providing novel therapeutic approaches for AD.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yanjiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| |
Collapse
|
5
|
Awuson-David B, Williams AC, Wright B, Hill LJ, Di Pietro V. Common microRNA regulated pathways in Alzheimer's and Parkinson's disease. Front Neurosci 2023; 17:1228927. [PMID: 37719162 PMCID: PMC10502311 DOI: 10.3389/fnins.2023.1228927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in gene regulation. Recently, miRNA dysregulation has been found in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The diagnosis of Alzheimer's and Parkinson's is currently challenging, mainly occurring when pathology is already present, and although treatments are available for both diseases, the role of treatment is primarily to prevent or delay the progress of the diseases instead of fully overcoming the diseases. Therefore, the challenge in the near future will be to determine effective drugs to tackle the dysregulated biological pathways in neurodegenerative diseases. In the present study, we describe the dysregulation of miRNAs in blood of Alzheimer's and Parkinson's patients with the aim to identify common mechanisms between the 2 pathologies and potentially to identify common therapeutic targets which can stop or delay the progression of two most frequent neuropathologies. Two independent systematic reviews, bioinformatic analysis, and experiment validation were performed to identify whether AD and PD share common pathways. A total of 15 common miRNAs were found in the literature and 13 common KEGG pathways. Among the common miRNAs, two were selected for validation in a small cohort of AD and PD patients. Let-7f-5p and miR-29b-3p showed to be good predictors in blood of PD patients.
Collapse
Affiliation(s)
- Betina Awuson-David
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Adrian C. Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Benjamin Wright
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Lisa J. Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Liao X, Ruan X, Wu X, Deng Z, Qin S, Jiang H. Identification of Timm13 protein translocase of the mitochondrial inner membrane as a potential mediator of liver fibrosis based on bioinformatics and experimental verification. J Transl Med 2023; 21:188. [PMID: 36899394 PMCID: PMC9999505 DOI: 10.1186/s12967-023-04037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE To explore the association between translocase of the inner mitochondrial membrane 13 (Timm13) and liver fibrosis. METHODS Gene expression profiles of GSE167033 were collected from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between liver disease and normal samples were analyzed using GEO2R. Gene Ontology and Enrichment function were performed, a protein-protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), and the hub genes of the PPI network were calculated by MCODE plug-in in Cytoscape. We validated the transcriptional and post-transcriptional expression levels of the top correlated genes using fibrotic animal and cell models. A cell transfection experiment was conducted to silence Timm13 and detect the expression of fibrosis genes and apoptosis genes. RESULTS 21,722 genes were analyzed and 178 DEGs were identified by GEO2R analysis. The top 200 DEGs were selected and analyzed in STRING for PPI network analysis. Timm13 was one of the hub genes via the PPI network. We found that the mRNA levels of Timm13 in fibrotic liver tissue decreased (P < 0.05), and the mRNA and protein levels of Timm13 also decreased when hepatocytes were stimulated with transforming growth factor-β1. Silencing Timm13 significantly reduced the expression of profibrogenic genes and apoptosis related genes. CONCLUSIONS The results showed that Timm13 is closely related to liver fibrosis and silencing Timm13 significantly reduced the expression of profibrogenic genes and apoptosis related genes, which will provide novel ideas and targets for the clinical diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiaomin Liao
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xianxian Ruan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xianbin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Zhejun Deng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shanyu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Haixing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
7
|
Zhang J, Chen Z, Chen H, Deng Y, Li S, Jin L. Recent Advances in the Roles of MicroRNA and MicroRNA-Based Diagnosis in Neurodegenerative Diseases. BIOSENSORS 2022; 12:1074. [PMID: 36551041 PMCID: PMC9776063 DOI: 10.3390/bios12121074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Neurodegenerative diseases manifest as progressive loss of neuronal structures and their myelin sheaths and lead to substantial morbidity and mortality, especially in the elderly. Despite extensive research, there are few effective treatment options for the diseases. MicroRNAs have been shown to be involved in the developmental processes of the central nervous system. Mounting evidence suggest they play an important role in the development of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, there are few reviews regarding the roles of miRNAs in neurodegenerative diseases. This review summarizes the recent developments in the roles of microRNAs in neurodegenerative diseases and presents the application of microRNA-based methods in the early diagnosis of these diseases.
Collapse
|
8
|
Zhou S, Han Y, Yang R, Pi X, Li J. TIMM13 as a prognostic biomarker and associated with immune infiltration in skin cutaneous melanoma (SKCM). Front Surg 2022; 9:990749. [PMID: 36061054 PMCID: PMC9428353 DOI: 10.3389/fsurg.2022.990749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Providing protection against aggregation and guiding hydrophobic precursors through the mitochondria’s intermembrane space, this protein functions as a chaperone-like protein. SLC25A12 is imported by TIMM8 as a result of its interaction with TIMM13. In spite of this, it is still unknown how TIMM13 interacts with skin cutaneous melanoma (SKCM) and tumor-infiltrating lymphocytes (TILs). Methods Aberrant expression of TIMM13 in SKCM and its clinical outcome was evaluated with the help of multiple databases, including the Xiantao tool (https://www.xiantao.love/), HPA, and UALCAN. TISIDB and Tumor Immune Estimation Resources (TIMER) databases were applied to explore the association between TIMM13 and tumor infiltration immune cells. OS nomogram was constructed, and model performance was examined. Finally, TIMM13 protein expression was validated by immunohistochemistry (IHC). Results TIMM13 expression was higher in SKCM samples than in peritumor samples. TIMM13 was strongly associated with sample type, subgroup, cancer stage, lymph node stage, and worse survival. Further, upregulation of TIMM13 was significantly associated with immunoregulators, and chemokines, as well as T cells, B cells, monocytes, neutrophils, macrophages, and T-cell regulators. An analysis of bioinformatic data uncovered that TIMM13 expression was strongly associated with PD1 (T-cell exhaustion marker). The nomogram showed good predictive performance based on calibration plot. TIMM13 was highly expressed in melanoma tissue samples than in normal samples. Conclusion In brief, TIMM13 may be a prognostic biomarker for SKCM. It might modulate the tumor immune microenvironment and lead to a poorer prognosis. In addition, it is necessary to study the targeted therapy of TIMM13.
Collapse
Affiliation(s)
- Sitong Zhou
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
- Correspondence: Jiehua Li Xiaobing Pi Ronghua Yang
| | - Xiaobing Pi
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
- Correspondence: Jiehua Li Xiaobing Pi Ronghua Yang
| | - Jiehua Li
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
- Correspondence: Jiehua Li Xiaobing Pi Ronghua Yang
| |
Collapse
|
9
|
Barbato C. MicroRNA-Mediated Silencing Pathways in the Nervous System and Neurological Diseases. Cells 2022; 11:cells11152375. [PMID: 35954216 PMCID: PMC9367879 DOI: 10.3390/cells11152375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play a prominent role in post-transcriptional gene regulation mechanisms in the brain tuning synaptic plasticity, memory formation, and cognitive functions in physiological and pathological conditions [...]
Collapse
Affiliation(s)
- Christian Barbato
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Department of Sense Organs, University of Rome Sapienza, Policlinico Umberto I, 00161 Roma, Italy
| |
Collapse
|
10
|
Maurya SK, Gupta S, Bakshi A, Kaur H, Jain A, Senapati S, Baghel MS. Targeting mitochondria in the regulation of neurodegenerative diseases: A comprehensive review. J Neurosci Res 2022; 100:1845-1861. [PMID: 35856508 DOI: 10.1002/jnr.25110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Mitochondria are one of the essential cellular organelles. Apart from being considered as the powerhouse of the cell, mitochondria have been widely known to regulate redox reaction, inflammation, cell survival, cell death, metabolism, etc., and are implicated in the progression of numerous disease conditions including neurodegenerative diseases. Since brain is an energy-demanding organ, mitochondria and their functions are important for maintaining normal brain homeostasis. Alterations in mitochondrial gene expression, mutations, and epigenetic modification contribute to inflammation and neurodegeneration. Dysregulation of reactive oxygen species production by mitochondria and aggregation of proteins in neurons leads to alteration in mitochondria functions which further causes neuronal death and progression of neurodegeneration. Pharmacological studies have prioritized mitochondria as a possible drug target in the regulation of neurodegenerative diseases. Therefore, the present review article has been intended to provide a comprehensive understanding of mitochondrial role in the development and progression of neurodegenerative diseases mainly Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis followed by possible intervention and future treatment strategies to combat mitochondrial-mediated neurodegeneration.
Collapse
Affiliation(s)
| | - Suchi Gupta
- Stem Cell Facility, All India Institute of Medical Sciences, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi, India
| | - Harpreet Kaur
- Department of Zoology, University of Delhi, Delhi, India.,Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Arushi Jain
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
11
|
The Potential Role of miRNA-Regulated Autophagy in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23147789. [PMID: 35887134 PMCID: PMC9317523 DOI: 10.3390/ijms23147789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023] Open
Abstract
As a neurodegenerative disease, Alzheimer’s disease (AD) shows a higher incidence during the aging process, mainly revealing the characteristics of a significant decrease in cognition, uncontrolled emotion, and reduced learning and memory capacity, even leading to death. In the prevention and treatment of AD, some pharmacological therapy has been applied in clinical practice. Unfortunately, there are still limited effective treatments for AD due to the absence of clear and defined targets. Currently, it is recognized that the leading causes of AD include amyloid-β peptide (Aβ) deposition, hyperphosphorylation of tau protein, neurofibrillary tangles, mitochondrial dysfunction, and inflammation. With in-depth mechanistic exploration, it has been found that these causes are highly correlated with the dysfunctional status of autophagy. Numerous experimental results have also confirmed that the development and progression of AD is accompanied by an abnormal functional status of autophagy; therefore, regulating the functional status of autophagy has become one of the important strategies for alleviating or arresting the progression of AD. With the increasing attention given to microRNAs (miRNAs), more and more studies have found that a series of miRNAs are involved in the development and progression of AD through the indirect regulation of autophagy. Therefore, regulating autophagy through targeting these miRNAs may be an essential breakthrough for the prevention and treatment of AD. This article summarizes the regulation of miRNAs in autophagy, with the aim of providing a new theoretical reference point for the prevention and treatment of AD through the indirect regulation of miRNA-mediated autophagy.
Collapse
|