1
|
Akele M, Iervolino M, Van Belle S, Christ F, Debyser Z. Role of LEDGF/p75 (PSIP1) in oncogenesis. Insights in molecular mechanism and therapeutic potential. Biochim Biophys Acta Rev Cancer 2024; 1880:189248. [PMID: 39701326 DOI: 10.1016/j.bbcan.2024.189248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Aberrant gene expression due to dysfunction in proteins involved in transcriptional regulation is a hallmark of tumor development. Indeed, targeting transcriptional regulators represents an emerging approach in cancer therapeutics. Lens epithelium-derived growth factor (LEDGF/p75, PSIP1) is a co-transcriptional activator that tethers several proteins to the chromatin. LEDGF/p75 has been implicated in diseases such as HIV infection and KMT2A-rearranged leukemia. Notably, LEDGF/p75 is upregulated in various human cancers including prostate and breast cancer. In this review, we discuss the essential role of LEDGF/p75 in different malignancies and explore its mechanistic contribution to tumorigenesis revealing its potential as a therapeutic target for chemotherapy.
Collapse
Affiliation(s)
- Muluembet Akele
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Matteo Iervolino
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Ortiz-Hernandez GL, Sanchez-Hernandez ES, Ochoa PT, Casiano CA. The Emerging Roles of the Stress Epigenetic Reader LEDGF/p75 in Cancer Biology and Therapy Resistance: Mechanisms and Targeting Opportunities. Cancers (Basel) 2024; 16:3957. [PMID: 39682146 DOI: 10.3390/cancers16233957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The lens epithelium derived growth factor of 75 kD (LEDGF/p75) is a transcription co-activator and epigenetic reader that has emerged as a stress oncoprotein in multiple human cancers. Growing evidence indicates that it promotes tumor cell survival against certain therapeutic drugs. The amino (N)-terminal region of LEDGF/p75 contains a PWWP domain that reads methylated histone marks, critical for recognizing transcriptionally active chromatin sites. Its carboxyl (C)-terminus has an integrase binding domain (IBD) that serves as the binding site for the HIV-1 integrase and multiple oncogenic transcription factors. Acting as hubs for protein-protein interactions, both domains facilitate the tethering of oncogenic transcription factors and regulators to active chromatin to regulate mRNA splicing, promote DNA repair, and enhance the expression of stress and cancer-related genes that contribute to tumor cell aggressiveness and chemoresistance. This review summarizes our current knowledge of the emerging roles of LEDGF/p75 in cancer biology and therapy resistance and discusses its potential as a novel oncotherapeutic target in combinatorial treatments.
Collapse
Affiliation(s)
- Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Evelyn S Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Pedro T Ochoa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Cancer Center, Loma Linda University Health, Loma Linda, CA 92350, USA
| |
Collapse
|
3
|
Brouns T, Lux V, Van Belle S, Christ F, Veverka V, Debyser Z. The Impact of Lens Epithelium-Derived Growth Factor p75 Dimerization on Its Tethering Function. Cells 2024; 13:227. [PMID: 38334618 PMCID: PMC10854676 DOI: 10.3390/cells13030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The transcriptional co-activator lens epithelium-derived growth factor/p75 (LEDGF/p75) plays an important role in the biology of the cell and in several human diseases, including MLL-rearranged acute leukemia, autoimmunity, and HIV-1 infection. In both health and disease, LEDGF/p75 functions as a chromatin tether that interacts with proteins such as MLL1 and HIV-1 integrase via its integrase-binding domain (IBD) and with chromatin through its N-terminal PWWP domain. Recently, dimerization of LEDGF/p75 was shown, mediated by a network of electrostatic contacts between amino acids from the IBD and the C-terminal α6-helix. Here, we investigated the functional impact of LEDGF/p75 variants on the dimerization using biochemical and cellular interaction assays. The data demonstrate that the C-terminal α6-helix folds back in cis on the IBD of monomeric LEDGF/p75. We discovered that the presence of DNA stimulates LEDGF/p75 dimerization. LEDGF/p75 dimerization enhances binding to MLL1 but not to HIV-1 integrase, a finding that was observed in vitro and validated in cell culture. Whereas HIV-1 replication was not dependent on LEDGF/p75 dimerization, colony formation of MLLr-dependent human leukemic THP-1 cells was. In conclusion, our data indicate that intricate changes in the quaternary structure of LEDGF/p75 modulate its tethering function.
Collapse
Affiliation(s)
- Tine Brouns
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (T.B.); (S.V.B.); (F.C.)
| | - Vanda Lux
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague, Czech Republic; (V.L.); (V.V.)
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (T.B.); (S.V.B.); (F.C.)
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (T.B.); (S.V.B.); (F.C.)
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague, Czech Republic; (V.L.); (V.V.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (T.B.); (S.V.B.); (F.C.)
| |
Collapse
|
4
|
Zhang Y, Guo W, Feng Y, Yang L, Lin H, Zhou P, Zhao K, Jiang L, Yao B, Feng N. Identification of the H3K36me3 reader LEDGF/p75 in the pancancer landscape and functional exploration in clear cell renal cell carcinoma. Comput Struct Biotechnol J 2023; 21:4134-4148. [PMID: 37675289 PMCID: PMC10477754 DOI: 10.1016/j.csbj.2023.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
Lens epithelium-derived growth factor (LEDGF/p75) is a reader of epigenetic marks and a potential target for therapeutic intervention. Its involvement in human immunodeficiency virus (HIV) integration and the development of leukemia driven by MLL (also known as KMT2A) gene fusion make it an attractive candidate for drug development. However, exploration of LEDGF/p75 as an epigenetic reader of H3K36me3 in tumors is limited. Here, for the first time, we analyze the role of LEDGF/p75 in multiple cancers via multiple online databases and in vitro experiments. We used pancancer bulk sequencing data and online tools to analyze correlations of LEDGF/p75 with prognosis, genomic instability, DNA damage repair, prognostic alternative splicing, protein interactions, and tumor immunity. In summary, the present study identified that LEDGF/p75 may serve as a prognostic predictor for tumors such as adrenocortical carcinoma, kidney chromophobe, liver hepatocellular carcinoma, pancreatic adenocarcinoma, skin cutaneous melanoma, and clear cell renal cell carcinoma (ccRCC). In addition, in vitro experiments and gene microarray sequencing were performed to explore the function of LEDGF/p75 in ccRCC, providing new insights into the pathogenesis of the nonmutated SETD2 ccRCC subtype.
Collapse
Affiliation(s)
- Yuwei Zhang
- Nantong University Medical School, Nantong, China
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Wei Guo
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Yangkun Feng
- Nantong University Medical School, Nantong, China
| | - Longfei Yang
- Nantong University Medical School, Nantong, China
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Hao Lin
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Pengcheng Zhou
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Kejie Zhao
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Lin Jiang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bing Yao
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Ninghan Feng
- Nantong University Medical School, Nantong, China
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Sanchez-Hernandez ES, Ochoa PT, Suzuki T, Ortiz-Hernandez GL, Unternaehrer JJ, Alkashgari HR, Diaz Osterman CJ, Martinez SR, Chen Z, Kremsky I, Wang C, Casiano CA. Glucocorticoid Receptor Regulates and Interacts with LEDGF/p75 to Promote Docetaxel Resistance in Prostate Cancer Cells. Cells 2023; 12:2046. [PMID: 37626856 PMCID: PMC10453226 DOI: 10.3390/cells12162046] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Patients with advanced prostate cancer (PCa) invariably develop resistance to anti-androgen therapy and taxane-based chemotherapy. Glucocorticoid receptor (GR) has been implicated in PCa therapy resistance; however, the mechanisms underlying GR-mediated chemoresistance remain unclear. Lens epithelium-derived growth factor p75 (LEDGF/p75, also known as PSIP1 and DFS70) is a glucocorticoid-induced transcription co-activator implicated in cancer chemoresistance. We investigated the contribution of the GR-LEDGF/p75 axis to docetaxel (DTX)-resistance in PCa cells. GR silencing in DTX-sensitive and -resistant PCa cells decreased LEDGF/p75 expression, and GR upregulation in enzalutamide-resistant cells correlated with increased LEDGF/p75 expression. ChIP-sequencing revealed GR binding sites in the LEDGF/p75 promoter. STRING protein-protein interaction analysis indicated that GR and LEDGF/p75 belong to the same transcriptional network, and immunochemical studies demonstrated their co-immunoprecipitation and co-localization in DTX-resistant cells. The GR modulators exicorilant and relacorilant increased the sensitivity of chemoresistant PCa cells to DTX-induced cell death, and this effect was more pronounced upon LEDGF/p75 silencing. RNA-sequencing of DTX-resistant cells with GR or LEDGF/p75 knockdown revealed a transcriptomic overlap targeting signaling pathways associated with cell survival and proliferation, cancer, and therapy resistance. These studies implicate the GR-LEDGF/p75 axis in PCa therapy resistance and provide a pre-clinical rationale for developing novel therapeutic strategies for advanced PCa.
Collapse
Affiliation(s)
- Evelyn S. Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Pedro T. Ochoa
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Tise Suzuki
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Greisha L. Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
| | - Juli J. Unternaehrer
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Hossam R. Alkashgari
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Department of Physiology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Carlos J. Diaz Osterman
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, PR 00716, USA; (C.J.D.O.); (S.R.M.)
| | - Shannalee R. Martinez
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, PR 00716, USA; (C.J.D.O.); (S.R.M.)
| | - Zhong Chen
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Isaac Kremsky
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Charles Wang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Rheumatology Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
6
|
Martinez SR, Elix CC, Ochoa PT, Sanchez-Hernandez ES, Alkashgari HR, Ortiz-Hernandez GL, Zhang L, Casiano CA. Glucocorticoid Receptor and β-Catenin Interact in Prostate Cancer Cells and Their Co-Inhibition Attenuates Tumorsphere Formation, Stemness, and Docetaxel Resistance. Int J Mol Sci 2023; 24:ijms24087130. [PMID: 37108293 PMCID: PMC10139020 DOI: 10.3390/ijms24087130] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Therapy resistance hinders the efficacy of anti-androgen therapies and taxane-based chemotherapy for advanced prostate cancer (PCa). Glucocorticoid receptor (GR) signaling mediates resistance to androgen receptor signaling inhibitors (ARSI) and has also been recently implicated in PCa resistance to docetaxel (DTX), suggesting a role in therapy cross-resistance. Like GR, β-catenin is upregulated in metastatic and therapy-resistant tumors and is a crucial regulator of cancer stemness and ARSI resistance. β-catenin interacts with AR to promote PCa progression. Given the structural and functional similarities between AR and GR, we hypothesized that β-catenin also interacts with GR to influence PCa stemness and chemoresistance. As expected, we observed that treatment with the glucocorticoid dexamethasone promotednuclear accumulation of GR and active β-catenin in PCa cells. Co-immunoprecipitation studies showed that GR and β-catenin interact in DTX-resistant and DTX-sensitive PCa cells. Pharmacological co-inhibition of GR and β-catenin, using the GR modulator CORT-108297 and the selective β-catenin inhibitor MSAB, enhanced cytotoxicity in DTX-resistant PCa cells grown in adherent and spheroid cultures and decreased CD44+/CD24- cell populations in tumorspheres. These results indicate that GR and β-catenin influence cell survival, stemness, and tumorsphere formation in DTX-resistant cells. Their co-inhibition could be a promising therapeutic strategy to overcome PCa therapy cross-resistance.
Collapse
Affiliation(s)
- Shannalee R Martinez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Catherine C Elix
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Pedro T Ochoa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Evelyn S Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hossam R Alkashgari
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Physiology, School of Medicine, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Medicine, Rheumatology Division, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
7
|
Sanchez-Hernandez ES, Ortiz-Hernandez GL, Ochoa PT, Reeves M, Bizzaro N, Andrade LEC, Mahler M, Casiano CA. The Nuclear Dense Fine Speckled (DFS) Immunofluorescence Pattern: Not All Roads Lead to DFS70/LEDGFp75. Diagnostics (Basel) 2023; 13:diagnostics13020222. [PMID: 36673033 PMCID: PMC9858485 DOI: 10.3390/diagnostics13020222] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The monospecific dense fine speckled (DFS) immunofluorescence assay (IFA) pattern is considered a potential marker to aid in exclusion of antinuclear antibody (ANA)-associated rheumatic diseases (AARD). This pattern is typically produced by autoantibodies against transcription co-activator DFS70/LEDGFp75, which are frequently found in healthy individuals and patients with miscellaneous inflammatory conditions. In AARD patients, these antibodies usually co-exist with disease-associated ANAs. Previous studies reported the occurrence of monospecific autoantibodies that generate a DFS-like or pseudo-DFS IFA pattern but do not react with DFS70/LEDGFp75. We characterized this pattern using confocal microscopy and immunoblotting. The target antigen associated with this pattern partially co-localized with DFS70/LEDGFp75 and its interacting partners H3K36me2, an active chromatin marker, and MLL, a transcription factor, in HEp-2 cells, suggesting a role in transcription. Immunoblotting did not reveal a common protein band immunoreactive with antibodies producing the pseudo-DFS pattern, suggesting they may recognize diverse proteins or conformational epitopes. Given the subjectivity of the HEp-2 IFA test, the awareness of pseudo-DFS autoantibodies reinforces recommendations for confirmatory testing when reporting patient antibodies producing a putative DFS pattern in a clinical setting. Future studies should focus on defining the potential diagnostic utility of the pseudo-DFS pattern and its associated antigen(s).
Collapse
Affiliation(s)
- Evelyn S. Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Greisha L. Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Pedro T. Ochoa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Michael Reeves
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Nicola Bizzaro
- Laboratorio di Patologia Clinica, Ospedale San Antonio, Azienda Sanitaria Universitaria Integrata, 33100 Udine, Italy
| | - Luis E. C. Andrade
- Rheumatology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04021-001, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, São Paulo 04023-062, Brazil
| | | | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Rheumatology Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Correspondence: ; Tel.: +909-558-1000 (ext. 42759); Fax: +909-558-0196
| |
Collapse
|
8
|
Miyamoto H. An Overview of 10 th Anniversary of Cells-Advances in Cell Nuclei: Function, Transport and Receptors. Cells 2022; 12:cells12010055. [PMID: 36611849 PMCID: PMC9818963 DOI: 10.3390/cells12010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
The year 2021 marked the 10th anniversary of the publication of Cells [...].
Collapse
Affiliation(s)
- Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; ; Tel.: +1-585-275-8748
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Levati L, Bassi C, Mastroeni S, Lupini L, Antonini Cappellini GC, Bonmassar L, Alvino E, Caporali S, Lacal PM, Narducci MG, Molineris I, De Galitiis F, Negrini M, Russo G, D’Atri S. Circulating miR-1246 and miR-485-3p as Promising Biomarkers of Clinical Response and Outcome in Melanoma Patients Treated with Targeted Therapy. Cancers (Basel) 2022; 14:cancers14153706. [PMID: 35954369 PMCID: PMC9367338 DOI: 10.3390/cancers14153706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the significant improvements in advanced melanoma therapy, there is still a pressing need for biomarkers that can predict patient response and prognosis, and therefore support rational treatment decisions. Here, we investigated whether circulating miRNAs could be biomarkers of clinical outcomes in patients treated with targeted therapy. Using next-generation sequencing, we profiled plasma miRNAs at baseline and at progression in patients treated with BRAF inhibitors (BRAFi) or BRAFi + MEKi. Selected miRNAs associated with response to therapy were subjected to validation by real-time quantitative RT-PCR . Receiver Operating Characteristics (ROC), Kaplan–Meier and univariate and multivariate Cox regression analyses were performed on the validated miR-1246 and miR-485-3p baseline levels. The median baseline levels of miR-1246 and miR-485-3p were significantly higher and lower, respectively, in the group of patients not responding to therapy (NRs) as compared with the group of responding patients (Rs). In Rs, a trend toward an increase in miR-1246 and a decrease in miR-485-3p was observed at progression. Baseline miR-1246 level and the miR-1246/miR-485-3p ratio showed a good ability to discriminate between Rs and NRs. Poorer PFS and OS were observed in patients with unfavorable levels of at least one miRNA. In multivariate analysis, a low level of miR-485-3p and a high miR-1246/miR-485-3p ratio remained independent negative prognostic factors for PFS, while a high miR-1246/miR-485-3p ratio was associated with an increased risk of mortality, although statistical significance was not reached. Evaluation of miR-1246 and miR-485-3p baseline plasma levels might help clinicians to identify melanoma patients most likely to be unresponsive to targeted therapy or at higher risk for short-term PFS and mortality, thus improving their management.
Collapse
Affiliation(s)
- Lauretta Levati
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Cristian Bassi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
- LTTA Center, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Simona Mastroeni
- Clinical Epidemiology Unit, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy;
| | - Laura Lupini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
| | - Gian Carlo Antonini Cappellini
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (G.C.A.C.); (F.D.G.)
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Simona Caporali
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Maria Grazia Narducci
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Ivan Molineris
- Department of Life Science and System Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Federica De Galitiis
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (G.C.A.C.); (F.D.G.)
| | - Massimo Negrini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
- LTTA Center, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Giandomenico Russo
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Stefania D’Atri
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
- Correspondence:
| |
Collapse
|