1
|
Kobashi Y, Kawamura T, Shimazu Y, Kaneko Y, Nishikawa Y, Sugiyama A, Tani Y, Nakayama A, Yoshida M, Zho T, Yamamoto C, Saito H, Takita M, Wakui M, Kodama T, Tsubokura M. Kinetics of humoral and cellular immune responses 5 months post-COVID-19 booster dose by immune response groups at the peak immunity phase: An observational historical cohort study using the Fukushima vaccination community survey. Vaccine X 2024; 20:100553. [PMID: 39309610 PMCID: PMC11416657 DOI: 10.1016/j.jvacx.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Background Understanding the waning of immunity after booster vaccinations is important to identify which immune-low populations should be prioritized. Methods We investigated longitudinal cellular and humoral immunity after the third vaccine dose in both high- and low-cellular and humoral immunity groups at the peak immunity phase after the booster vaccination in a large community-based cohort. Blood samples were collected from 1045 participants at peak (T1: median 54 days post-third dose) and decay (T2: median 145 days post-third dose) phases to assess IgG(S), neutralizing activity, and ELISpot responses. Participants were categorized into high/low ELISpot/IgG(S) groups at T1. Cellular and humoral responses were tracked for approximately five months after the third vaccination. Results In total, 983 participants were included in the cohort. IgG(S) geometric mean fold change between timepoints revealed greater waning in the >79 years age group (T2/T1 fold change: 0.27) and higher IgG(S) fold change in the low-ELISpot group at T1 (T2/T1 fold change: 0.32-0.33) than in the other groups, although ELISpot geometric mean remained stable. Conclusions Antibody level of those who did not respond well to third dose vaccination waned rapidly than those who responded well. Evidence-based vaccine strategies are essential in preventing potential health issues caused by vaccines, including side-effects.
Collapse
Affiliation(s)
- Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Hirata, Ishikawa District, Fukushima, Japan
| | - Takeshi Kawamura
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuzo Shimazu
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Medical & Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Yoshitaka Nishikawa
- Department of General Internal Medicine, Hirata Central Hospital, Hirata, Ishikawa District, Fukushima, Japan
| | - Akira Sugiyama
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yuta Tani
- Medical Governance Research Institute, Minato-ku, Tokyo, Japan
| | - Aya Nakayama
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Makoto Yoshida
- Medical Governance Research Institute, Minato-ku, Tokyo, Japan
| | - Tianchen Zho
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Hiroaki Saito
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Morihito Takita
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Hirata, Ishikawa District, Fukushima, Japan
- General Incorporated Association for Comprehensive Disaster Health Management Research Institute, Japan
| |
Collapse
|
2
|
Gupta S, Su H, Agrawal S, Demirdag Y, Tran M, Gollapudi S. Adaptive Cellular Responses following SARS-CoV-2 Vaccination in Primary Antibody Deficiency Patients. Pathogens 2024; 13:514. [PMID: 38921811 PMCID: PMC11206773 DOI: 10.3390/pathogens13060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Since the start of the COVID-19 pandemic, in a short span of 3 years, vaccination against SARS-CoV-2 has resulted in the end of the pandemic. Patients with inborn errors of immunity (IEI) are at an increased risk for SARS-CoV-2 infection; however, serious illnesses and mortality, especially in primary antibody deficiencies (PADs), have been lower than expected and lower than other high-risk groups. This suggests that PAD patients may mount a reasonable effective response to the SARS-CoV-2 vaccine. Several studies have been published regarding antibody responses, with contradictory reports. The current study is, perhaps, the most comprehensive study of phenotypically defined various lymphocyte populations in PAD patients following the SARS-CoV-2 vaccine. In this study, we examined, following two vaccinations and, in a few cases, prior to and following the 1st and 2nd vaccinations, subsets of CD4 and CD8 T cells (Naïve, TCM, TEM, TEMRA), T follicular helper cells (TFH1, TFH2, TFH17, TFH1/17), B cells (naïve, transitional, marginal zone, germinal center, IgM memory, switched memory, plasmablasts, CD21low), regulatory lymphocytes (CD4Treg, CD8Treg, TFR, Breg), and SARS-CoV-2-specific activation of CD4 T cells and CD8 T cells (CD69, CD137), SARS-CoV-2 tetramer-positive CD8 T cells, and CD8 CTL. Our data show significant alterations in various B cell subsets including Breg, whereas only a few subsets of various T cells revealed alterations. These data suggest that large proportions of PAD patients may mount significant responses to the vaccine.
Collapse
Affiliation(s)
- Sudhir Gupta
- Program in Primary Immunodeficiencies, Division of Basic and Clinical Immunology, University of California at Irvine, Irvine, CA 92697, USA; (H.S.); (S.A.); (Y.D.); (M.T.); (S.G.)
| | | | | | | | | | | |
Collapse
|
3
|
Chang-Rabley E, van Zelm MC, Ricotta EE, Edwards ESJ. An Overview of the Strategies to Boost SARS-CoV-2-Specific Immunity in People with Inborn Errors of Immunity. Vaccines (Basel) 2024; 12:675. [PMID: 38932404 PMCID: PMC11209597 DOI: 10.3390/vaccines12060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The SARS-CoV-2 pandemic has heightened concerns about immunological protection, especially for individuals with inborn errors of immunity (IEI). While COVID-19 vaccines elicit strong immune responses in healthy individuals, their effectiveness in IEI patients remains unclear, particularly against new viral variants and vaccine formulations. This uncertainty has led to anxiety, prolonged self-isolation, and repeated vaccinations with uncertain benefits among IEI patients. Despite some level of immune response from vaccination, the definition of protective immunity in IEI individuals is still unknown. Given their susceptibility to severe COVID-19, strategies such as immunoglobulin replacement therapy (IgRT) and monoclonal antibodies have been employed to provide passive immunity, and protection against both current and emerging variants. This review examines the efficacy of COVID-19 vaccines and antibody-based therapies in IEI patients, their capacity to recognize viral variants, and the necessary advances required for the ongoing protection of people with IEIs.
Collapse
Affiliation(s)
- Emma Chang-Rabley
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
- Department of Immunology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Emily E. Ricotta
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Preventive Medicine and Biostatistics, Uniform Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emily S. J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Li L, Wang F, He X, Pei T, Lu J, Zhang Z, Zhao P, Xue J, Zhu L, Chen X, Yan Z, Lu Y, Zhuang J. Longitudinal Dynamics of Immune Response in Occupational Populations Post COVID-19 Infection in the Changning District of Shanghai, China. Viruses 2024; 16:672. [PMID: 38793554 PMCID: PMC11125686 DOI: 10.3390/v16050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Monitoring the long-term changes in antibody and cellular immunity following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is crucial for understanding immune mechanisms that prevent reinfection. In March 2023, we recruited 167 participants from the Changning District, Shanghai, China. A subset of 66 participants that were infected between November 2022 and January 2023 was selected for longitudinal follow-up. The study aimed to investigate the dynamics of the immune response, including neutralizing antibodies (NAbs), anti-spike (S)-immunoglobulin G (IgG), anti-S-IgM, and lymphocyte profiles, by analyzing peripheral blood samples collected three to seven months post infection. A gradual decrease in NAbs and IgG levels were observed from three to seven months post infection. No significant differences in NAbs and IgG titers were found across various demographics, including age, sex, occupation, and symptomatic presentation, across five follow-up assessments. Additionally, a strong correlation between NAbs and IgG levels was identified. Lymphocyte profiles showed a slight change at five months but had returned to baseline levels by seven months post infection. Notably, healthcare workers exhibited lower B-cell levels compared to police officers. Our study demonstrated that the immune response to SARS-CoV-2 infection persisted for at least seven months. Similar patterns in the dynamics of antibody responses and cellular immunity were observed throughout this period.
Collapse
Affiliation(s)
- Li Li
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Fengge Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130 Dong’an Road, Shanghai 200032, China;
- Department of Epidemiology, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, 130 Dong’an Road, Shanghai 200032, China
| | - Xiaoding He
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Tingting Pei
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Jiani Lu
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Zhan Zhang
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Ping Zhao
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Jiayu Xue
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Lin Zhu
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Xinxin Chen
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Zijie Yan
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| | - Yihan Lu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130 Dong’an Road, Shanghai 200032, China;
- Department of Epidemiology, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, 130 Dong’an Road, Shanghai 200032, China
| | - Jianlin Zhuang
- Shanghai Changning Center for Disease Control and Prevention, 39 Yunwushan Road, Shanghai 200051, China; (L.L.); (X.H.); (T.P.); (J.L.); (Z.Z.); (P.Z.); (J.X.); (L.Z.); (X.C.); (Z.Y.)
| |
Collapse
|
5
|
McDonnell J, Cousins K, Younger MEM, Lane A, Abolhassani H, Abraham RS, Al-Tamemi S, Aldave-Becerra JC, Al-Faris EH, Alfaro-Murillo A, AlKhater SA, Alsaati N, Doss AMA, Anderson M, Angarola E, Ariue B, Arnold DE, Assa'ad AH, Aytekin C, Bank M, Bergerson JRE, Bleesing J, Boesing J, Bouso C, Brodszki N, Cabanillas D, Cady C, Callahan MA, Caorsi R, Carbone J, Carrabba M, Castagnoli R, Catanzaro JR, Chan S, Chandra S, Chapdelaine H, Chavoshzadeh Z, Chong HJ, Connors L, Consonni F, Correa-Jimenez O, Cunningham-Rundles C, D'Astous-Gauthier K, Delmonte OM, Demirdag YY, Deshpande DR, Diaz-Cabrera NM, Dimitriades VR, El-Owaidy R, ElGhazali G, Al-Hammadi S, Fabio G, Faure AS, Feng J, Fernandez JM, Fill L, Franco GR, Frenck RW, Fuleihan RL, Giardino G, Galant-Swafford J, Gambineri E, Garabedian EK, Geerlinks AV, Goudouris E, Grecco O, Pan-Hammarström Q, Khani HHK, Hammarström L, Hartog NL, Heimall J, Hernandez-Molina G, Horner CC, Hostoffer RW, Hristova N, Hsiao KC, Ivankovich-Escoto G, Jaber F, Jalil M, Jamee M, Jean T, Jeong S, Jhaveri D, Jordan MB, Joshi AY, Kalkat A, Kanarek HJ, Kellner ES, Khojah A, Khoury R, Kokron CM, Kumar A, Lecerf K, Lehman HK, Leiding JW, Lesmana H, Lim XR, Lopes JP, López AL, Tarquini L, Lundgren IS, Magnusson J, Marinho AKBB, Marseglia GL, Martone GM, Mechtler AG, Mendonca L, Milner JD, Mustillo PJ, Naderi AG, Naviglio S, Nell J, Niebur HB, Notarangelo L, Oleastro M, Ortega-López MC, Patel NR, Petrovic G, Pignata C, Porras O, Prince BT, Puck JM, Qamar N, Rabusin M, Raje N, Regairaz L, Risma KA, Ristagno EH, Routes J, Roxo-Junior P, Salemi N, Scalchunes C, Schuval SJ, Seneviratne SL, Shankar A, Sherkat R, Shin JJ, Siddiqi A, Signa S, Sobh A, Lima FMS, Stenehjem KK, Tam JS, Tang M, Barros MT, Verbsky J, Vergadi E, Voelker DH, Volpi S, Wall LA, Wang C, Williams KW, Wu EY, Wu SS, Zhou JJ, Cook A, Sullivan KE, Marsh R. COVID-19 Vaccination in Patients with Inborn Errors of Immunity Reduces Hospitalization and Critical Care Needs Related to COVID-19: a USIDNET Report. J Clin Immunol 2024; 44:86. [PMID: 38578389 PMCID: PMC10997719 DOI: 10.1007/s10875-023-01613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/08/2023] [Indexed: 04/06/2024]
Abstract
BACKGROUND The CDC and ACIP recommend COVID-19 vaccination for patients with inborn errors of immunity (IEI). Not much is known about vaccine safety in IEI, and whether vaccination attenuates infection severity in IEI. OBJECTIVE To estimate COVID-19 vaccination safety and examine effect on outcomes in patients with IEI. METHODS We built a secure registry database in conjunction with the US Immunodeficiency Network to examine vaccination frequency and indicators of safety and effectiveness in IEI patients. The registry opened on January 1, 2022, and closed on August 19, 2022. RESULTS Physicians entered data on 1245 patients from 24 countries. The most common diagnoses were antibody deficiencies (63.7%). At least one COVID-19 vaccine was administered to 806 patients (64.7%), and 216 patients received vaccination prior to the development of COVID-19. The most common vaccines administered were mRNA-based (84.0%). Seventeen patients were reported to seek outpatient clinic or emergency room care for a vaccine-related complication, and one patient was hospitalized for symptomatic anemia. Eight hundred twenty-three patients (66.1%) experienced COVID-19 infection. Of these, 156 patients required hospitalization (19.0%), 47 required ICU care (5.7%), and 28 died (3.4%). Rates of hospitalization (9.3% versus 24.4%, p < 0.001), ICU admission (2.8% versus 7.6%, p = 0.013), and death (2.3% versus 4.3%, p = 0.202) in patients who had COVID-19 were lower in patients who received vaccination prior to infection. In adjusted logistic regression analysis, not having at least one COVID-19 vaccine significantly increased the odds of hospitalization and ICU admission. CONCLUSION Vaccination for COVID-19 in the IEI population appears safe and attenuates COVID-19 severity.
Collapse
Affiliation(s)
- John McDonnell
- Pediatric Allergy and Immunology, Cleveland Clinic Children's Hospital, 9500 Euclid Ave/R3, Cleveland, OH, 44195, USA.
| | - Kimberley Cousins
- Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, USA
- Dept of Pathology, The Ohio State Univ Wexner College of Medicine, Columbus, USA
| | - Salem Al-Tamemi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Eman Hesham Al-Faris
- Department of Internal Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Alberto Alfaro-Murillo
- Department of Internal Medicine and Clinical Immunology, Hospital San Juan de Dios, San José, Costa Rica
| | - Suzan A AlKhater
- Department of Pediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- King Fahd Hospital of University, Al-Khobar, Saudi Arabia
| | - Nouf Alsaati
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexa Michelle Altman Doss
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Melissa Anderson
- Division of Allergy Immunology Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Ernestina Angarola
- Immunology and Histocompatibility Unit, Hospital C. G. Durand, Buenos Aires, Argentina
| | - Barbara Ariue
- Department of Pediatrics, Division of Allergy and Immunology, Loma Linda Children's Hospital, Loma Linda, CA, USA
| | - Danielle E Arnold
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amal H Assa'ad
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Meaghan Bank
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Rockville, MD, USA
| | - Jack Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John Boesing
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carolina Bouso
- Immunology Department, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Nicholas Brodszki
- Department of Pediatric Immunology, Children's Hospital, Lund University Hospital, Lund, Sweden
| | - Diana Cabanillas
- Immunology Unit-Hospital Sor María Ludovica, La Plata, Argentina
| | - Carol Cady
- Community Medical Center, Missoula, MT, USA
| | | | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Javier Carbone
- Immunology Department, Hospital General Universitario Gregorio Maranon, Madrid, Spain
| | - Maria Carrabba
- Department of Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jason R Catanzaro
- Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Samantha Chan
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hugo Chapdelaine
- Clinical Immunology, Montreal Clinical Research Institute, Université de Montréal, Montreal, Canada
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hey Jin Chong
- Division of Allergy and Immunology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lori Connors
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Filippo Consonni
- Centre of Excellence, Division of Pediatric Oncology and Hematology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Oscar Correa-Jimenez
- Pediatric Pulmonology and Immunology Research Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Charlotte Cunningham-Rundles
- Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Yesim Yilmaz Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA, USA
| | - Deepti R Deshpande
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Natalie M Diaz-Cabrera
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Victoria R Dimitriades
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA
| | - Rasha El-Owaidy
- Pediatric Allergy, Immunology and Rheumatology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Gehad ElGhazali
- Abu Dhabi and College of Medicine and Health Sciences, Sheikh Khalifa Medical City, Union71 - Purehealth, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suleiman Al-Hammadi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Giovanna Fabio
- Department of Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Jin Feng
- Clinical Immunology, Department of Medicine at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James M Fernandez
- Department of Allergy & Clinical Immunology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Lauren Fill
- University Hospitals, Cleveland Medical Centers, Cleveland, OH, USA
| | - Guacira R Franco
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Robert W Frenck
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ramsay L Fuleihan
- Division of Pediatric Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, NY, USA
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Science, Federico II University, Naples, Italy
| | | | - Eleonora Gambineri
- Centre of Excellence, Division of Pediatric Oncology and Hematology, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elizabeth K Garabedian
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ashley V Geerlinks
- Pediatric Hematology and Oncology, Children's Hospital, Western University, London, ON, Canada
| | - Ekaterini Goudouris
- Division of Allergy and Clinical Immunology - IPPMG, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Octavio Grecco
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Hedieh Haji Khodaverdi Khani
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Nicholas L Hartog
- Helen DeVos Children's Hospital Division of Allergy and Immunology, Michigan State University College of Human Medicine, East Lansing, MI, USA
| | - Jennifer Heimall
- Division of Allergy and Immunology, Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gabriela Hernandez-Molina
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Caroline C Horner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Nataliya Hristova
- Department of Clinical Immunology and Stem Cell Bank, University Hospital Álexandrovska, Sofia, Bulgaria
| | - Kuang-Chih Hsiao
- Starship Child Health, Auckland, New Zealand
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Clinical Immunogenomics Research Consortium Australasia, Sydney, Australia
| | - Gabriela Ivankovich-Escoto
- Department of Pediatrics, Caja Costarricense de Seguro Social, Hospital Nacional de Niños, San José, Costa Rica
| | - Faris Jaber
- Clinical Immunology, Department of Medicine at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maaz Jalil
- Advanced ENT & Allergy, Medford, NJ, USA
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tiffany Jean
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA, USA
| | - Stephanie Jeong
- Clinical Immunology, Department of Medicine at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Devi Jhaveri
- Allergy Immunology Associates Inc., Allergy Immunology Fellowship Associate Program Director University Hospitals of Cleveland Medical Center, Cleveland, USA
| | - Michael B Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Avni Y Joshi
- Mayo Clinic Children's Center, Pediatric and Adult Allergy and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Amanpreet Kalkat
- University Hospitals, Cleveland Medical Centers, Cleveland, OH, USA
| | | | - Erinn S Kellner
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Amer Khojah
- Department of Pediatrics, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ruby Khoury
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cristina M Kokron
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ashish Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kelsey Lecerf
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Heather K Lehman
- Department of Pediatrics, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Harry Lesmana
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Xin Rong Lim
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Joao Pedro Lopes
- UH Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Ana Laura López
- Unidad de Inmunología E Histocompatibilidad, Hospital Dr. Carlos G. Durand, Buenos Aires, Argentina
| | - Lucia Tarquini
- Section of Pathological Anatomy and Histopathology, Polytechnic University of the Marche Region, 60020, Ancona, Italy
| | - Ingrid S Lundgren
- Pediatric Infectious Diseases, St. Luke's Children's Hospital, Boise, ID, USA
| | | | - Ana Karolina B B Marinho
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Giulia M Martone
- Department of Pediatrics, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Annamaria G Mechtler
- University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Leonardo Mendonca
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Center for Rare and Immunological Diseases, Hospital 9 de Julho - Rede DASA, São Paulo, Brazil
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter J Mustillo
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University Wexner College of Medicine, Columbus, OH, USA
| | - Asal Gharib Naderi
- Allergy & Immunology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Samuele Naviglio
- Pediatric Hematology-Oncology, Institute for Maternal and Child Health IRCCS "Burlo Garofolo,", Trieste, Italy
| | - Jeremy Nell
- Department of Infection and Tropical Medicine, Newcastle Upon Tyne Hospitals National Health Service (NHS) Foundation Trust and Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Hana B Niebur
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital and Medical Center, Omaha, NE, USA
| | - Luigi Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Rockville, MD, USA
| | - Matias Oleastro
- Immunology Department, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - María Claudia Ortega-López
- Division of Pediatrics, Allergy and Clinical Immunology, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Neil R Patel
- Department of Pediatrics, Children's National Hospital, Washington, D.C., USA
| | - Gordana Petrovic
- Department of Clinical Immunology and Allergology, Institute of Mother and Child Health, Belgrade, Serbia
| | - Claudio Pignata
- Pediatrics, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Oscar Porras
- Pediatric Immunology and Rheumatology Department, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera,", San José, Costa Rica
| | - Benjamin T Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University Wexner College of Medicine, Columbus, OH, USA
| | - Jennifer M Puck
- Division of Allergy and Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco School of Medicine and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Nashmia Qamar
- Division of Allergy and Immunology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marco Rabusin
- Pediatric Hematology-Oncology, Institute for Maternal and Child Health IRCCS "Burlo Garofolo,", Trieste, Italy
| | - Nikita Raje
- Division of Allergy Immunology Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Lorena Regairaz
- Chief of Immunology Unit, Children's Hospital "Sor María Ludovica, Buenos Aires, Argentina
| | - Kimberly A Risma
- Division of Allergy Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - John Routes
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Persio Roxo-Junior
- Division of Immunology and Allergy, Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Negin Salemi
- Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Susan J Schuval
- Division of Allergy and Immunology, Stony Brook Children's Hospital, Stony Brook, NY, USA
| | | | - Ashwin Shankar
- University Hospitals, Cleveland Medical Centers, Cleveland, OH, USA
| | - Roya Sherkat
- Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Junghee Jenny Shin
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Sara Signa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Ali Sobh
- Department of Pediatrics, Faculty of Medicine, Mansoura University Children's Hospital, Mansoura University, Mansoura, Egypt
| | - Fabiana Mascarenhas Souza Lima
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Kristen K Stenehjem
- Department of Pediatrics, Children's National Hospital, Washington, D.C., USA
| | | | - Monica Tang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California San Francisco, San Francisco, USA
| | - Myrthes Toledo Barros
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - James Verbsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eleni Vergadi
- Department of Paediatrics, Medical School, University of Crete, Rethymno, Greece
| | - Dayne H Voelker
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
- Dipartimento Di NeuroscienzeRiabilitazioneOftalmologiaGenetica e Scienze Materno Infantili, University of Genoa, 16132, Genoa, Italy
| | - Luke A Wall
- Section of Allergy Immunology, Department of Pediatrics, Louisiana State University Health and Children's Hospital New Orleans, New Orleans, LA, USA
| | - Christine Wang
- Section of Rheumatology, Department of Pediatrics, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kelli W Williams
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Eveline Y Wu
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shan Shan Wu
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Allergy and Immunology Associates Inc., Mayfield Heights, OH, USA
| | - Jessie J Zhou
- Department of Clinical Immunology & Allergy, The Royal Melbourne Hospital, Melbourne, Australia
| | - Alexandria Cook
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rebecca Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
6
|
Mercolini F, Abram N, Cesaro S. Managing acute COVID-19 in immunocompromised pediatric patients. Expert Rev Clin Immunol 2024; 20:349-357. [PMID: 38099388 DOI: 10.1080/1744666x.2023.2295982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 12/13/2023] [Indexed: 03/16/2024]
Abstract
INTRODUCTION SARS-CoV-2 infection is a potentially life-threatening infection in immunocompromised pediatric patients, and its management has rapidly evolved during the pandemic. To control SARS-CoV-2 infection over time, the scenario changed for the better with the introduction of specific treatments such as antiviral drugs, vaccines, and monoclonal antibodies, together with drugs blocking the inflammatory cytokine cascade and improvements in supportive care. AREAS COVERED This paper discusses the therapeutic strategies to apply for patients affected by COVID-19 in the pediatric population, with a focus on the immunocompromised patients. EXPERT OPINION Treatment in pediatric patients retraces the therapies investigated and approved in adults and must be calibrated on the basis of the severity of the infection (anti-spike monoclonal antibody, antivirals, anti-inflammatory drugs, and immunomodulators). Transmission prevention policies and vaccination reduce the risk of infection, while early intervention in the immunocompromised patients at high-risk of progression to severe-critical COVID-19 may reduce the period of viral shedding and the need for hospitalization, intensive care admission, and death. In hemato-oncological patients, the delayed treatment of SARS-CoV-2 infection or COVID-19 disease represents a frequent complication and its impact on the patient outcome remains a matter of research for the next few years.
Collapse
Affiliation(s)
- Federico Mercolini
- Pediatric Oncology and Hematology "Lalla Seràgnoli", IRCCS, Azienda Ospedaliero-Universitaria di Bologna institution, Bologna, Italy
| | - Nicoletta Abram
- Pediatric Oncology and Hematology "Lalla Seràgnoli", IRCCS, Azienda Ospedaliero-Universitaria di Bologna institution, Bologna, Italy
| | - Simone Cesaro
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
7
|
Cusa G, Sardella G, Garzi G, Firinu D, Milito C. SARS-CoV-2 vaccination in primary antibody deficiencies: an overview on efficacy, immunogenicity, durability of immune response and safety. Curr Opin Allergy Clin Immunol 2024; 24:37-43. [PMID: 37962877 DOI: 10.1097/aci.0000000000000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the current best knowledge on the efficacy of COVID-19 vaccination in vulnerable patients affected by primary antibody deficiencies (PADs), both in patients previously infected and vaccine-immunized, focusing also on the durability, on the need for multiple booster doses and on the safety of anti-SARS-CoV-2 vaccines. RECENT FINDINGS Patients vaccinated for SARS-CoV2 have variable humoral response, still showing a tendency towards an increase in antibody titers, with factors such as booster doses, previous infections, age and specific genetic mutations influencing the outcome. Long-lasting cellular responses to SARS-CoV-2 vaccination instead, mostly of the T-cell type, have been observed. Overall, the duration of protection given by vaccinations is sufficient and increased upon further simulations. Furthermore, the safety profile in PID patients is excellent, with most adverse events being transient and mild and no major adverse event reported. SUMMARY Several studies have emphasized the benefit of vaccinating patients with PADs against the SARS-CoV-2 virus and the necessity of administering booster doses. This review, by gathering the most recent and significant data from the scientific literature, could be helpful in clinical practice in the management of disease prevention in patients affected by primary immunodeficiency and also serve as inspiration for further in-depth clinical research.
Collapse
Affiliation(s)
- Gabriella Cusa
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome
| | - Germano Sardella
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome
| | - Giulia Garzi
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome
| |
Collapse
|
8
|
Costanzo GAML, Deiana CM, Sanna G, Perra A, Campagna M, Ledda AG, Coghe F, Palmas V, Cappai R, Manzin A, Chessa L, Del Giacco S, Firinu D. Impact of Exposure to Vaccination and Infection on Cellular and Antibody Response to SARS-CoV-2 in CVID Patients Through COVID-19 Pandemic. J Clin Immunol 2023; 44:12. [PMID: 38129351 DOI: 10.1007/s10875-023-01616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE The purpose of this study is to investigate the kinetics of response against SARS-CoV-2 elicited by vaccination and/or breakthrough infection (occurred after 3 doses of BNT162b2) in a cohort CVID patients. METHODS We measured humoral and cellular immunity using quantitative anti-spike antibody (anti-S-IgG) and neutralization assay and specific interferon-gamma release assay (IGRA) before and after the third or fourth dose of BNT162b2 and/or after COVID-19. RESULTS In CVID, 58.3% seroconverted after 2 doses that increased to 77.8% after 3 doses. Between the second and third dose, there was a decline in humoral compartment that led to titers below the cutoff of 1:10 (MNA90%) in CVID. This was paralleled by a significantly lower proportion (30%) and reduced magnitude of the residual cellular response among CVID. The third dose achieved a lower titer of anti-S and nAb against the Wuhan strain than HC and significantly decreased the rate of those showing solely a positive neutralizing activity and those with simultaneous negativity of IGRA and nAbs; the differences in IGRA were overall reduced with respect to HC. At further sampling after breakthrough SARS-COV-2 infection, mostly in the omicron era, or fourth dose, 6 months after the last event, the residual nAb titer to Wuhan strain was still significantly higher in HC, while there was no significant difference of nAbs to BA.1. The rate of IGRA responders was 65.5% in CVID and 90.5% in HC (p=0.04), while the magnitude of response was similar. None of CVID had double negativity to nAbs and IGRA at the last sampling. CONCLUSION This data shows an increase of adaptive immunity in CVID after mRNA vaccination in parallel to boosters, accrual number of exposures and formation of hybrid immunity.
Collapse
Affiliation(s)
| | - Carla Maria Deiana
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Giuseppina Sanna
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Andrea Perra
- Oncology and Molecular Pathology Unit, Department of Biomedical Sciences, University of Cagliari, 09100, Cagliari, Italy
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Andrea Giovanni Ledda
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Ferdinando Coghe
- Laboratory Clinical Chemical Analysis and Microbiology, University Hospital of Cagliari, 09042, Monserrato, Italy
| | - Vanessa Palmas
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Riccardo Cappai
- Laboratory Clinical Chemical Analysis and Microbiology, University Hospital of Cagliari, 09042, Monserrato, Italy
| | - Aldo Manzin
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Luchino Chessa
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy.
- Unit of Internal Medicine, Policlinico Universitario - AOU di Cagliari, Cagliari, Italy.
- Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy.
| |
Collapse
|
9
|
Pulvirenti F, Garzi G, Milito C, Sculco E, Sciannamea M, Napoli A, Cinti L, Roberto P, Punziano A, Carrabba M, Piano Mortari E, Carsetti R, Antonelli G, Quinti I. SARS-CoV-2 pre-exposure prophylaxis with tixagevimab/cilgavimab (AZD7442) provides protection in inborn errors of immunity with antibody defects: a real-world experience. Front Immunol 2023; 14:1249462. [PMID: 37954618 PMCID: PMC10639167 DOI: 10.3389/fimmu.2023.1249462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Background Preventive strategies against severe COVID-19 in Inborn Errors of Immunity (IEI) include bivalent vaccines, treatment with SARS-CoV-2 monoclonal antibodies (mAbs), early antiviral therapies, and pre-exposure prophylaxis (PrEP). Objective To assess the effectiveness of the PrEP with tixagevimab/cilgavimab (AZD7442) in IEI with primary antibody defects during the COVID-19 Omicron wave. Methods A six-month prospective study evaluated the SARS-CoV-2 infection rate and the COVID-19 severity in the AZD7442 group, in the no-AZD7442 group, and in a group of patients with a recent SARS-CoV-2 infection (< three months). Spike-specific IgG levels were measured at regular intervals. Results Six out of thirty-three patients (18%) and 54/170 patients (32%) became infected in the AZD7442 group and in the no-AZD7442 group, respectively. Within 90 days post-administration, the AZD7442 group was 85% less likely to be infected and 82% less likely to have a symptomatic disease than the no-AZD7442 group. This effect was lost thereafter. In the entire cohort, no mortality/hospitalisation was observed. The control group of 35 recently infected patients was 88% and 92% less likely to be infected than the AZD7442 and no-AZD7442 groups. Serum anti-Spike IgG reached the highest peak seven days post-AZD7442 PrEP then decreased, remaining over 1000 BAU/mL 180 days thereafter. Conclusion In patients with IEI and antibody defects, AZD7442 prophylaxis had a transient protective effect, possibly lost possibly because of the appearance of new variants. However, PrEP with newer mAbs might still represent a feasible preventive strategy in the future in this population.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Giulia Garzi
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Anna Napoli
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Lilia Cinti
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Piergiorgio Roberto
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Carrabba
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eva Piano Mortari
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Isabella Quinti
- Reference Centre for Primary Immune Deficiencies, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
10
|
KARABİBER E, ATİK Ö, TEPETAM F, ERGAN B, İLKİ A, KARAKOÇ AYDINER E, ÖZEN A, ÖZYER F, BARIŞ S. Clinical and immunological outcomes of SARS-CoV-2 infection in patients with inborn errors of immunity receiving different brands and doses of COVID-19 vaccines. Tuberk Toraks 2023; 71:236-249. [PMID: 37740627 PMCID: PMC10912874 DOI: 10.5578/tt.20239705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023] Open
Abstract
Introduction Vaccines against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) provide successful control of the coronavirus-2019 (COVID-19) pandemic. The safety and immunogenicity studies are encouraging in patients with inborn errors of immunity (IEI); however, data about mortality outcomes and severe disease after vaccination still need to be fully addressed. Therefore, we aimed to determine the clinical and immunological outcomes of SARS-CoV-2 infection in patients with IEI who have received vaccination. Materials and Methods Eighty-eight patients with a broad range of molecular etiologies were studied; 45 experienced SARS-CoV-2 infection. Infection outcomes were analyzed in terms of genetic etiology, background clinical characteristics, and immunization history, including the type and number of doses received and the time elapsed since vaccination. In addition, anti-SARS-CoV-2 antibodies were quantified using electrochemiluminescent immunoassay. Results Patients were immunized using one of the three regimens: inactivated (Sinovac, Coronavac®), mRNA (BNT162b2, Comirnaty®, Pfizer-Biontech), and a combination. All three regimens induced comparable anti-SARS-CoV-2 IgG levels, with no differences in the adverse events. Among 45 patients with COVID-19, 26 received a full course of vaccination, while 19 were vaccine-naive or received incomplete dosing. No patients died due to COVID-19 infection. The fully immunized group had a lower hospitalization rate (23% vs. 31.5%) and a shorter symptomatic phase than the others. Among the fully vaccinated patients, serum IgM and E levels were significantly lower in hospitalized patients than non-hospitalized patients. Conclusion COVID-19 vaccines were well-tolerated by the IEI patients, and a full course of immunization was associated with lower hospitalization rates and a shorter duration of COVID-19 symptoms.
Collapse
Affiliation(s)
- E. KARABİBER
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Marmara University Pendik Training and Research Hospital, İstanbul, Türkiye
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - Ö. ATİK
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
| | - F.M. TEPETAM
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
| | - B. ERGAN
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
| | - A. İLKİ
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
| | - E. KARAKOÇ AYDINER
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - A. ÖZEN
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - F. ÖZYER
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Marmara University Pendik Training and Research Hospital, İstanbul, Türkiye
| | - S. BARIŞ
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| |
Collapse
|
11
|
McDonnell JC. COVID-19 Vaccination In Patients with Inborn Errors of Immunity Reduces Hospitalization and Critical Care Needs Related to COVID-19: A USIDNET Report. RESEARCH SQUARE 2023:rs.3.rs-3194637. [PMID: 37645807 PMCID: PMC10462193 DOI: 10.21203/rs.3.rs-3194637/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background The CDC and ACIP recommend COVID-19 vaccination for patients with inborn errors of immunity (IEI). Not much is known about vaccine safety in IEI and whether vaccination attenuates infection severity in IEI. Objective To estimate COVID-19 vaccination safety and examine effect on outcomes in patients with IEI. Methods We built a secure registry database in conjunction with the United States Immunodeficiency Network to examine vaccination frequency and indicators of safety and effectiveness in IEI patients. The registry opened on January 1, 2022 and closed on August 19, 2022. Results Physicians entered data on 1,245 patients from 24 countries. The most common diagnoses were antibody deficiencies (63.7%). At least 1 COVID-19 vaccine was administered to 806 patients (64.7%), and 216 patients received vaccination prior to the development of COVID-19. The most common vaccines administered were mRNA-based (84.0%). Seventeen patients were reported to seek outpatient clinic or emergency room care for a vaccine-related complication and one patient was hospitalized for symptomatic anemia. Eight hundred twenty-three patients (66.1%) experienced COVID-19 infection. Of these, 156 patients required hospitalization (19.0%), 47 required ICU care (5.7%), and 28 died (3.4%). Rates of hospitalization (9.3% versus 24.4%, p<0.001), ICU admission (2.8% versus 7.6%, p=0.013), and death (2.3% versus 4.3%, p=0.202) in patients who had COVID-19 were lower in patients who received vaccination prior to infection. In adjusted logistic regression analysis, not having at least one COVID-19 vaccine significantly increased the odds of hospitalization and ICU admission. Conclusion Vaccination for COVID-19 in the IEI population appears safe and attenuates COVID-19 severity.
Collapse
Affiliation(s)
- John C McDonnell
- Cleveland Clinic Children's Hospital - Main Campus: Cleveland Clinic Children's Hospital
| |
Collapse
|
12
|
Paris R. SARS-CoV-2 Infection and Response to COVID-19 Vaccination in Patients With Primary Immunodeficiencies. J Infect Dis 2023; 228:S24-S33. [PMID: 37539759 PMCID: PMC10401615 DOI: 10.1093/infdis/jiad145] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/06/2023] [Indexed: 08/05/2023] Open
Abstract
Primary immunodeficiencies (PIDs) are heterogeneous, rare disorders that increase susceptibility to infection and/or immune dysregulation. Individuals with certain PIDs are at high risk of severe or fatal outcomes from SARS-CoV-2 infections (the causative agent of COVID-19), either due to the underlying PID and/or due to the presence of comorbidities such as severe lung and liver disease. Vaccination remains the primary strategy to protect individuals with PID from COVID-19. However, populations with PID exhibit variable vaccine seroresponse rates, antibody titers, and neutralization activity depending on the type of PID and/or COVID-19 vaccine, and consequently, are at an elevated risk of severe disease. In this article, we review the COVID-19 burden in patients with PIDs and focus in-depth on findings from patients with predominantly antibody deficiencies or combined immunodeficiencies. We conclude by providing COVID-19 vaccination recommendations for this population.
Collapse
Affiliation(s)
- Robert Paris
- Correspondence: Robert Paris, MD, FACP, FIDSA, Moderna, Inc., 200 Technology Square, Cambridge, MA 02139, USA ()
| |
Collapse
|
13
|
Troelnikov A, Armour B, Putty T, Aggarwal A, Akerman A, Milogiannakis V, Chataway T, King J, Turville SG, Gordon TP, Wang JJ. Immunoglobulin repertoire restriction characterizes the serological responses of patients with predominantly antibody deficiency. J Allergy Clin Immunol 2023; 152:290-301.e7. [PMID: 36965845 DOI: 10.1016/j.jaci.2023.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Predominantly antibody deficiency (PAD) is the most common category of inborn errors of immunity and is underpinned by impaired generation of appropriate antibody diversity and quantity. In the clinic, responses are interrogated by assessment of vaccination responses, which is central to many PAD diagnoses. However, the composition of the generated antibody repertoire is concealed from traditional quantitative measures of serological responses. Leveraging modern mass spectrometry-based proteomics (MS-proteomics), it is possible to elaborate the molecular features of specific antibody repertoires, which may address current limitations of diagnostic vaccinology. OBJECTIVES We sought to evaluate serum antibody responses in patients with PAD following vaccination with a neo-antigen (severe acute respiratory syndrome coronavirus-2 vaccination) using MS-proteomics. METHODS Following severe acute respiratory syndrome coronavirus-2 vaccination, serological responses in individuals with PAD and healthy controls (HCs) were assessed by anti-S1 subunit ELISA and neutralization assays. Purified anti-S1 subunit IgG and IgM was profiled by MS-proteomics for IGHV subfamily usage and somatic hypermutation analysis. RESULTS Twelve patients with PAD who were vaccine-responsive were recruited with 11 matched vaccinated HCs. Neutralization and end point anti-S1 titers were lower in PAD. All subjects with PAD demonstrated restricted anti-S1 IgG antibody repertoires, with usage of <5 IGHV subfamilies (median: 3; range 2-4), compared to ≥5 for the 11 HC subjects (P < .001). IGHV3-7 utilization was far less common in patients with PAD than in HCs (2 of 12 vs 10 of 11; P = .001). Amino acid substitutions due to somatic hypermutation per subfamily did not differ between groups. Anti-S1 IgM was present in 64% and 50% of HC and PAD cohorts, respectively, and did not differ significantly between HCs and patients with PAD. CONCLUSIONS This study demonstrates the breadth of anti-S1 antibodies elicited by vaccination at the proteome level and identifies stereotypical restriction of IGHV utilization in the IgG repertoire in patients with PAD compared with HC subjects. Despite uniformly pauci-clonal antibody repertoires some patients with PAD generated potent serological responses, highlighting a possible limitation of traditional serological techniques. These findings suggest that IgG repertoire restriction is a key feature of antibody repertoires in PAD.
Collapse
Affiliation(s)
- Alexander Troelnikov
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia; SA Pathology, Adelaide, Australia.
| | - Bridie Armour
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia; SA Pathology, Adelaide, Australia
| | - Trishni Putty
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia; SA Pathology, Adelaide, Australia
| | | | | | | | - Tim Chataway
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Jovanka King
- SA Pathology, Adelaide, Australia; Women's and Children's Hospital Network, Adelaide, Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | | | - Tom P Gordon
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia; SA Pathology, Adelaide, Australia; Flinders Medical Centre, Bedford Park, Australia
| | - Jing Jing Wang
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia; SA Pathology, Adelaide, Australia
| |
Collapse
|
14
|
Mohamed KM, Guevara-Hoyer K, García CJ, Bravo LG, Jiménez-Huete A, de la Peña AR, Valeros BM, Velázquez CC, López EC, Cabello N, Estrada V, Corbí ÁL, Fernández-Arquero M, Ocaña A, Delgado-Iribarren A, Martínez-Novillo M, Bolaños E, Anguita E, Peña A, Benavente C, Benítez Fuentes JD, Pérez Segura P, Sánchez-Ramón S. Specific Cellular and Humoral Immune Responses to the Neoantigen RBD of SARS-CoV-2 in Patients with Primary and Secondary Immunodeficiency and Healthy Donors. Biomedicines 2023; 11:biomedicines11041042. [PMID: 37189660 DOI: 10.3390/biomedicines11041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Patients with antibody deficiency disorders, such as primary immunodeficiency (PID) or secondary immunodeficiency (SID) to B-cell lymphoproliferative disorder (B-CLPD), are two groups vulnerable to developing the severe or chronic form of coronavirus disease caused by SARS-CoV-2 (COVID-19). The data on adaptive immune responses against SARS-CoV-2 are well described in healthy donors, but still limited in patients with antibody deficiency of a different cause. Herein, we analyzed spike-specific IFN-γ and anti-spike IgG antibody responses at 3 to 6 months after exposure to SARS-CoV-2 derived from vaccination and/or infection in two cohorts of immunodeficient patients (PID vs. SID) compared to healthy controls (HCs). Pre-vaccine anti-SARS-CoV-2 cellular responses before vaccine administration were measured in 10 PID patients. Baseline cellular responses were detectable in 4 out of 10 PID patients who had COVID-19 prior to vaccination, perceiving an increase in cellular responses after two-dose vaccination (p < 0.001). Adequate specific cellular responses were observed in 18 out of 20 (90%) PID patients, in 14 out of 20 (70%) SID patients and in 74 out of 81 (96%) HCs after vaccination (and natural infection in some cases). Specific IFN-γ response was significantly higher in HC with respect to PID (1908.5 mUI/mL vs. 1694.1 mUI/mL; p = 0.005). Whereas all SID and HC patients mounted a specific humoral immune response, only 80% of PID patients showed positive anti-SARS-CoV-2 IgG. The titer of anti-SARS-CoV-2 IgG was significantly lower in SID compared with HC patients (p = 0.040), without significant differences between PID and HC patients (p = 0.123) and between PID and SID patients (p =0.683). High proportions of PID and SID patients showed adequate specific cellular responses to receptor binding domain (RBD) neoantigen, with a divergence between the two arms of the adaptive immune response in PID and SID patients. We also focused on the correlation of protection of positive SARS-CoV-2 cellular response to omicron exposure: 27 out of 81 (33.3%) HCs referred COVID-19 detected by PCR or antigen test, 24 with a mild course, 1 with moderate symptoms and the remaining 2 with bilateral pneumonia that were treated in an outpatient basis. Our results might support the relevance of these immunological studies to determine the correlation of protection with severe disease and for deciding the need for additional boosters on a personalized basis. Follow-up studies are required to evaluate the duration and variability in the immune response to COVID-19 vaccination or infection.
Collapse
Affiliation(s)
- Kauzar Mohamed Mohamed
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Kissy Guevara-Hoyer
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
| | - Carlos Jiménez García
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Laura García Bravo
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | | | - Antonia Rodríguez de la Peña
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Beatriz Mediero Valeros
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Cristina Cañizares Velázquez
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Esther Culebras López
- Department of Microbiology, IML and IdISSC, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Noemí Cabello
- Unit of Infectious Diseases, Department of Internal Medicine, Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Vicente Estrada
- Unit of Infectious Diseases, Department of Internal Medicine, Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Ángel L Corbí
- Centro de Investigaciones Biológicas (CSIC), C./Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Miguel Fernández-Arquero
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
| | - Alberto Ocaña
- Department of Microbiology, IML and IdISSC, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | | | - Mercedes Martínez-Novillo
- Clinical Analysis Department, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Estefanía Bolaños
- Department of Hematology, Hospital Clínico San Carlos, IML, IdISSC, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Eduardo Anguita
- Department of Hematology, Hospital Clínico San Carlos, IML, IdISSC, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Ascensión Peña
- Department of Hematology, Hospital Clínico San Carlos, IML, IdISSC, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Celina Benavente
- Department of Hematology, Hospital Clínico San Carlos, IML, IdISSC, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Javier David Benítez Fuentes
- Department of Medical Oncology, Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Pedro Pérez Segura
- Department of Medical Oncology, Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
- Department of Clinical Immunology, Hospital Universitario Clínico San Carlos and IdISSC, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| |
Collapse
|
15
|
Milito C, Firinu D, Bez P, Villa A, Punziano A, Lagnese G, Costanzo G, van Leeuwen LPM, Piazza B, Deiana CM, d’Ippolito G, Del Giacco SR, Rattazzi M, Spadaro G, Quinti I, Scarpa R, Dalm VASH, Cinetto F. A beacon in the dark: COVID-19 course in CVID patients from two European countries: Different approaches, similar outcomes. Front Immunol 2023; 14:1093385. [PMID: 36845159 PMCID: PMC9944020 DOI: 10.3389/fimmu.2023.1093385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Background CVID patients present an increased risk of prolonged SARS-CoV-2 infection and re-infection and a higher COVID-19-related morbidity and mortality compared to the general population. Since 2021, different therapeutic and prophylactic strategies have been employed in vulnerable groups (vaccination, SARS-CoV-2 monoclonal antibodies and antivirals). The impact of treatments over the last 2 years has not been explored in international studies considering the emergence of viral variants and different management between countries. Methods A multicenter retrospective/prospective real-life study comparing the prevalence and outcomes of SARS-CoV-2 infection between a CVID cohort from four Italian Centers (IT-C) and one cohort from the Netherlands (NL-C), recruiting 773 patients. Results 329 of 773 CVID patients were found positive for SARS-CoV-2 infection between March 1st, 2020 and September 1st 2022. The proportion of CVID patients infected was comparable in both national sub-cohorts. During all waves, chronic lung disease, "complicated" phenotype, chronic immunosuppressive treatment and cardiovascular comorbidities impacted on hospitalization, whereas risk factors for mortality were older age, chronic lung disease, and bacterial superinfections. IT-C patients were significantly more often treated, both with antivirals and mAbs, than NL-C patients. Outpatient treatment, available only in Italy, started from the Delta wave. Despite this, no significant difference was found for COVID-19 severity between the two cohorts. However, pooling together specific SARS-CoV-2 outpatient treatments (mAbs and antivirals), we found a significant effect on the risk of hospitalization starting from Delta wave. Vaccination with ≥ 3 doses shortened RT-PCR positivity, with an additional effect only in patients receiving antivirals. Conclusions The two sub-cohorts had similar COVID-19 outcomes despite different treatment approaches. This points out that specific treatment should now be reserved for selected subgroups of CVID patients, based on pre-existing conditions.
Collapse
Affiliation(s)
- Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Patrick Bez
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Annalisa Villa
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Leanne P. M. van Leeuwen
- Department of Viroscience, Travel Clinic, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Beatrice Piazza
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Carla Maria Deiana
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | | | - Marcello Rattazzi
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Riccardo Scarpa
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy,*Correspondence: Riccardo Scarpa,
| | - Virgil A. S. H. Dalm
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy
| |
Collapse
|
16
|
Milito C, Cinetto F, Garzi G, Palladino A, Puca M, Brambilla E, De Vitis C, Costanzo G, Scarpa R, Punziano A, Lagnese G, Del Giacco S, Spadaro G, Quinti I, Firinu D. Safety of mRNA COVID-19 Vaccines in Patients with Inborn Errors of Immunity: an Italian Multicentric Study. J Clin Immunol 2023; 43:299-307. [PMID: 36374363 PMCID: PMC9662105 DOI: 10.1007/s10875-022-01402-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Little is known about vaccine safety in inborn errors of immunity (IEI) patients during the current vaccination campaign for COVID-19. To better investigate the reactogenicity and adverse event profile after two, three, and four doses of mRNA vaccines, we conducted an observational, multicentric study on 342 PID patients from four Italian Referral Centres. METHODS We conducted a survey on self-reported adverse reactions in IEI patients who received mRNA vaccine by administering a questionnaire after each dose. RESULTS Over the whole study period, none of the patients needed hospitalization or had hypersensitivity reactions, including anaphylaxis and delayed injection site reaction. After two vaccination doses, 35.4% of patients showed only local reactogenicity-related symptoms (RrS), 44.4% reported both systemic and local RrS, and 5% reported only systemic RrS. In more than 60% of cases, local or systemic RrS were mild. After the first and second booster doses, patients showed fewer adverse events (AEs) than after the first vaccination course. Patients aged 50 years and older reported adverse events and RrS less frequently. Among AEs requiring treatment, one common variable immune deficiency patient affected by T cell large granular lymphocytic leukemia developed neutropenia and one patient had Bell's paralysis perhaps during herpes zoster reactivation. CONCLUSION Although our follow-up period is relatively short, the safety data we reported are reassuring. This data would help to contrast the vaccine hesitancy often manifested by patients with IEI and to better inform their healthcare providers.
Collapse
Affiliation(s)
- Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Cinetto
- Department of Medicine-DIMED, University of Padova, Padua, Italy
- Rare Diseases Referral Center, Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Giulia Garzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Palladino
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Puca
- Department of Medical Sciences and Public Health, University of Cagliari, Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy
| | - Elena Brambilla
- Department of Medicine-DIMED, University of Padova, Padua, Italy
- Rare Diseases Referral Center, Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Camilla De Vitis
- Department of Medicine-DIMED, University of Padova, Padua, Italy
- Rare Diseases Referral Center, Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy
| | - Riccardo Scarpa
- Department of Medicine-DIMED, University of Padova, Padua, Italy
- Rare Diseases Referral Center, Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy.
| |
Collapse
|
17
|
Løken RØ, Fevang B. Cellular immunity in COVID-19 and other infections in Common variable immunodeficiency. Front Immunol 2023; 14:1124279. [PMID: 37180118 PMCID: PMC10173090 DOI: 10.3389/fimmu.2023.1124279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
COVID-19 has shed light on the role of cellular immunity in the absence of humoral response in different patient groups. Common variable immunodeficiency (CVID) is characterized by impaired humoral immunity but also an underlying T-cell dysregulation. The impact of T-cell dysregulation on cellular immunity in CVID is not clear, and this review summarizes available literature on cellular immunity in CVID with a particular focus on COVID-19. Overall mortality of COVID-19 in CVID is difficult to assess, but seems not significantly elevated, and risk factors for severe disease mirrors that of the general population, including lymphopenia. Most CVID patients have a significant T-cell response to COVID-19 disease with possible cross-reactivity to endemic coronaviruses. Several studies find a significant but impaired cellular response to basal COVID-19 mRNA vaccination that is independent of an antibody response. CVID patients with infection only have better cellular responses to vaccine in one study, but there is no clear association to T-cell dysregulation. Cellular response wane over time but responds to a third booster dose of vaccine. Opportunistic infection as a sign of impaired cellular immunity in CVID is rare but is related to the definition of the disease. CVID patients have a cellular response to influenza vaccine that in most studies is comparable to healthy controls, and annual vaccination against seasonal influenza should be recommended. More research is required to clarify the effect of vaccines in CVID with the most immediate issue being when to booster the COVID-19 vaccine.
Collapse
Affiliation(s)
- Ragnhild Øye Løken
- Section of Clinical Immunology and Infectious Diseases, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Børre Fevang
- Section of Clinical Immunology and Infectious Diseases, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Oslo, Norway
- Centre for Rare Disorders, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- *Correspondence: Børre Fevang,
| |
Collapse
|
18
|
Lin FJ, Doss AMA, Davis-Adams HG, Adams LJ, Hanson CH, VanBlargan LA, Liang CY, Chen RE, Monroy JM, Wedner HJ, Kulczycki A, Mantia TL, O’Shaughnessy CC, Raju S, Zhao FR, Rizzi E, Rigell CJ, Dy TB, Kau AL, Ren Z, Turner JS, O’Halloran JA, Presti RM, Fremont DH, Kendall PL, Ellebedy AH, Mudd PA, Diamond MS, Zimmerman O, Laidlaw BJ. SARS-CoV-2 booster vaccination rescues attenuated IgG1 memory B cell response in primary antibody deficiency patients. Front Immunol 2022; 13:1033770. [PMID: 36618402 PMCID: PMC9817149 DOI: 10.3389/fimmu.2022.1033770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Although SARS-CoV-2 vaccines have proven effective in eliciting a protective immune response in healthy individuals, their ability to induce a durable immune response in immunocompromised individuals remains poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common primary immunodeficiency disorders in adults and are characterized by hypogammaglobulinemia and impaired ability to mount robust antibody responses following infection or vaccination. Methods Here, we present an analysis of both the B and T cell response in a prospective cohort of 30 individuals with PAD up to 150 days following initial COVID-19 vaccination and 150 days post mRNA booster vaccination. Results After the primary vaccination series, many of the individuals with PAD syndromes mounted SARS-CoV-2 specific memory B and CD4+ T cell responses that overall were comparable to healthy individuals. Nonetheless, individuals with PAD syndromes had reduced IgG1+ and CD11c+ memory B cell responses following the primary vaccination series, with the defect in IgG1 class-switching rescued following mRNA booster doses. Boosting also elicited an increase in the SARS-CoV-2-specific B and T cell response and the development of Omicron-specific memory B cells in COVID-19-naïve PAD patients. Individuals that lacked detectable B cell responses following primary vaccination did not benefit from booster vaccination. Conclusion Together, these data indicate that SARS-CoV-2 vaccines elicit memory B and T cells in most PAD patients and highlights the importance of booster vaccination in immunodeficient individuals.
Collapse
Affiliation(s)
- Frank J. Lin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Hannah G. Davis-Adams
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Lucas J. Adams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher H. Hanson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Laura A. VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Rita E. Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jennifer Marie Monroy
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - H. James Wedner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Anthony Kulczycki
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Tarisa L. Mantia
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Fang R. Zhao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Elise Rizzi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher J. Rigell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Tiffany Biason Dy
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew L. Kau
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Zhen Ren
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jane A. O’Halloran
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel M. Presti
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, United States
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Peggy L. Kendall
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, United States
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Philip A. Mudd
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, United States
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ofer Zimmerman
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian J. Laidlaw
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
19
|
Abstract
Inborn errors of immunity (IEI) are a heterogeneous group of disorders affecting immune host defense and immunoregulation. Considering the predisposition to develop severe and chronic infections, it is crucial to understand the clinical evolution of COVID-19 in IEI patients. This review analyzes clinical outcomes following SARS-CoV-2 infection, as well as response to COVID-19 vaccines in patients with IEI.
Collapse
Affiliation(s)
- Ottavia M. Delmonte
- 1Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Riccardo Castagnoli
- 1Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland,2Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy,3Pediatric Clinic, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Luigi D. Notarangelo
- 1Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Vergidis P, Levy ER, Ristagno EH, Iyer VN, O'Horo JC, Joshi AY. COVID-19 in patients with B cell immune deficiency. J Immunol Methods 2022; 510:113351. [PMID: 36087764 PMCID: PMC9450485 DOI: 10.1016/j.jim.2022.113351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/22/2022] [Accepted: 09/02/2022] [Indexed: 12/31/2022]
Abstract
This article aims to describe the clinical manifestations and management of COVID-19 in patients with primary and secondary B cell deficient states. We describe the epidemiologic and clinical features as well as unique management paradigm including isolation precautions with COVID-19. We then focus upon primary and secondary preventive approaches including vaccination and pre- as well as post-exposure prophylaxis. Further, we elaborate upon the important disease specific risk factors in these patients and the need to conduct prospective clinical trials to develop individualized management strategies in this population.
Collapse
Affiliation(s)
- Paschalis Vergidis
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Emily R. Levy
- Division of Pediatric Critical Care Medicine, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA,Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth H. Ristagno
- Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Vivek N. Iyer
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - John C. O'Horo
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA,Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Avni Y. Joshi
- Division of Pediatric and Adult Allergy and Immunology, Mayo Clinic, Rochester, MN, USA,Corresponding author at: Mayo Clinic Childrens Center, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Fedele G, Trentini F, Schiavoni I, Abrignani S, Antonelli G, Baldo V, Baldovin T, Bandera A, Bonura F, Clerici P, De Paschale M, Fortunato F, Gori A, Grifantini R, Icardi G, Lazzarotto T, Lodi V, Mastroianni CM, Orsi A, Prato R, Restivo V, Carsetti R, Piano Mortari E, Leone P, Olivetta E, Fiore S, Di Martino A, Brusaferro S, Merler S, Palamara AT, Stefanelli P. Evaluation of humoral and cellular response to four vaccines against COVID-19 in different age groups: A longitudinal study. Front Immunol 2022; 13:1021396. [PMID: 36389704 PMCID: PMC9661524 DOI: 10.3389/fimmu.2022.1021396] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2023] Open
Abstract
To date there has been limited head-to-head evaluation of immune responses to different types of COVID-19 vaccines. A real-world population-based longitudinal study was designed with the aim to define the magnitude and duration of immunity induced by each of four different COVID-19 vaccines available in Italy at the time of this study. Overall, 2497 individuals were enrolled at time of their first vaccination (T0). Vaccine-specific antibody responses induced over time by Comirnaty, Spikevax, Vaxzevria, Janssen Ad26.COV2.S and heterologous vaccination were compared up to six months after immunization. On a subset of Comirnaty vaccinees, serology data were correlated with the ability to neutralize a reference SARS-CoV-2 B strain, as well as Delta AY.4 and Omicron BA.1. The frequency of SARS-CoV-2-specific CD4+ T cells, CD8+ T cells, and memory B cells induced by the four different vaccines was assessed six months after the immunization. We found that mRNA vaccines are stronger inducer of anti-Spike IgG and B-memory cell responses. Humoral immune responses are lower in frail elderly subjects. Neutralization of the Delta AY.4 and Omicron BA.1 variants is severely impaired, especially in older individuals. Most vaccinees display a vaccine-specific T-cell memory six months after the vaccination. By describing the immunological response during the first phase of COVID-19 vaccination campaign in different cohorts and considering several aspects of the immunological response, this study allowed to collect key information that could facilitate the implementation of effective prevention and control measures against SARS-CoV-2.
Collapse
Affiliation(s)
- Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Filippo Trentini
- Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
- Dondena Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Italy
| | - Ilaria Schiavoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, AOU Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Vincenzo Baldo
- Laboratory of Hygiene and Applied Microbiology, Hygiene and Public Health Unit, Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Tatjana Baldovin
- Laboratory of Hygiene and Applied Microbiology, Hygiene and Public Health Unit, Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan, Italy
| | - Filippa Bonura
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Pierangelo Clerici
- Microbiology Unit, Azienda Socio Sanitaria Territoriale (ASST) Ovest Milanese, Milan, Italy
| | - Massimo De Paschale
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Fortunato
- Hygiene Unit, Policlinico Riuniti Foggia Hospital, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan, Italy
| | - Renata Grifantini
- Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Giancarlo Icardi
- Hygiene Unit, IRCCS Ospedale Policlinico San Martino Genova, and Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Vittorio Lodi
- Occupational Health Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Disease, AOU Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Andrea Orsi
- Hygiene Unit, IRCCS Ospedale Policlinico San Martino Genova, and Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Rosa Prato
- Hygiene Unit, Policlinico Riuniti Foggia Hospital, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Restivo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Rita Carsetti
- B Cell Lab, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- B Cell Lab, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pasqualina Leone
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Olivetta
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Fiore
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Di Martino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Stefano Merler
- Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
| | | | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
22
|
Piano Mortari E, Pulvirenti F. COVID-19 infection and vaccination in immunodeficiency. Clin Exp Immunol 2022; 209:259-261. [PMID: 35972956 PMCID: PMC9384801 DOI: 10.1093/cei/uxac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022] Open
Abstract
During the last 2 years and a half, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide, causing about 6 million deaths. Clinical manifestations are highly variable, ranging from entirely asymptomatic infection to multiorgan failure and death. The outcome in immunocompromised patients is still a matter of debate, and so are the optimal strategies to prevent or treat the infection in these high-risk populations.
Collapse
Affiliation(s)
- Eva Piano Mortari
- B cell unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy
| |
Collapse
|
23
|
Garzi G, Cinetto F, Firinu D, Di Napoli G, Lagnese G, Punziano A, Bez P, Cinicola BL, Costanzo G, Scarpa R, Pulvirenti F, Rattazzi M, Spadaro G, Quinti I, Milito C. Real-life data on monoclonal antibodies and antiviral drugs in Italian inborn errors of immunity patients during COVID-19 pandemic. Front Immunol 2022; 13:947174. [PMID: 35967382 PMCID: PMC9367468 DOI: 10.3389/fimmu.2022.947174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/29/2022] [Indexed: 12/16/2022] Open
Abstract
Background Since the beginning of the COVID-19 pandemic, patients with Inborn Errors of Immunity have been infected by SARS-CoV-2 virus showing a spectrum of disease ranging from asymptomatic to severe COVID-19. A fair number of patients did not respond adequately to SARS-CoV-2 vaccinations, thus early therapeutic or prophylactic measures were needed to prevent severe or fatal course or COVID-19 and to reduce the burden of hospitalizations. Methods Longitudinal, multicentric study on patients with Inborn Errors of Immunity immunized with mRNA vaccines treated with monoclonal antibodies and/or antiviral agents at the first infection and at reinfection by SARS-CoV-2. Analyses of efficacy were performed according to the different circulating SARS-CoV-2 strains. Results The analysis of the cohort of 192 SARS-CoV-2 infected patients, across 26 months, showed the efficacy of antivirals on the risk of hospitalization, while mabs offered a positive effect on hospitalization, and COVID-19 severity. This protection was consistent across the alpha, delta and early omicron waves, although the emergence of BA.2 reduced the effect of available mabs. Hospitalized patients treated with mabs and antivirals had a lower risk of ICU admission. We reported 16 re-infections with a length of SARS-CoV-2 positivity at second infection shorter among patients treated with mabs. Treatment with antivirals and mabs was safe. Conclusions The widespread use of specific therapy, vaccination and better access to care might have contributed to mitigate risk of mortality, hospital admission, and severe disease. However, the rapid spread of new viral strains underlines that mabs and antiviral beneficial effects should be re- evaluated over time.
Collapse
Affiliation(s)
- Giulia Garzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Cinetto
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Rare Diseases Referral Center, Internal Medicine I, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Giulia Di Napoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Patrick Bez
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Rare Diseases Referral Center, Internal Medicine I, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Riccardo Scarpa
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Rare Diseases Referral Center, Internal Medicine I, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Federica Pulvirenti
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
| | - Marcello Rattazzi
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Rare Diseases Referral Center, Internal Medicine I, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
24
|
Abo-Helo N, Muhammad E, Ghaben-Amara S, Cohen S. Specific antibody response of 14 patients with common variable immunodeficiency to 3 BNT162b2 messenger RNA coronavirus disease 2019 vaccinations. Ann Allergy Asthma Immunol 2022; 129:108-109. [PMID: 35398265 PMCID: PMC8983475 DOI: 10.1016/j.anai.2022.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Nizar Abo-Helo
- Unit of Allergy and Clinical Immunology, Lin Medical Center, Haifa, Israel; Unit of Allergy and Clinical Immunology, Zvulun Medical Center, Haifa, Israel
| | - Emad Muhammad
- Hematology Laboratory, Carmel Medical Center, Haifa, Israel
| | | | - Shai Cohen
- Unit of Allergy and Clinical Immunology, Lin Medical Center, Haifa, Israel; Department of Internal Medicine B, Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
25
|
Green NS, Van Doren L, Licursi M, Billings DD, Sandoval LA, Feit YMZ, Hod EA. Anti-SARS-CoV-19 antibodies in children and adults with sickle cell disease: A single-site analysis in New York City. Br J Haematol 2022; 198:680-683. [PMID: 35759223 PMCID: PMC9350182 DOI: 10.1111/bjh.18294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Nancy S Green
- Department of Pediatrics, Division of Hematology, Oncology and Stem Cell Transplantation, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, New York, USA.,Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, New York, USA
| | - Layla Van Doren
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, New York, USA
| | - Maureen Licursi
- Department of Pediatrics, Division of Hematology, Oncology and Stem Cell Transplantation, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, New York, USA
| | - Daniel D Billings
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, New York, USA
| | - Luke A Sandoval
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, New York, USA
| | - Yona M Z Feit
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, New York, USA
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
26
|
Zimmerman O, Altman Doss AM, Kaplonek P, Liang CY, VanBlargan LA, Chen RE, Monroy JM, Wedner HJ, Kulczycki A, Mantia TL, O'Shaughnessy CC, Davis-Adams HG, Bertera HL, Adams LJ, Raju S, Zhao FR, Rigell CJ, Dy TB, Kau AL, Ren Z, Turner JS, O'Halloran JA, Presti RM, Fremont DH, Kendall PL, Ellebedy AH, Alter G, Diamond MS. mRNA vaccine boosting enhances antibody responses against SARS-CoV-2 Omicron variant in individuals with antibody deficiency syndromes. Cell Rep Med 2022; 3:100653. [PMID: 35688161 PMCID: PMC9179023 DOI: 10.1016/j.xcrm.2022.100653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023]
Abstract
Individuals with primary antibody deficiency (PAD) syndromes have poor humoral immune responses requiring immunoglobulin replacement therapy. We followed individuals with PAD after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination by evaluating their immunoglobulin replacement products and serum for anti-spike binding, Fcγ receptor (FcγR) binding, and neutralizing activities. The immunoglobulin replacement products tested have low anti-spike and receptor-binding domain (RBD) titers and neutralizing activity. In coronavirus disease 2019 (COVID-19)-naive individuals with PAD, anti-spike and RBD titers increase after mRNA vaccination but wane by 90 days. Those vaccinated after SARS-CoV-2 infection develop higher and more sustained responses comparable with healthy donors. Most vaccinated individuals with PAD have serum-neutralizing antibody titers above an estimated correlate of protection against ancestral SARS-CoV-2 and Delta virus but not against Omicron virus, although this is improved by boosting. Thus, some immunoglobulin replacement products likely have limited protective activity, and immunization and boosting of individuals with PAD with mRNA vaccines should confer at least short-term immunity against SARS-CoV-2 variants, including Omicron.
Collapse
Affiliation(s)
- Ofer Zimmerman
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | | | - Paulina Kaplonek
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Rita E Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Marie Monroy
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - H James Wedner
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Anthony Kulczycki
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tarisa L Mantia
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Hannah G Davis-Adams
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Harry L Bertera
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Lucas J Adams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fang R Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Christopher J Rigell
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tiffany Biason Dy
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrew L Kau
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhen Ren
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jane A O'Halloran
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Rachel M Presti
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peggy L Kendall
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
27
|
Goda V, Kriván G, Kulcsár A, Gönczi M, Tasnády S, Matula Z, Nagy G, Bekő G, Horváth M, Uher F, Szekanecz Z, Vályi-Nagy I. Specific Antibody and the T-Cell Response Elicited by BNT162b2 Boosting After Two ChAdOx1 nCoV-19 in Common Variable Immunodeficiency. Front Immunol 2022; 13:907125. [PMID: 35784359 PMCID: PMC9247171 DOI: 10.3389/fimmu.2022.907125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) patients have markedly decreased immune response to vaccinations. In this study we evaluated humoral and T cell-mediated responses against severe acute respiratory syndrome coronavirus-2 (SARS-Cov-2) with additional flow cytometric changes in CVID patients receiving booster vaccination with BNT162b2 after two ChAdOx1 nCoV-19. The BNT162b2 vaccine raised the anti-spike protein S immunoglobulin G over the cut-off value from 70% to 83% in CVID, anti-neutralizing antibody had been raised over a cut-off value from 70% to 80% but levels after boosting were significantly less in both tests than in healthy controls (*p=0.02; **p=0.009 respectively). Anti-SARS-CoV-2 immunoglobulin A became less positive in CVID after boosting, but the difference was not significant. The cumulative interferon-γ positive T cell response by ELISpot was over the cut-off value in 53% of the tested individuals and raised to 83% after boosting. This and flow cytometric control of cumulative CD4+ and CD8+ virus-specific T cell absolute counts in CVID were also statistically not different from healthy individuals after boosting. Additional flow cytometric measures for CD45+ lymphocytes, CD3+, and CD19+ cells have not shown significant differences from controls except for lower CD4+T cell counts at both time points (**p=0.003; **p=0.002), in parallel CD4+ virus-specific T-cell ratio was significantly lower in CVID patients at the first time point (*p: 0.03). After boosting, in more than 33% of both CVID patients and also in their healthy controls we detected a decrease in absolute CD45+, CD3+, CD3+CD4+, and CD3+CD8+, CD19+, and CD16+56+ cell counts. CD16+CD56+ cell counts were significantly lower compared to controls before and after boosting (*p=0.02, *p=0.02). CVID patients receiving immunosuppressive therapy throughout the previous year or autologous stem cell transplantation two years before vaccination had worse responses in anti-spike, anti-neutralizing antibody, CD3+CD4+T, CD19+ B, and natural killer cell counts than the whole CVID group. Vaccinations had few side effects. Based on these data, CVID patients receiving booster vaccination with BNT162b2 after two ChadOx1 can effectively elevate the levels of protection against COVID-19 infection, but the duration of the immune response together with COVID-19 morbidity data needs further investigation among these patients.
Collapse
Affiliation(s)
- Vera Goda
- Pediatric Hematology and Stem Cell Transplantation Department, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
- *Correspondence: Vera Goda,
| | - Gergely Kriván
- Pediatric Hematology and Stem Cell Transplantation Department, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Andrea Kulcsár
- Department of Special Immunization Services, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Márton Gönczi
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Szabolcs Tasnády
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Zsolt Matula
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Ginette Nagy
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Bekő
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Máté Horváth
- Departmental Group of Infectious Diseases, Semmelweis University Doctoral School of Clinical Medicine, Budapest, Hungary
| | - Ferenc Uher
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Zoltán Szekanecz
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| |
Collapse
|
28
|
Durkee-Shock JR, Keller MD. Immunizing the Imperfect Immune System: COVID-19 Vaccination in Patients with Inborn Errors of Immunity. Ann Allergy Asthma Immunol 2022; 129:562-571.e1. [PMID: 35718282 PMCID: PMC9212748 DOI: 10.1016/j.anai.2022.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022]
Abstract
Objective To update clinicians on current evidence regarding the immunogenicity and safety of coronavirus disease 2019 (COVID-19) vaccines in patients with inborn errors of immunity (IEI). Data Sources Peer-reviewed, published studies in PubMed, clinical trials listed on ClinicalTrials.gov, and professional organization and governmental guidelines. Study Selections Literature searches on PubMed and ClinicalTrials.gov were performed using a combination of the following keywords: primary immunodeficiency, COVID-19, SARS-CoV-2, and vaccination. Results A total of 26 studies met the criteria and were included in this review. Overall, antibody responses to COVID-19 vaccination were found in 72% of study subjects, with stronger responses observed after messenger RNA vaccination. Neutralizing antibodies were detected in patients with IEI, though consistently at lower levels than healthy controls. Risk factors for poor antibody responses included diagnosis of common variable immunodeficiency, presence of autoimmune comorbidities, and use of rituximab. T cell responses were detectable in most patients with IEI, with poorer responses often found in patients with common variable immunodeficiency. Safety of COVID-19 vaccines in patients with IEI was acceptable with high rates of reactogenicity but very few serious adverse events, including in patients with immune dysregulation. Conclusion COVID-19 vaccines are safe in patients with IEI and seem to be immunogenic in most individuals, with stronger responses found after messenger RNA vaccinations.
Collapse
Affiliation(s)
- Jessica R Durkee-Shock
- Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, Bethesda, Maryland
| | - Michael D Keller
- Division of Allergy & Immunology and Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia; Department of Pediatrics and GW Cancer Center, George Washington University, Washington, District of Columbia.
| |
Collapse
|
29
|
Pulvirenti F, Di Cecca S, Sinibaldi M, Piano Mortari E, Terreri S, Albano C, Guercio M, Sculco E, Milito C, Ferrari S, Locatelli F, Quintarelli C, Carsetti R, Quinti I. T-Cell Defects Associated to Lack of Spike-Specific Antibodies after BNT162b2 Full Immunization Followed by a Booster Dose in Patients with Common Variable Immune Deficiencies. Cells 2022; 11:1918. [PMID: 35741048 PMCID: PMC9221747 DOI: 10.3390/cells11121918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Following the third booster dose of the mRNA vaccine, Common Variable Immune Deficiencies (CVID) patients may not produce specific antibodies against the virus spike protein. The T-cell abnormalities associated with the absence of antibodies are still a matter of investigation. Spike-specific IgG and IgA, peripheral T cell subsets, CD40L and cytokine expression, and Spike-specific specific T-cells responses were evaluated in 47 CVID and 26 healthy donors after three doses of BNT162b2 vaccine. Testing was performed two weeks after the third vaccine dose. Thirty-six percent of the patients did not produce anti-SARS-CoV-2 IgG or IgA antibodies. Non responder patients had lower peripheral blood lymphocyte counts, circulating naïve and central memory T-cells, low CD40L expression on the CD4+CD45+RO+ and CD8+CD45+RO+ T-cells, high frequencies of TNFα and IFNγ expressing CD8+ T-cells, and defective release of IFNγ and TNFα following stimulation with Spike peptides. Non responders had a more complex disease phenotype, with higher frequencies of structural lung damage and autoimmunity, especially autoimmune cytopenia. Thirty-five percent of them developed a SARS-CoV-2 infection after immunization in comparison to twenty percent of CVID who responded to immunization with antibodies production. CVID-associated T cell abnormalities contributed to the absence of SARS-CoV-2 specific antibodies after full immunization.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy;
| | - Stefano Di Cecca
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Matilde Sinibaldi
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| | - Sara Terreri
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
| | - Christian Albano
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
| | - Marika Guercio
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| | - Simona Ferrari
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Franco Locatelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| |
Collapse
|
30
|
van Leeuwen LP, GeurtsvanKessel CH, Ellerbroek PM, de Bree GJ, Potjewijd J, Rutgers A, Jolink H, van de Veerdonk F, van Gorp EC, de Wilt F, Bogers S, Gommers L, Geers D, Bruns AH, Leavis HL, van Haga JW, Lemkes BA, van der Veen A, de Kruijf-Bazen S, van Paassen P, de Leeuw K, van de Ven AA, Verbeek-Menken PH, van Wengen A, Arend SM, Ruten-Budde AJ, van der Ent MW, van Hagen PM, Sanders RW, Grobben M, van der Straten K, Burger JA, Poniman M, Nierkens S, van Gils MJ, de Vries RD, Dalm VA. Immunogenicity of the mRNA-1273 COVID-19 vaccine in adult patients with inborn errors of immunity. J Allergy Clin Immunol 2022; 149:1949-1957. [PMID: 35421449 PMCID: PMC8996444 DOI: 10.1016/j.jaci.2022.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective vaccination against COVID-19 is therefore of great importance in this group, but little is known about the immunogenicity of COVID-19 vaccines in these patients. OBJECTIVES We sought to study humoral and cellular immune responses after mRNA-1273 COVID-19 vaccination in adult patients with IEI. METHODS In a prospective, controlled, multicenter study, 505 patients with IEI (common variable immunodeficiency [CVID], isolated or undefined antibody deficiencies, X-linked agammaglobulinemia, combined B- and T-cell immunodeficiency, phagocyte defects) and 192 controls were included. All participants received 2 doses of the mRNA-1273 COVID-19 vaccine. Levels of severe acute respiratory syndrome coronavirus-2-specific binding antibodies, neutralizing antibodies, and T-cell responses were assessed at baseline, 28 days after first vaccination, and 28 days after second vaccination. RESULTS Seroconversion rates in patients with clinically mild antibody deficiencies and phagocyte defects were similar to those in healthy controls, but seroconversion rates in patients with more severe IEI, such as CVID and combined B- and T-cell immunodeficiency, were lower. Binding antibody titers correlated well to the presence of neutralizing antibodies. T-cell responses were comparable to those in controls in all IEI cohorts, with the exception of patients with CVID. The presence of noninfectious complications and the use of immunosuppressive drugs in patients with CVID were negatively correlated with the antibody response. CONCLUSIONS COVID-19 vaccination with mRNA-1273 was immunogenic in mild antibody deficiencies and phagocyte defects and in most patients with combined B- and T-cell immunodeficiency and CVID. Lowest response was detected in patients with X-linked agammaglobulinemia and in patients with CVID with noninfectious complications. The assessment of longevity of immune responses in these vulnerable patient groups will guide decision making for additional vaccinations.
Collapse
Affiliation(s)
- Leanne P.M. van Leeuwen
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Travel Clinic, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | - Judith Potjewijd
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht UMC, Maastricht, The Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, UMC Groningen, Groningen, The Netherlands
| | - Hetty Jolink
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric C.M. van Gorp
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Travel Clinic, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Faye de Wilt
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lennert Gommers
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anke H.W. Bruns
- Department of Internal Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Helen L. Leavis
- Department of Internal Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Jelle W. van Haga
- Department of Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bregtje A. Lemkes
- Department of Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - S.F.J. de Kruijf-Bazen
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht UMC, Maastricht, The Netherlands
| | - Pieter van Paassen
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht UMC, Maastricht, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, UMC Groningen, Groningen, The Netherlands
| | | | - Petra H. Verbeek-Menken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Annelies van Wengen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra M. Arend
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anja J. Ruten-Budde
- Department of Biostatistics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marianne W. van der Ent
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - P. Martin van Hagen
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Karlijn van der Straten
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Virgil A.S.H. Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands,Corresponding author: Virgil A. S. H. Dalm, MD, PhD, Erasmus University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Zaffina S, Piano Mortari E, Di Prinzio RR, Cappa M, Novelli A, Agolini E, Raponi M, Dallapiccola B, Locatelli F, Perno CF, Carsetti R. Case Report: Precision COVID-19 Immunization Strategy to Overcome Individual Fragility: A Case of Generalized Lipodystrophy Type 4. Front Immunol 2022; 13:869042. [PMID: 35464479 PMCID: PMC9020769 DOI: 10.3389/fimmu.2022.869042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
A 48-year-old patient affected with congenital generalized lipodystrophy type 4 failed to respond to two doses of the BNT162b2 vaccine, consisting of lipid nanoparticle encapsulated mRNA. As the disease is caused by biallelic variants of CAVIN1, a molecule indispensable for lipid endocytosis and regulation, we complemented the vaccination cycle with a single dose of the Ad26.COV2 vaccine. Adenovirus-based vaccine entry is mediated by the interaction with adenovirus receptors and transport occurs in clathrin-coated pits. Ten days after Ad26.COV2 administration, S- and RBD-specific antibodies and high-affinity memory B cells increased significantly to values close to those observed in Health Care Worker controls.
Collapse
Affiliation(s)
- Salvatore Zaffina
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Reparata Rosa Di Prinzio
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Sapienza, University of Rome, Rome, Italy
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit and Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Microbiology and Diagnostic Immunology Unit and Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
32
|
Costa C, Migliore E, Galassi C, Scozzari G, Ciccone G, Coggiola M, Pira E, Scarmozzino A, La Valle G, Cassoni P, Cavallo R. Factors Influencing Level and Persistence of Anti SARS-CoV-2 IgG after BNT162b2 Vaccine: Evidence from a Large Cohort of Healthcare Workers. Vaccines (Basel) 2022; 10:vaccines10030474. [PMID: 35335105 PMCID: PMC8955419 DOI: 10.3390/vaccines10030474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
We aimed at evaluating quantitative IgG response to BNT162b2 COVID-19 vaccine among health care workers (HCW), and exploring the role of demographic, clinical, and occupational factors as predictors of IgG levels. On May 2021, among 6687 HCW at the largest tertiary care University-Hospital of Northwestern Italy, at a median of 15 weeks (Interquartile range-IQR 13.6−16.0) after second-dose, serological response was present in 99.8%. Seropositivity was >97% in all the subgroups, except those self-reporting immunodeficiency (94.9%). Overall, the median serological IgG value was 990 BAU/mL (IQR 551−1870), with most of subjects with previous SARS-CoV-2 infection or with shorter time lapse (2−8 weeks) between vaccination and serology with values in the highest quintile (>2080). At multivariable analysis, significant predictors of lower values were increasing age, male, current smoking, immunodeficiency, recent occupational contacts, and increasing time lapse from vaccination; conversely, previous infection and recent household contacts were significantly associated with higher IgG levels. Subjects with previous infection kept a very high level (around 2000 BAU/mL) up to 120 days. These results, besides supporting a high serological response up to 4−5 months, suggest predictive factors of faster decay of IgG levels that could be useful in tailoring vaccination strategies.
Collapse
Affiliation(s)
- Cristina Costa
- Microbiology and Virology Unit, University Hospital Città Della Salute e Della Scienza di Torino, 10126 Turin, Italy;
- Correspondence: ; Tel.: +39-(11)-6335953
| | - Enrica Migliore
- Clinical Epidemiology Unit, University Hospital Città Della Salute e Della Scienza di Torino and CPO Piemonte, 10126 Turin, Italy; (E.M.); (C.G.); (G.C.)
| | - Claudia Galassi
- Clinical Epidemiology Unit, University Hospital Città Della Salute e Della Scienza di Torino and CPO Piemonte, 10126 Turin, Italy; (E.M.); (C.G.); (G.C.)
| | - Gitana Scozzari
- Hospital Medical Direction, Ospedale Molinette, University Hospital Città Della Salute e Della Scienza di Torino, 10126 Turin, Italy; (G.S.); (A.S.); (G.L.V.)
| | - Giovannino Ciccone
- Clinical Epidemiology Unit, University Hospital Città Della Salute e Della Scienza di Torino and CPO Piemonte, 10126 Turin, Italy; (E.M.); (C.G.); (G.C.)
| | - Maurizio Coggiola
- Occupational Medicine Unit, University Hospital Città Della Salute e Della Scienza di Torino, 10126 Turin, Italy; (M.C.); (E.P.)
| | - Enrico Pira
- Occupational Medicine Unit, University Hospital Città Della Salute e Della Scienza di Torino, 10126 Turin, Italy; (M.C.); (E.P.)
| | - Antonio Scarmozzino
- Hospital Medical Direction, Ospedale Molinette, University Hospital Città Della Salute e Della Scienza di Torino, 10126 Turin, Italy; (G.S.); (A.S.); (G.L.V.)
| | - Giovanni La Valle
- Hospital Medical Direction, Ospedale Molinette, University Hospital Città Della Salute e Della Scienza di Torino, 10126 Turin, Italy; (G.S.); (A.S.); (G.L.V.)
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città Della Salute e Della Scienza di Torino, 10126 Turin, Italy;
| | | |
Collapse
|
33
|
Quinti I, Locatelli F, Carsetti R. The Immune Response to SARS-CoV-2 Vaccination: Insights Learned From Adult Patients With Common Variable Immune Deficiency. Front Immunol 2022; 12:815404. [PMID: 35126372 PMCID: PMC8807657 DOI: 10.3389/fimmu.2021.815404] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
CVID patients have an increased susceptibility to vaccine-preventable infections. The question on the potential benefits of immunization of CVID patients against SARS-CoV-2 offered the possibility to analyze the defective mechanisms of immune responses to a novel antigen. In CVID, as in immunocompetent subjects, the role of B and T cells is different between infected and vaccinated individuals. Upon vaccination, variable anti-Spike IgG responses have been found in different CVID cohorts. Immunization with two doses of mRNA vaccine did not generate Spike-specific classical memory B cells (MBCs) but atypical memory B cells (ATM) with low binding capacity to Spike protein. Spike-specific T-cells responses were also induced in CVID patients with a variable frequency, differently from specific T cells produced after multiple exposures to viral antigens following influenza virus immunization and infection. The immune response elicited by SARS-CoV-2 infection was enhanced by subsequent immunization underlying the need to immunize convalescent COVID-19 CVID patients after recovery. In particular, immunization after SARS-Cov-2 infection generated Spike-specific classical memory B cells (MBCs) with low binding capacity to Spike protein and Spike-specific antibodies in a high percentage of CVID patients. The search for a strategy to elicit an adequate immune response post-vaccination in CVID patients is necessary. Since reinfection with SARS-CoV-2 has been documented, at present SARS-CoV-2 positive CVID patients might benefit from new preventing strategy based on administration of anti-SARS-CoV-2 monoclonal antibodies.
Collapse
Affiliation(s)
- Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Isabella Quinti,
| | - Franco Locatelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Dipartimento Materno-Infantile e Scienze Urologiche, Sapienza University of Rome, Rome, Italy
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Diagnostic Immunology Clinical Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
34
|
Quinti I. Cellular Immunology and COVID-19. Cells 2021; 10:3591. [PMID: 34944098 PMCID: PMC8699837 DOI: 10.3390/cells10123591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
In "Cellular Immunology and COVID-19" (a Special Issue of Cells), a panel of leading scientists provides an exhaustive overview of the different aspects of the immune mechanisms underlying COVID-19 [...].
Collapse
Affiliation(s)
- Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|