1
|
Sheva K, Roy Chowdhury S, Kravchenko-Balasha N, Meirovitz A. Molecular Changes in Breast Cancer Induced by Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:465-481. [PMID: 38508467 DOI: 10.1016/j.ijrobp.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Breast cancer treatments are based on prognostic clinicopathologic features that form the basis for therapeutic guidelines. Although the utilization of these guidelines has decreased breast cancer-associated mortality rates over the past three decades, they are not adequate for individualized therapy. Radiation therapy (RT) is the backbone of breast cancer treatment. Although a highly successful therapeutic modality clinically, from a biological perspective, preclinical studies have shown RT to have the potential to alter tumor cell phenotype, immunogenicity, and the surrounding microenvironment, potentially changing the behavior of cancer cells and resulting in a significant variation in RT response. This review presents the recent advances in revealing the complex molecular changes induced by RT in the treatment of breast cancer and highlights the complexities of translating this information into clinically relevant tools for improved prognostic insights and the revelation of novel approaches for optimizing RT. METHODS AND MATERIALS Current literature was reviewed with a focus on recent advances made in the elucidation of tumor-associated radiation-induced molecular changes across molecular, genetic, and proteomic bases. This review was structured with the aim of providing an up-to-date overview over the very broad and complex subject matter of radiation-induced molecular changes and radioresistance, familiarizing the reader with the broader issue at hand. RESULTS The subject of radiation-induced molecular changes in breast cancer has been broached from various physiological focal points including that of the immune system, immunogenicity and the abscopal effect, tumor hypoxia, breast cancer classification and subtyping, molecular heterogeneity, and molecular plasticity. It is becoming increasingly apparent that breast cancer clinical subtyping alone does not adequately account for variation in RT response or radioresistance. Multiple components of the tumor microenvironment and immune system, delivered RT dose and fractionation schedules, radiation-induced bystander effects, and intrinsic tumor physiology and heterogeneity all contribute to the resultant RT outcome. CONCLUSIONS Despite recent advances and improvements in anticancer therapies, tumor resistance remains a significant challenge. As new analytical techniques and technologies continue to provide crucial insight into the complex molecular mechanisms of breast cancer and its treatment responses, it is becoming more evident that personalized anticancer treatment regimens may be vital in overcoming radioresistance.
Collapse
Affiliation(s)
- Kim Sheva
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| | - Sangita Roy Chowdhury
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Amichay Meirovitz
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| |
Collapse
|
2
|
Serio PADMP, Saccaro DM, de Gouvêa ACRC, Encinas G, Maistro S, Pereira GFDL, Rocha VM, de Souza LD, da Silva VJ, Katayama MLH, Folgueira MAAK. Custom target-sequencing in triple-negative and luminal breast cancer from young Brazilian patients. Clinics (Sao Paulo) 2024; 79:100479. [PMID: 39208653 PMCID: PMC11399600 DOI: 10.1016/j.clinsp.2024.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/17/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES To identify somatic mutations in tumors from young women with triple-negative or luminal breast cancer, through targeted sequencing and to explore the cancer driver potential of these gene variants. METHODS A customized gene panel was assembled based on data from previous sequencing studies of breast cancer from young women. Triple-negative and luminal tumors and paired blood samples from young breast cancer patients were sequenced, and identified gene variants were searched for their driver potential, in databases and literature. Additionally, the authors performed an exploratory analysis using large, curated databases to evaluate the frequency of somatic mutations in this gene panel in tumors stratified by age groups (every 10 years). RESULTS A total of 28 young women had their tumoral tissue and blood samples sequenced. Using a customized panel of 64 genes, the authors could detect cancer drivers in 11/12 (91.7 %) TNBC samples and 11/16 (68.7 %) luminal samples. Among TNBC patients, the most frequent cancer driver was TP53, followed by NF1, NOTCH1 and PTPN13. In luminal samples, PIK3CA and GATA3 were the main cancer drivers, and other drivers were GRHL2 and SMURF2. CACNA1E was involved in both TN and luminal BC. The exploratory analysis also indicated a role for SMURF2 in luminal BC development in young patients. CONCLUSIONS The data further indicates that some cancer drivers are more common in a specific breast cancer subtype from young patients, such as TP53 in TNBC and PIK3CA and GATA3 in luminal samples. These results also provide additional evidence that some genes not considered classical cancer-causing genes, such as CACNA1E, GRHL2 and SMURF2 might be cancer drivers in this age group.
Collapse
Affiliation(s)
- Pedro Adolpho de Menezes Pacheco Serio
- Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| | - Daniela Marques Saccaro
- Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | | | - Giselly Encinas
- Agilent Brazil (Agilent Technologies), Alphaville Industrial, Barueri, SP, Brazil
| | - Simone Maistro
- Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Gláucia Fernanda de Lima Pereira
- Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Vinícius Marques Rocha
- Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Larissa Dias de Souza
- Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Viviane Jennifer da Silva
- Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Maria Lucia Hirata Katayama
- Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Maria Aparecida Azevedo Koike Folgueira
- Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
3
|
Persenaire C, Babbs B, Yamamoto TM, Nebbia M, Jordan KR, Adams S, Lambert JR, Bitler BG. VDX-111, a novel small molecule, induces necroptosis to inhibit ovarian cancer progression. Mol Carcinog 2024; 63:1248-1259. [PMID: 38558423 DOI: 10.1002/mc.23721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Epithelial ovarian cancers that are nonhomologous recombination deficient, as well as those that are recurrent and in a platinum-resistant state, have limited therapeutic options. The objectives of this study were to characterize the mechanism of action and investigate the therapeutic potential of a small molecule, VDX-111, against ovarian cancer. We examined the ability of VDX-111 to inhibit the growth of a panel of ovarian cancer cell lines, focusing on BRCA wild-type lines. We found that VDX-111 causes a dose-dependent loss of cell viability across ovarian cancer cell lines. Reverse phase protein array (RPPA) analysis was used to identify changes in cell signaling in response to VDX-111 treatment. An RPPA analysis performed on cells treated with VDX-111 detected changes in cell signaling related to autophagy and necroptosis. Immunoblots of OVCAR3 and SNU8 cells confirmed a dose-dependent increase in LC3A/B and RIPK1. Incucyte live cell imaging was used to measure cell proliferation and death in response to VDX-111 alone and with inhibitors of apoptosis, necroptosis, and autophagy. Annexin/PI assays suggested predominantly nonapoptotic cell death, while real-time kinetic imaging of cell growth indicated the necroptosis inhibitor, necrostatin-1, attenuates VDX-111-induced loss of cell viability, suggesting a necroptosis-dependent mechanism. Furthermore, VDX-111 inhibited tumor growth in patient-derived xenograft and syngeneic murine models. In conclusion, the cytotoxic effects of VDX-111 seen in vitro and in vivo appear to occur in a necroptosis-dependent manner and may promote an antitumor immune response.
Collapse
Affiliation(s)
- Christianne Persenaire
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Beatrice Babbs
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tomomi M Yamamoto
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Morgan Nebbia
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kimberly R Jordan
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah Adams
- Department Obstetrics and Gynecology, Division of Gynecologic Oncology, University of New Mexico, Albuquerque, New Mexico, USA
| | - James R Lambert
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Benjamin G Bitler
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Ji L, Liu Y, Wang Z, Huang Q, Cai J, Gu H, Li J, Chen X, Feng C, He X, Deng X, Cheng X, Kong X, Zhu X, Wu T, Yang B, Lin Z, Yang X, Feng G, Yu J. Causal effect analysis of estrogen receptor associated breast cancer and clear cell ovarian cancer. Am J Transl Res 2024; 16:2699-2710. [PMID: 39006281 PMCID: PMC11236669 DOI: 10.62347/ecoo9552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Evidence indicates that the risk of developing a secondary ovarian cancer (OC) is correlated with estrogen receptor (ER) status. However, the clinical significance of the relationship between ER-associated breast cancer (BC) and clear cell ovarian cancer (CCOC) remains elusive. METHODS Independent single nucleotide polymorphisms (SNPs) strongly correlated with exposure were extracted, and those associated with confounders and outcomes were removed using the PhenoScanner database. SNP effects were extracted from the outcome datasets with minor allele frequency > 0.01 as the filtration criterion. Next, valid instrumental variables (IVs) were obtained by harmonizing exposure and outcome effects and further filtered based on F-statistics (> 10). Mendelian randomization (MR) assessment of valid IVs was carried out using inverse variance weighted (IVW), MR Egger (ME), weighted median (WM), and multiplicative random effects-inverse variance weighted (MRE-IVW) methods. For sensitivity analysis and visualization of MR findings, a heterogeneity test, a pleiotropy test, a leave-one-out test, scatter plots, forest plots, and funnel plots were employed. RESULTS MR analyses with all four methods revealed that CCOC was not causally associated with ER-negative BC (IVW results: odds ratio (OR) = 0.89, 95% confidence interval (CI) = 0.66-1.20, P = 0.431) or ER-positive BC (IVW results: OR = 0.99, 95% CI = 0.88-1.12, P = 0.901). F-statistics were computed for each valid IV, all of which exceeded 10. The stability and reliability of the results were confirmed by sensitivity analysis. CONCLUSIONS Our findings indicated that CCOC dids not have a causal association with ER-associated BC. The absence of a definitive causal link between ER-associated BC and CCOC suggested a minimal true causal influence of ER-associated BC exposure factors on CCOC. These results indicated that individuals afflicted by ER-associated BC could alleviate concerns regarding the developing of CCOC, thereby aiding in preserving their mental well-being stability and optimizing the efficacy of primary disease treatment.
Collapse
Affiliation(s)
- Li Ji
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Yanbo Liu
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215000, Jiangsu, China
| | - Zihan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Jiaying Cai
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Han Gu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong UniversityNantong 226001, Jiangsu, China
| | - Chenrui Feng
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xuxin He
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiaonan Deng
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiuwen Kong
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiaoqi Zhu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Tong Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Binbin Yang
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Ziwen Lin
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Nantong University, Nantong UniversityNantong 226001, Jiangsu, China
| | - Guannan Feng
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215000, Jiangsu, China
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| |
Collapse
|
5
|
Ali U, Vungarala S, Tiriveedhi V. Genomic Features of Homologous Recombination Deficiency in Breast Cancer: Impact on Testing and Immunotherapy. Genes (Basel) 2024; 15:162. [PMID: 38397152 PMCID: PMC10887603 DOI: 10.3390/genes15020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Genomic instability is one of the well-established hallmarks of cancer. The homologous recombination repair (HRR) pathway plays a critical role in correcting the double-stranded breaks (DSB) due to DNA damage in human cells. Traditionally, the BRCA1/2 genes in the HRR pathway have been tested for their association with breast cancer. However, defects in the HRR pathway (HRD, also termed 'BRCAness'), which has up to 50 genes, have been shown to be involved in tumorigenesis and treatment susceptibility to poly-ADP ribose polymerase inhibitors (PARPis), platinum-based chemotherapy, and immune checkpoint inhibitors (ICIs). A reliable consensus on HRD scores is yet to be established. Emerging evidence suggests that only a subset of breast cancer patients benefit from ICI-based immunotherapy. Currently, albeit with limitations, the expression of programmed death-ligand 1 (PDL1) and tumor mutational burden (TMB) are utilized as biomarkers to predict the favorable outcomes of ICI therapy in breast cancer patients. Preclinical studies demonstrate an interplay between the HRR pathway and PDL1 expression. In this review, we outline the current understanding of the role of HRD in genomic instability leading to breast tumorigenesis and delineate outcomes from various clinical trials. Furthermore, we discuss potential strategies for combining HRD-targeted therapy with immunotherapy to achieve the best healthcare outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Umer Ali
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
| | - Sunitha Vungarala
- Meharry-Vanderbilt Alliance, Vanderbilt University Medical Center, Nashville, TN 37209, USA;
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37209, USA
| |
Collapse
|
6
|
Bukłaho PA, Kiśluk J, Nikliński J. Diagnostics and treatment of ovarian cancer in the era of precision medicine - opportunities and challenges. Front Oncol 2023; 13:1227657. [PMID: 37746296 PMCID: PMC10516548 DOI: 10.3389/fonc.2023.1227657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Due to predictions of increasing incidences and deaths from ovarian cancer, this neoplasm is a challenge for modern health care. The advent of NGS technology has made it possible to understand the molecular characteristics of many cancers, including ovarian cancer. The data obtained in research became the basis for the development of molecularly targeted therapies thus leading to the entry of NGS analysis into the diagnostic process of oncological patients. This review presents targeted therapies currently in preclinical or clinical trials, whose promising results offer hope for their use in clinical practice in the future. As more therapeutic options emerge, it will be necessary to modify molecular diagnostic regimens to select the best treatment for a given patient. New biomarkers are needed to predict the success of planned therapy. An important aspect of public health is molecular testing in women with a familial predisposition to ovarian cancer enabling patients to be included in prevention programs. NGS technology, despite its high throughput, poses many challenges, from the quality of the diagnostic material used for testing to the interpretation of results and classification of sequence variants. The article highlights the role of molecular testing in ongoing research and also its role in the diagnostic and therapeutic process in the era of personalized medicine. The spread of genetic testing in high-risk groups, the introduction of more targeted therapies and also the possibility of agnostic therapies could significantly improve the health situation for many women worldwide.
Collapse
Affiliation(s)
- Patrycja Aleksandra Bukłaho
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
- Doctoral School, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kiśluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
7
|
Jaeger BAS, Krawczyk N, Japp AS, Honisch E, Köhrer K, Scheuring S, Petzsch P, Neubauer H, Volkmer AK, Esposito I, Ruckhäberle E, Niederacher D, Fehm T. Whole Exome Analysis to Select Targeted Therapies for Patients with Metastatic Breast Cancer - A Feasibility Study. Geburtshilfe Frauenheilkd 2023; 83:1138-1147. [PMID: 37706056 PMCID: PMC10497348 DOI: 10.1055/a-2150-9440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction The purpose of this feasibility study was to select targeted therapies according to "ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)". Data interpretation was further supported by a browser-based Treatment Decision Support platform (MH Guide, Molecular Health, Heidelberg, Germany). Patients We applied next generation sequencing based whole exome sequencing of tumor tissue and peripheral blood of patients with metastatic breast cancer (n = 44) to detect somatic as well as germline mutations. Results In 32 metastatic breast cancer patients, data interpretation was feasible. We identified 25 genomic alterations with ESCAT Level of Evidence I or II in 18/32 metastatic breast cancer patients, which were available for evaluation: three copy number gains in HER2 , two g BRCA1 , two g BRCA2 , six PIK3CA, one ESR1 , three PTEN , one AKT1 and two HER2 mutations. In addition, five samples displayed Microsatellite instability high-H. Conclusions Resulting treatment options were discussed in a tumor board and could be recommended in a small but relevant proportion of patients with metastatic breast cancer (7/18). Thus, this study is a valuable preliminary work for the establishment of a molecular tumor board within the German initiative "Center for Personalized Medicine" which aims to shorten time for analyses and optimize selection of targeted therapies.
Collapse
Affiliation(s)
- Bernadette Anna Sophia Jaeger
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Natalia Krawczyk
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Sophia Japp
- Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Ellen Honisch
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sibylle Scheuring
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Anne Kathrin Volkmer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Eugen Ruckhäberle
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|
9
|
Herzog H, Dogan S, Aktas B, Nel I. Targeted Sequencing of Plasma-Derived vs. Urinary cfDNA from Patients with Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:4101. [PMID: 36077638 PMCID: PMC9454533 DOI: 10.3390/cancers14174101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
In breast cancer, the genetic profiling of circulating cell-free DNA (cfDNA) from blood plasma was shown to have good potential for clinical use. In contrast, only a few studies were performed investigating urinary cfDNA. In this pilot study, we analyzed plasma-derived and matching urinary cfDNA samples obtained from 15 presurgical triple-negative breast cancer patients. We used a targeted next-generation sequencing approach to identify and compare genetic alterations in both body fluids. The cfDNA concentration was higher in urine compared to plasma, but there was no significant correlation between matched samples. Bioinformatical analysis revealed a total of 3339 somatic breast-cancer-related variants (VAF ≥ 3%), whereof 1222 vs. 2117 variants were found in plasma-derived vs. urinary cfDNA, respectively. Further, 431 shared variants were found in both body fluids. Throughout the cohort, the recovery rate of plasma-derived mutations in matching urinary cfDNA was 47% and even 63% for pathogenic variants only. The most frequently occurring pathogenic and likely pathogenic mutated genes were NF1, CHEK2, KMT2C and PTEN in both body fluids. Notably, a pathogenic CHEK2 (T519M) variant was found in all 30 samples. Taken together, our results indicated that body fluids appear to be valuable sources bearing complementary information regarding the genetic tumor profile.
Collapse
Affiliation(s)
- Henrike Herzog
- Department of Gynecology, Medical Center, University of Leipzig, 04103 Leipzig, Germany
| | - Senol Dogan
- Soft Matter Physics Division, Peter-Debye-Institute, University of Leipzig, 04103 Leipzig, Germany
| | - Bahriye Aktas
- Department of Gynecology, Medical Center, University of Leipzig, 04103 Leipzig, Germany
| | - Ivonne Nel
- Department of Gynecology, Medical Center, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|