1
|
Weigele J, Zhang L, Franco A, Cartier E, Dorn GW. Sensory-Motor Neuropathy in Mfn2 T105M Knock-in Mice and Its Reversal by a Novel Piperine-Derived Mitofusin Activator. J Pharmacol Exp Ther 2024; 391:361-374. [PMID: 39284622 PMCID: PMC11493442 DOI: 10.1124/jpet.124.002258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/09/2024] [Indexed: 10/20/2024] Open
Abstract
Mitochondrial dysfunction is a hallmark of many genetic neurodegenerative diseases, but therapeutic options to reverse mitochondrial dysfunction are limited. While recent studies support the possibility of improving mitochondrial fusion/fission dynamics and motility to correct mitochondrial dysfunction and resulting neurodegeneration in Charcot-Marie-Tooth disease (CMT) and other neuropathies, the clinical utility of reported compounds and relevance of preclinical models are uncertain. Here, we describe motor and sensory neuron dysfunction characteristic of clinical CMT type 2 A in a CRISPR/Casp-engineered Mfn2 Thr105Met (T105M) mutant knock-in mouse. We further demonstrate that daily oral treatment with a novel mitofusin activator derived from the natural product piperine can reverse these neurologic phenotypes. Piperine derivative 8015 promoted mitochondrial fusion and motility in Mfn2-deficient cells in a mitofusin-dependent manner and reversed mitochondrial dysfunction in cultured fibroblasts and reprogrammed motor neurons from a human CMT2A patient carrying the MFN2 T105M mutation. Like previous mitofusin activators, 8015 exhibited stereospecific functionality, but the more active stereoisomer, 8015-P2, is unique in that it has subnanomolar potency and undergoes entero-hepatic recirculation which extends its in vivo half-life. Daily administration of 8015-P2 to Mfn2 T105M knock-in mice for 6 weeks normalized neuromuscular and sensory dysfunction and corrected histological/ultrastructural neurodegeneration and neurogenic myoatrophy. These studies describe a more clinically relevant mouse model of CMT2A and an improved mitofusin activator derived from piperine. We posit that 8015-P2 and other piperine derivatives may benefit CMT2A or other neurodegenerative conditions wherein mitochondrial dysdynamism plays a contributory role. SIGNIFICANCE STATEMENT: Mitochondrial dysfunction is widespread and broadly contributory in neurodegeneration, but difficult to target therapeutically. Here, we describe 8015-P2, a new small molecule mitofusin activator with ∼10-fold greater potency and improved in vivo pharmacokinetics versus comparators, and demonstrate its rapid reversal of sensory and motor neuron dysfunction in an Mfn2 T105M knock-in mouse model of Charcot-Marie-Tooth disease type 2 A. These findings further support the therapeutic approach of targeting mitochondrial dysdynamism in neurodegeneration.
Collapse
Affiliation(s)
- Jochen Weigele
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Lihong Zhang
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Antonietta Franco
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Etienne Cartier
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Gerald W Dorn
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| |
Collapse
|
2
|
Liu D, Liu Z, Liao H, Chen ZS, Qin B. Ferroptosis as a potential therapeutic target for age-related macular degeneration. Drug Discov Today 2024; 29:103920. [PMID: 38369100 DOI: 10.1016/j.drudis.2024.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Cell death plays a crucial part in the process of age-related macular degeneration (AMD), but its mechanisms remain elusive. Accumulating evidence suggests that ferroptosis, a novel form of regulatory cell death characterized by iron-dependent accumulation of lipid hydroperoxides, has a crucial role in the pathogenesis of AMD. Numerous studies have suggested that ferroptosis participates in the degradation of retinal cells and accelerates the progression of AMD. Furthermore, inhibitors of ferroptosis exhibit notable protective effects in AMD, underscoring the significance of ferroptosis as a pivotal mechanism in the death of retinal cells during the process of AMD. This review aims to summarize the molecular mechanisms of ferroptosis in AMD, enumerate potential inhibitors and discuss the challenges and future opportunities associated with targeting ferroptosis as a therapeutic strategy, providing important information references and insights for the prevention and treatment of AMD.
Collapse
Affiliation(s)
- Dongcheng Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Ziling Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Hongxia Liao
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China; Aier Eye Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Franco A, Li J, Kelly DP, Hershberger RE, Marian AJ, Lewis RM, Song M, Dang X, Schmidt AD, Mathyer ME, Edwards JR, Strong CDG, Dorn GW. A human mitofusin 2 mutation can cause mitophagic cardiomyopathy. eLife 2023; 12:e84235. [PMID: 37910431 PMCID: PMC10619978 DOI: 10.7554/elife.84235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiac muscle has the highest mitochondrial density of any human tissue, but mitochondrial dysfunction is not a recognized cause of isolated cardiomyopathy. Here, we determined that the rare mitofusin (MFN) 2 R400Q mutation is 15-20× over-represented in clinical cardiomyopathy, whereas this specific mutation is not reported as a cause of MFN2 mutant-induced peripheral neuropathy, Charcot-Marie-Tooth disease type 2A (CMT2A). Accordingly, we interrogated the enzymatic, biophysical, and functional characteristics of MFN2 Q400 versus wild-type and CMT2A-causing MFN2 mutants. All MFN2 mutants had impaired mitochondrial fusion, the canonical MFN2 function. Compared to MFN2 T105M that lacked catalytic GTPase activity and exhibited normal activation-induced changes in conformation, MFN2 R400Q and M376A had normal GTPase activity with impaired conformational shifting. MFN2 R400Q did not suppress mitochondrial motility, provoke mitochondrial depolarization, or dominantly suppress mitochondrial respiration like MFN2 T105M. By contrast to MFN2 T105M and M376A, MFN2 R400Q was uniquely defective in recruiting Parkin to mitochondria. CRISPR editing of the R400Q mutation into the mouse Mfn2 gene induced perinatal cardiomyopathy with no other organ involvement; knock-in of Mfn2 T105M or M376V did not affect the heart. RNA sequencing and metabolomics of cardiomyopathic Mfn2 Q/Q400 hearts revealed signature abnormalities recapitulating experimental mitophagic cardiomyopathy. Indeed, cultured cardiomyoblasts and in vivo cardiomyocytes expressing MFN2 Q400 had mitophagy defects with increased sensitivity to doxorubicin. MFN2 R400Q is the first known natural mitophagy-defective MFN2 mutant. Its unique profile of dysfunction evokes mitophagic cardiomyopathy, suggesting a mechanism for enrichment in clinical cardiomyopathy.
Collapse
Affiliation(s)
- Antonietta Franco
- Department of Internal Medicine, Pharmacogenomics, Washington University School of MedicineSt LouisUnited States
| | - Jiajia Li
- Department of Internal Medicine, Pharmacogenomics, Washington University School of MedicineSt LouisUnited States
| | - Daniel P Kelly
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ray E Hershberger
- Department of Internal Medicine, Divisions of Human Genetics and Cardiovascular Medicine, Ohio State UniversityColumbusUnited States
| | - Ali J Marian
- Center for Cardiovascular Genetic Research, University of Texas Health Science Center at HoustonHoustonUnited States
| | - Renate M Lewis
- Department of Neurology, Washington University School of MedicineSt. LouisUnited States
| | - Moshi Song
- Department of Internal Medicine, Pharmacogenomics, Washington University School of MedicineSt LouisUnited States
| | - Xiawei Dang
- Department of Internal Medicine, Pharmacogenomics, Washington University School of MedicineSt LouisUnited States
| | - Alina D Schmidt
- Department of Internal Medicine (Dermatology), Washington University School of MedicineSt. LouisUnited States
| | - Mary E Mathyer
- Department of Internal Medicine (Dermatology), Washington University School of MedicineSt. LouisUnited States
| | - John R Edwards
- Department of Internal Medicine, Pharmacogenomics, Washington University School of MedicineSt LouisUnited States
| | - Cristina de Guzman Strong
- Department of Internal Medicine (Dermatology), Washington University School of MedicineSt. LouisUnited States
| | - Gerald W Dorn
- Department of Internal Medicine, Pharmacogenomics, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
4
|
Dorn GW. Reversing Dysdynamism to Interrupt Mitochondrial Degeneration in Amyotrophic Lateral Sclerosis. Cells 2023; 12:1188. [PMID: 37190097 PMCID: PMC10136928 DOI: 10.3390/cells12081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Amyotrophic lateral sclerosis is one of several chronic neurodegenerative conditions in which mitochondrial abnormalities are posited to contribute to disease progression. Therapeutic options targeting mitochondria include enhancing metabolism, suppressing reactive oxygen production and disrupting mitochondria-mediated programmed cell death pathways. Herein is reviewed mechanistic evidence supporting a meaningful pathophysiological role for the constellation of abnormal mitochondrial fusion, fission and transport, collectively designated mitochondrial dysdynamism, in ALS. Following this is a discussion on preclinical studies in ALS mice that seemingly validate the idea that normalizing mitochondrial dynamism can delay ALS by interrupting a vicious cycle of mitochondrial degeneration, leading to neuronal die-back and death. Finally, the relative benefits of suppressing mitochondrial fusion vs. enhancing mitochondrial fusion in ALS are speculated upon, and the paper concludes with the prediction that the two approaches could be additive or synergistic, although a side-by-side comparative trial may be challenging to perform.
Collapse
Affiliation(s)
- Gerald W Dorn
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Dang X, Zhang L, Franco A, Dorn II GW. Activating mitofusins interrupts mitochondrial degeneration and delays disease progression in SOD1 mutant amyotrophic lateral sclerosis. Hum Mol Genet 2023; 32:1208-1222. [PMID: 36416308 PMCID: PMC10026224 DOI: 10.1093/hmg/ddac287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial involvement in neurodegenerative diseases is widespread and multifactorial. Targeting mitochondrial pathology is therefore of interest. The recent development of bioactive molecules that modulate mitochondrial dynamics (fusion, fission and motility) offers a new therapeutic approach for neurodegenerative diseases with either indirect or direct mitochondrial involvement. Here, we asked: (1) Can enhanced mitochondrial fusion and motility improve secondary mitochondrial pathology in superoxide dismutase1 (SOD1) mutant amyotrophic lateral sclerosis (ALS)? And: (2) What is the impact of enhancing mitochondria fitness on in vivo manifestations of SOD1 mutant ALS? We observed that small molecule mitofusin activators corrected mitochondrial fragmentation, depolarization and dysmotility in genetically diverse ALS patient reprogrammed motor neurons and fibroblasts, and in motor neurons, sensory neurons and fibroblasts from SOD1 G93A mice. Continuous, but not intermittent, pharmacologic mitofusin activation delayed phenotype progression and lethality in SOD1 G93A mice, reducing neuron loss and improving neuromuscular connectivity. Mechanistically, mitofusin activation increased mitochondrial motility, fitness and residency within neuromuscular synapses; reduced mitochondrial reactive oxygen species production; and diminished apoptosis in SOD1 mutant neurons. These benefits were accompanied by improved mitochondrial respiratory coupling, despite characteristic SOD1 mutant ALS-associated downregulation of mitochondrial respiratory complexes. Targeting mitochondrial dysdynamism is a promising approach to alleviate pathology caused by secondary mitochondrial dysfunction in some neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiawei Dang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO USA
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, Shaanxi 710061, China
| | - Lihong Zhang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO USA
| | - Antonietta Franco
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO USA
| | - Gerald W Dorn II
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO USA
| |
Collapse
|
6
|
Franco A, Walton CE, Dang X. Mitochondria Clumping vs. Mitochondria Fusion in CMT2A Diseases. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122110. [PMID: 36556475 PMCID: PMC9783122 DOI: 10.3390/life12122110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Phenotypic variations in Charcot-Marie-Tooth disease type 2A (CMT2A) result from the many mutations in the mitochondrial fusion protein, mitofusin 2 (MFN2). While the GTPase domain mutations of MFN2 lack the ability to hydrolyze GTP and complete mitochondrial fusion, the mechanism of dysfunction in HR1 domain mutations has yet to be explored. Using Mfn1/Mfn2 double null cells and Mfn2 knock out (KO) fibroblasts, we measured the ability of this variant protein to change conformations and hydrolyze GTP. We found that a mutation in the HR1 domain (M376A) of MFN2 results in conformational change dysfunction while maintaining GTPase ability. Prolonged exposure to mitofusin agonist MiM 111 reverses mitochondrial fusion dysfunction in the HR1 mutant through encouraging an open conformation, resulting in a potential therapeutic model in this variant. Herein, we describe a novel mechanism of dysfunction in MFN2 variants through exploring domain-specific mitochondrial characteristics leading to CMT2A.
Collapse
Affiliation(s)
- Antonietta Franco
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Correspondence: ; Tel.: +1-314-362-4892; Fax: +1-314-362-8844
| | - Caroline E. Walton
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Xiawei Dang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Franco A, Dang X, Zhang L, Molinoff PB, Dorn GW. Mitochondrial Dysfunction and Pharmacodynamics of Mitofusin Activation in Murine Charcot-Marie-Tooth Disease Type 2A. J Pharmacol Exp Ther 2022; 383:137-148. [PMID: 36507849 PMCID: PMC9553116 DOI: 10.1124/jpet.122.001332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/03/2022] [Indexed: 01/07/2023] Open
Abstract
Mitofusin (MFN) 1 and MFN2 are dynamin GTPase family mitochondrial proteins that mediate mitochondrial fusion requiring MFN conformational shifts, formation of macromolecular complexes on and between mitochondria, and GTP hydrolysis. Damaging MFN2 mutations cause an untreatable, largely pediatric progressive peripheral neuropathy, Charcot-Marie-Tooth (CMT) disease type 2A. We used small molecule allosteric mitofusin activators that promote MFN conformations favoring fusion to interrogate the effects of MFN2 conformation and GTPase activity on MFN2-mediated mitochondrial fusion and motility in vitro. We translated these findings in vivo by defining dose-dependent pharmacodynamic and disease-modifying effects of mitofusin activators in murine CMT2A. MFN2 catalytic GTPase activity and MFN2 conformational switching are essential for mitochondrial fusion, but the two processes are separate and dissociable. We report the first concentration-response relationships for mitofusin activators to stimulate mitochondrial transport through CMT2A neuronal axons, which is similar to their stimulation of mitochondrial fusion. In CMT2A mice, intermittent (daily short acting) and sustained (twice daily long acting) mitofusin activation were equally effective in reversing neuromuscular degeneration. Moreover, acute dose-dependent pharmacodynamic effects of mitofusin activators on mitochondrial transport through CMT2A neuronal axons anticipated those for long-term reversal of neurodegenerative phenotypes. A crossover study showed that CMT2A neuronal deficits recurred after mitofusin activators are discontinued, and revealed that CMT2A can be ameliorated by mitofusin activation even in old (>74 week) mice. These data add to our understanding of mitochondrial dysfunction induced by a CMT2A MFN2 GTPase mutation and provide additional information supporting the approach of pharmacological mitofusin activation in CMT2A. SIGNIFICANCE: This study interrogated the roles of MFN2 catalytic activity and allosteric activation on impaired mitochondrial fusion and neuronal transport as they impact an untreatable peripheral neuropathy caused by MFN2 mutations, Charcot-Marie-Tooth disease type 2A. The results mechanistically link mitochondrial fusion and motility to the relaxed MFN2 protein conformation and correction of mitochondrial abnormalities to in vivo reversal of neurodegeneration in murine CMT2A.
Collapse
Affiliation(s)
- Antonietta Franco
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| | - Xiawei Dang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| | - Lihong Zhang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| | - Perry B Molinoff
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| | - Gerald W Dorn
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| |
Collapse
|
8
|
Al Ojaimi M, Salah A, El-Hattab AW. Mitochondrial Fission and Fusion: Molecular Mechanisms, Biological Functions, and Related Disorders. MEMBRANES 2022; 12:membranes12090893. [PMID: 36135912 PMCID: PMC9502208 DOI: 10.3390/membranes12090893] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 05/13/2023]
Abstract
Mitochondria are dynamic organelles that undergo fusion and fission. These active processes occur continuously and simultaneously and are mediated by nuclear-DNA-encoded proteins that act on mitochondrial membranes. The balance between fusion and fission determines the mitochondrial morphology and adapts it to the metabolic needs of the cells. Therefore, these two processes are crucial to optimize mitochondrial function and its bioenergetics abilities. Defects in mitochondrial proteins involved in fission and fusion due to pathogenic variants in the genes encoding them result in disruption of the equilibrium between fission and fusion, leading to a group of mitochondrial diseases termed disorders of mitochondrial dynamics. In this review, the molecular mechanisms and biological functions of mitochondrial fusion and fission are first discussed. Then, mitochondrial disorders caused by defects in fission and fusion are summarized, including disorders related to MFN2, MSTO1, OPA1, YME1L1, FBXL4, DNM1L, and MFF genes.
Collapse
Affiliation(s)
- Mode Al Ojaimi
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Pediatrics Department, University Hospital Sharjah, Sharjah 72772, United Arab Emirates
| | - Azza Salah
- Pediatrics Department, University Hospital Sharjah, Sharjah 72772, United Arab Emirates
| | - Ayman W. El-Hattab
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Pediatrics Department, University Hospital Sharjah, Sharjah 72772, United Arab Emirates
- Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi 505193, United Arab Emirates
- Correspondence: ; Tel.: +971-508875123
| |
Collapse
|
9
|
Dorn Ii GW. Neurohormonal Connections with Mitochondria in Cardiomyopathy and Other Diseases. Am J Physiol Cell Physiol 2022; 323:C461-C477. [PMID: 35759434 PMCID: PMC9363002 DOI: 10.1152/ajpcell.00167.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurohormonal signaling and mitochondrial dynamism are seemingly distinct processes that are almost ubiquitous among multicellular organisms. Both of these processes are regulated by GTPases, and disturbances in either can provoke disease. Here, inconspicuous pathophysiological connectivity between neurohormonal signaling and mitochondrial dynamism is reviewed in the context of cardiac and neurological syndromes. For both processes, greater understanding of basic mechanisms has evoked a reversal of conventional pathophysiological concepts. Thus, neurohormonal systems induced in, and previously thought to be critical for, cardiac functioning in heart failure are now pharmaceutically interrupted as modern standard of care. And, mitochondrial abnormalities in neuropathies that were originally attributed to an imbalance between mitochondrial fusion and fission are increasingly recognized as an interruption of axonal mitochondrial transport. The data are presented in a historical context to provided insight into how scientific thought has evolved and to foster an appreciation for how seemingly different areas of investigation can converge. Finally, some theoretical notions are presented to explain how different molecular and functional defects can evoke tissue-specific disease.
Collapse
Affiliation(s)
- Gerald W Dorn Ii
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
10
|
Piperine Derivatives Enhance Fusion and Axonal Transport of Mitochondria by Activating Mitofusins. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Piperine (1-piperoylpiperidine) is the major pungent component of black pepper (Piper nigrum) and exhibits a spectrum of pharmacological activities. The molecular bases for many of piperine’s biological effects are incompletely defined. We noted that the chemical structure of piperine generally conforms to a pharmacophore model for small bioactive molecules that activate mitofusin (MFN)-mediated mitochondrial fusion. Piperine, but not its isomer chavicine, stimulated mitochondrial fusion in MFN-deficient cells with EC50 of ~8 nM. We synthesized piperine analogs having structural features predicted to optimize mitofusin activation and defined structure-activity relationships (SAR) in live-cell mitochondrial elongation assays. When optimal spacing was maintained between amide and aromatic groups the derivatives were potent mitofusin activators. Compared to the prototype phenylhexanamide mitofusin activator, 2, novel molecules containing the piperidine structure of piperine exhibited markedly enhanced passive membrane permeability with no loss of fusogenic potency. Lead compounds 5 and 8 enhanced mitochondrial motility in cultured murine Charcot-Marie-Tooth disease type 2A (CMT2A) neurons, but only 8 improved mitochondrial transport in sciatic nerve axons of CMT2A mice. Piperine analogs represent a new chemical class of mitofusin activators with potential pharmaceutical advantages.
Collapse
|