1
|
Tang F, Zhao XL, Xu LY, Zhang JN, Ao H, Peng C. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome. Biomed Pharmacother 2024; 178:117180. [PMID: 39068853 DOI: 10.1016/j.biopha.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Sepsis and septic shock are critical medical conditions characterized by a systemic inflammatory response to infection, significantly contributing to global mortality rates. The progression to multiple organ dysfunction syndrome (MODS) represents the most severe complication of sepsis and markedly increases clinical mortality. Central to the pathophysiology of sepsis, endothelial cells play a crucial role in regulating microcirculation and maintaining barrier integrity across various organs and tissues. Recent studies have underscored the pivotal role of endothelial function in the development of sepsis-induced MODS. This review aims to provide a comprehensive overview of the pathophysiology of sepsis-induced MODS, with a specific focus on endothelial dysfunction. It also compiles compelling evidence regarding potential small molecules that could attenuate sepsis and subsequent multi-organ damage by modulating endothelial function. Thus, this review serves as an essential resource for clinical practitioners involved in the diagnosing, managing, and providing intensive care for sepsis and associated multi-organ injuries, emphasizing the importance of targeting endothelial cells to enhance outcomes of the patients.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Zhang Y, Wu D, Sun Q, Luo Z, Zhang Y, Wang B, Chen W. Atorvastatin combined with imipenem alleviates lung injury in sepsis by inhibiting neutrophil extracellular trap formation via the ERK/NOX2 signaling pathway. Free Radic Biol Med 2024; 220:179-191. [PMID: 38704053 DOI: 10.1016/j.freeradbiomed.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms. Despite major advances in diagnosis and technology, morbidity and mortality remain high. The level of neutrophil extracellular traps (NETs) is closely associated with the progression and prognosis of sepsis, suggesting the regulation of NET formation as a new strategy in sepsis treatment. Owing to its pleiotropic effects, atorvastatin, a clinical lipid-lowering drug, affects various aspects of sepsis-related inflammation and immune responses. To align closely with clinical practice, we combined it with imipenem for the treatment of sepsis. In this study, we used a cecum ligation and puncture-induced lung injury mouse model and employed techniques including western blot, immunofluorescence, and enzyme-linked immunosorbent assay to measure the levels of NETs and other sepsis-related lung injury indicators. Our findings indicate that atorvastatin effectively inhibited the formation of NETs. When combined with imipenem, it significantly alleviated lung injury, reduced systemic inflammation, and improved the 7-day survival rate of septic mice. Additionally, we explored the inhibitory mechanism of atorvastatin on NET formation in vitro, revealing its potential action through the ERK/NOX2 pathway. Therefore, atorvastatin is a potential immunomodulatory agent that may offer new treatment strategies for patients with sepsis in clinical settings.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Di Wu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Qishun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Zhen Luo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yuhao Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Bowei Wang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wenting Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
3
|
Yao Y, Zhao X, Wang M, Zhou F, Li C, Le X, Zhang S. Association between the use of statins and in-hospital mortality risk in patients with sepsis-induced coagulopathy during ICU stays: a study based on medical information mart for intensive care database. BMC Infect Dis 2024; 24:738. [PMID: 39061029 PMCID: PMC11282707 DOI: 10.1186/s12879-024-09636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The objective of this study was to explore the correlation between statin administration in the intensive care unit (ICU) setting and the in-hospital mortality risk of patients suffering from sepsis-induced coagulopathy (SIC). METHODS Utilizing a retrospective cohort study design, this investigation collected data from the Medical Information Mart for Intensive Care (MIMIC)-IV spanning 2008 to 2019. The diagnosis of SIC was established based on a SIC score of 4 or above. Statin usage during the ICU period was extracted from the prescription records based on the keywords of statin medications. The primary endpoint analyzed was the in-hospital mortality within the ICU, characterized by any death occurring during the ICU admission. RESULTS During the follow-up, which had a median duration of approximately 7.28 days, 18.19% of the 4,777 SIC patients died in the ICU. Statin was linked with a decrease in the risk of in-hospital mortality for SIC patients in the ICU [hazard ratio (HR): 0.73, 95% confidence interval (CI): 0.60-0.89, P = 0.002]. Relative to rosuvastatin, the use of atorvastatin (HR: 0.54, 95% CI: 0.34-0.85, P = 0.008) or simvastatin (HR: 0.55, 95% CI: 0.33-0.92, P = 0.024), as well as combinations of multiple statins (HR: 0.36, 95% CI: 0.15-0.86, P = 0.022), was associated with a reduction in ICU in-hospital mortality risk. Subgroup analysis also suggested that the use of atorvastatin, simvastatin, or a combination of statins had an advantage over rosuvastatin in reducing ICU in-hospital mortality in SIC patients older than 65 years of age or SIC patients with respiratory failure or cardiogenic shock (all P < 0.05). CONCLUSION The present study supports the potential benefits of statin use in mortality in SIC patients during ICU stays. The study encourages clinicians to consider the benefits of statins and supports the ongoing exploration of statins for enhanced outcomes in critical care settings.
Collapse
Affiliation(s)
- Yan Yao
- Intensive Care Unit, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, 2 Hengbu Street, Liuhe Road, Xihu District, Hangzhou city, 310023, Zhejiang province, P.R. China
| | - Xi Zhao
- Intensive Care Unit, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, 2 Hengbu Street, Liuhe Road, Xihu District, Hangzhou city, 310023, Zhejiang province, P.R. China
| | - Mengjue Wang
- Intensive Care Unit, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, 2 Hengbu Street, Liuhe Road, Xihu District, Hangzhou city, 310023, Zhejiang province, P.R. China
| | - Fanfan Zhou
- Intensive Care Unit, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, 2 Hengbu Street, Liuhe Road, Xihu District, Hangzhou city, 310023, Zhejiang province, P.R. China
| | - Chengfeng Li
- Department of Emergency, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xudong Le
- Department of Emergency, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Siquan Zhang
- Intensive Care Unit, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, 2 Hengbu Street, Liuhe Road, Xihu District, Hangzhou city, 310023, Zhejiang province, P.R. China.
| |
Collapse
|
4
|
Zhang K, Liu W, Liang H. Effect of statins on sepsis and inflammatory factors: A Mendelian randomization study. Eur J Clin Invest 2024; 54:e14164. [PMID: 38229409 DOI: 10.1111/eci.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/28/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND As inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), statins can reduce the synthesis of low-density lipoptrotein cholesterol (LDL-C), and are clinically used as first-line lipid-lowering drugs to prevent cardiovascular diseases. However, the effect of statins on sepsis is controversial. Therefore, we intend to explore the effects of statins on sepsis and inflammatory factors through Mendelian randomization (MR). METHOD We obtained sepsis, inflammatory factors, and LDL-C data from open and free genome-wide association study (GWAS) for subsequent analysis. Inverse-variance weighted (IVW) was the main method, MR-Egger, MR-PRESSO and Cochrane's Q-test were used as sensitive analysis to evaluate the robustness of MR results. RESULTS Statins were associated with a reduced risk of sepsis under 75 (sepsis in individuals under 75 years old) (OR: .716, 95% CI: .572-.896, p = .003), elevated circulating IL-18 (OR: .762, 95% CI: .643-.903, p = .002) and elevated circulating CCL2 (OR: .416, 95% CI: .279-.620, p = 1.685e-5). CONCLUSION Statins may have a protective effect on sepsis and this may provide a new idea for the treatment of sepsis.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Intensive Care Unit, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, P.R. China
| | - Wei Liu
- Department of Intensive Care Unit, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, P.R. China
| | - Hongjin Liang
- Department of Intensive Care Unit, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, P.R. China
| |
Collapse
|
5
|
McMullan RR, McAuley DF, O'Kane CM, Silversides JA. Vascular leak in sepsis: physiological basis and potential therapeutic advances. Crit Care 2024; 28:97. [PMID: 38521954 PMCID: PMC10961003 DOI: 10.1186/s13054-024-04875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Sepsis is a life-threatening condition characterised by endothelial barrier dysfunction and impairment of normal microcirculatory function, resulting in a state of hypoperfusion and tissue oedema. No specific pharmacological therapies are currently used to attenuate microvascular injury. Given the prominent role of endothelial breakdown and microcirculatory dysfunction in sepsis, there is a need for effective strategies to protect the endothelium. In this review we will discuss key mechanisms and putative therapeutic agents relevant to endothelial barrier function.
Collapse
Affiliation(s)
- Ross R McMullan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Lisburn Road, Belfast, BT9 7BL, UK.
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Lisburn Road, Belfast, BT9 7BL, UK
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, UK
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Lisburn Road, Belfast, BT9 7BL, UK
| | - Jonathan A Silversides
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Lisburn Road, Belfast, BT9 7BL, UK
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
6
|
McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 2023; 78:649-669. [PMID: 36626620 PMCID: PMC10315420 DOI: 10.1097/hep.0000000000000207] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
LSECs are a unique population of endothelial cells within the liver and are recognized as key regulators of liver homeostasis. LSECs also play a key role in liver disease, as dysregulation of their quiescent phenotype promotes pathological processes within the liver including inflammation, microvascular thrombosis, fibrosis, and portal hypertension. Recent technical advances in single-cell analysis have characterized distinct subpopulations of the LSECs themselves with a high resolution and defined their gene expression profile and phenotype, broadening our understanding of their mechanistic role in liver biology. This article will review 4 broad advances in our understanding of LSEC biology in general: (1) LSEC heterogeneity, (2) LSEC aging and senescence, (3) LSEC role in liver regeneration, and (4) LSEC role in liver inflammation and will then review the role of LSECs in various liver pathologies including fibrosis, DILI, alcohol-associated liver disease, NASH, viral hepatitis, liver transplant rejection, and ischemia reperfusion injury. The review will conclude with a discussion of gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Matthew J. McConnell
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - Samar H. Ibrahim
- Division of Gastroenterology, Mayo Clinic, Rochester, MN
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN
| | - Yasuko Iwakiri
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Airola C, Pallozzi M, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Microvascular Thrombosis and Liver Fibrosis Progression: Mechanisms and Clinical Applications. Cells 2023; 12:1712. [PMID: 37443746 PMCID: PMC10341358 DOI: 10.3390/cells12131712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Fibrosis is an unavoidable consequence of chronic inflammation. Extracellular matrix deposition by fibroblasts, stimulated by multiple pathways, is the first step in the onset of chronic liver disease, and its propagation promotes liver dysfunction. At the same time, chronic liver disease is characterized by alterations in primary and secondary hemostasis but unlike previously thought, these changes are not associated with an increased risk of bleeding complications. In recent years, the role of coagulation imbalance has been postulated as one of the main mechanisms promoting hepatic fibrogenesis. In this review, we aim to investigate the function of microvascular thrombosis in the progression of liver disease and highlight the molecular and cellular networks linking hemostasis to fibrosis in this context. We analyze the predictive and prognostic role of coagulation products as biomarkers of liver decompensation (ascites, variceal hemorrhage, and hepatic encephalopathy) and liver-related mortality. Finally, we evaluate the current evidence on the application of antiplatelet and anticoagulant therapies for prophylaxis of hepatic decompensation or prevention of the progression of liver fibrosis.
Collapse
Affiliation(s)
- Carlo Airola
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Maria Pallozzi
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Lucia Cerrito
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Francesco Santopaolo
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Leonardo Stella
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Antonio Gasbarrini
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
8
|
Bitto N, Ghigliazza G, Lavorato S, Caputo C, La Mura V. Improving Management of Portal Hypertension: The Potential Benefit of Non-Etiological Therapies in Cirrhosis. J Clin Med 2023; 12:jcm12030934. [PMID: 36769582 PMCID: PMC9917703 DOI: 10.3390/jcm12030934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Portal hypertension is the consequence of cirrhosis and results from increased sinusoidal vascular resistance and hepatic blood inflow. Etiological therapies represent the first intervention to prevent a significant increase in portal pressure due to chronic liver damage. However, other superimposed pathophysiological drivers may worsen liver disease, including inflammation, bacterial translocation, endothelial dysfunction, and hyperactivation of hemostasis. These mechanisms can be targeted by a specific class of drugs already used in clinical practice. Albumin, rifaximin, statins, aspirin, and anticoagulants have been tested in cirrhosis and were a topic of discussion in the last Baveno consensus as non-etiological therapies. Based on the pathogenesis of portal hypertension in cirrhosis, our review summarizes the main mechanisms targeted by these drugs as well as the clinical evidence that considers them a valid complementary option to manage patients with cirrhosis and portal hypertension.
Collapse
Affiliation(s)
- Niccolò Bitto
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, 20122 Milan, Italy
| | - Gabriele Ghigliazza
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Division of Sub-Intensive Care Medicine, 20122 Milan, Italy
| | - Stanislao Lavorato
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, 20122 Milan, Italy
| | - Camilla Caputo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, 20122 Milan, Italy
| | - Vincenzo La Mura
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
9
|
Prado Y, Aravena D, Llancalahuen FM, Aravena C, Eltit F, Echeverría C, Gatica S, Riedel CA, Simon F. Statins and Hemostasis: Therapeutic Potential Based on Clinical Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:25-47. [PMID: 37093420 DOI: 10.1007/978-3-031-26163-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Hemostasis preserves blood fluidity and prevents its loss after vessel injury. The maintenance of blood fluidity requires a delicate balance between pro-coagulant and fibrinolytic status. Endothelial cells (ECs) in the inner face of blood vessels maintain hemostasis through balancing anti-thrombotic and pro-fibrinolytic activities. Dyslipidemias are linked to hemostatic alterations. Thus, it is necessary a better understanding of the underlying mechanisms linking hemostasis with dyslipidemia. Statins are drugs that decrease cholesterol levels in the blood and are the gold standard for treating hyperlipidemias. Statins can be classified into natural and synthetic molecules, approved for the treatment of hypercholesterolemia. The classical mechanism of action of statins is by competitive inhibition of a key enzyme in the synthesis pathway of cholesterol, the HMG-CoA reductase. Statins are frequently administrated by oral ingestion and its interaction with other drugs and food supplements is associated with altered bioavailability. In this review we deeply discuss the actions of statins beyond the control of dyslipidemias, focusing on the actions in thrombotic modulation, vascular and cardiovascular-related diseases, metabolic diseases including metabolic syndrome, diabetes, hyperlipidemia, and hypertension, and chronic diseases such as cancer, chronic obstructive pulmonary disease, and chronic kidney disease. Furthermore, we were prompted to delved deeper in the molecular mechanisms by means statins regulate coagulation acting on liver, platelets, and endothelium. Clinical evidence show that statins are effective regulators of dyslipidemia with a high impact in hemostasis regulation and its deleterious consequences. However, studies are required to elucidate its underlying molecular mechanism and improving their therapeutical actions.
Collapse
Affiliation(s)
- Yolanda Prado
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe M Llancalahuen
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristobal Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Eltit
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Cesar Echeverría
- Laboratory of Molecular Biology, Nanomedicine and Genomics, Faculty of Medicine, University of Atacama, Copiapo, Chile
| | - Sebastian Gatica
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A Riedel
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Simon
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
10
|
High plasma soluble thrombomodulin levels indicated poor prognosis of decompensated liver cirrhosis: a prospective cohort study. Eur J Gastroenterol Hepatol 2022; 34:1140-1146. [PMID: 35946457 PMCID: PMC9528942 DOI: 10.1097/meg.0000000000002428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Hepatic sinusoidal endothelial injury is a prominent characteristic of liver cirrhosis. We determined plasma soluble thrombomodulin (sTM) levels in cirrhosis patients to evaluate the relationship between vascular injury and long-term prognosis. METHODS A prospective single-center study was performed. The participants were followed up for every 6 months or until death or transplantation. A chemiluminescent enzyme immunoassay was used to establish a baseline sTM. RESULTS Among the 219 patients with decompensated liver cirrhosis, 53.42% were caused by hepatitis B and hepatitis C. Plasma sTM levels were much higher in cirrhosis than in healthy controls and increased parallel with Child-Pugh classification ( P < 0.01) and the amount of ascites ( P = 0.04). After adjusting for sex, age, international normalized ratio, bilirubin, and other potential factors, multivariate Cox regression revealed that per TU/ml elevation of plasma sTM causes an increase of 8% in mortality, and per-SD elevation of thrombomodulin causes a 53% increase in mortality. As the mortality rates in low (5.90-12.60 TU/ml) and medium (12.70-18.00 TU/ml) sTM levels were similar, so we chose the cutoff of 18.00 TU/ml to divide into two groups, and K-M analysis indicated that patients with sTM >18.0 TU/ml demonstrated an additional 2.01 times death risk (95% CI, 1.13-7.93; P = 0.01) than those with sTM ≤18.0 TU/ml. CONCLUSION Plasma sTM in cirrhosis was significantly increased in parallel with the severity of liver dysfunction. sTM elevation than 18 TU/ml indicated a poor prognosis of decompensated liver cirrhosis.
Collapse
|