1
|
Matuszkiewicz M, Grądzielewska A, Święcicka M, Ozturk A, Mokrzycka M, Igbari Aramide D, Song J, Kilian A, Rakoczy-Trojanowska M. Identification of quantitative trait loci associated with leaf rust resistance in rye by precision mapping. BMC PLANT BIOLOGY 2024; 24:291. [PMID: 38632518 PMCID: PMC11022434 DOI: 10.1186/s12870-024-04960-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Leaf rust (LR) is among the most destructive fungal diseases of rye (Secale cereale L.). Despite intensive research using various analytical and methodological approaches, such as quantitative trait locus (QTL) mapping, candidate gene expression analysis, and transcriptome sequencing, the genetic basis of the rye immune response to LR remains unclear. RESULTS A genome-wide association study was employed to detect QTLs controlling the immune response to LR of rye. A mapping population, G38A, was constructed by crossing two inbred lines: 723 (susceptible to LR) and JKI-NIL-Pr3 (a donor of the LR resistance gene Pr3). For genotyping, SNP-DArT and silico-DArT markers were used. Resistance phenotyping was conducted by visual assessment of the infection severity in detached leaf segments inoculated with two isolates of Puccinia recondita f. sp. secalis, namely, 60/17/2.1 (isolate S) in the main experiment and 86/n/2.1_5x (isolate N) in the validation experiment, at 10 and 17 days post-infection (dpi), respectively. In total, 42,773 SNP-DArT and 105,866 silico-DArT markers were included in the main analysis including isolate S, of which 129 and 140 SNP-DArTs and 767 and 776 silico-DArTs were significantly associated (p ≤ 0.001; - log10(p) ≥ 3.0) with the immune response to LR at 10 and 17 dpi, respectively. Most significant markers were mapped to chromosome 1R. The number of common markers from both systems and at both time points occupying common chromosomal positions was 37, of which 21 were positioned in genes, comprising 18 markers located in exons and three in introns. This gene pool included genes encoding proteins with a known function in response to LR (e.g., a NBS-LRR disease resistance protein-like protein and carboxyl-terminal peptidase). CONCLUSION This study has expanded and supplemented existing knowledge of the genetic basis of rye resistance to LR by (1) detecting two QTLs associated with the LR immune response of rye, of which one located on the long arm of chromosome 1R is newly detected, (2) assigning hundreds of markers significantly associated with the immune response to LR to genes in the 'Lo7' genome, and (3) predicting the potential translational effects of polymorphisms of SNP-DArT markers located within protein-coding genes.
Collapse
Affiliation(s)
- Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Warsaw, Poland
| | | | - Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Warsaw, Poland
| | - Alperen Ozturk
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Monika Mokrzycka
- Department of Biometry and Bioinformatics, Institute of Plant Genetics Polish Academy of Sciences, Poznań, Poland
| | - Dolapo Igbari Aramide
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Warsaw, Poland
- Department of Botany, Faculty of Science, University of Lagos, Akoka, Lagos, Yaba, Nigeria
| | - Jie Song
- Diversity Arrays Technology, University of Canberra, Monana Street, Bruce, ACT, 2617, Australia
| | - Andrzej Kilian
- Diversity Arrays Technology, University of Canberra, Monana Street, Bruce, ACT, 2617, Australia
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Azad R, Krępski T, Olechowski M, Biernacik B, Święcicka M, Matuszkiewicz M, Dmochowska-Boguta M, Rakoczy-Trojanowska M. Genotype-Specific Expression of Selected Candidate Genes Conferring Resistance to Leaf Rust of Rye ( Secale cereale L.). Genes (Basel) 2024; 15:275. [PMID: 38540334 PMCID: PMC10970619 DOI: 10.3390/genes15030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 06/15/2024] Open
Abstract
Leaf rust (LR) caused by Puccinia recondita f. sp. secalis (Prs) is a highly destructive disease in rye. However, the genetic mechanisms underlying the rye immune response to this disease remain relatively uncharacterised. In this study, we analysed the expression of four genes in 12 rye inbred lines inoculated with Prs at 20 and 36 h post-treatment (hpt): DXS (1-deoxy-D-xylulose 5-phosphate synthase), Glu (β-1,3-glucanase), GT (UDP-glycosyltransferase) and PR-1 (pathogenesis-related protein 1). The RT-qPCR analysis revealed the upregulated expression of the four genes in response to Prs in all inbred lines and at both time-points. The gene expression data were supported by microscopic and macroscopic examinations, which revealed that eight lines were susceptible to LR and four lines were highly resistant to LR. A relationship between the infection profiles and the expression of the analysed genes was observed: in the resistant lines, the expression level fold changes were usually higher at 20 hpt than at 36 hpt, while the opposite trend was observed in the susceptible lines. The study results indicate that DXS, Glu, GT and PR-1 may encode proteins crucial for the rye defence response to the LR pathogen.
Collapse
Affiliation(s)
- Rumana Azad
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| | - Tomasz Krępski
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| | - Mateusz Olechowski
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| | - Bartosz Biernacik
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| | - Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| | - Marta Dmochowska-Boguta
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland;
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| |
Collapse
|
3
|
Krępski T, Piasecka A, Święcicka M, Kańczurzewska M, Sawikowska A, Dmochowska-Boguta M, Rakoczy-Trojanowska M, Matuszkiewicz M. Leaf rust (Puccinia recondita f. sp. secalis) triggers substantial changes in rye (Secale cereale L.) at the transcriptome and metabolome levels. BMC PLANT BIOLOGY 2024; 24:107. [PMID: 38347436 PMCID: PMC10863301 DOI: 10.1186/s12870-024-04726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Rye (Secale cereale L.) is a cereal crop highly tolerant to environmental stresses, including abiotic and biotic stresses (e.g., fungal diseases). Among these fungal diseases, leaf rust (LR) is a major threat to rye production. Despite extensive research, the genetic basis of the rye immune response to LR remains unclear. RESULTS An RNA-seq analysis was conducted to examine the immune response of three unrelated rye inbred lines (D33, D39, and L318) infected with compatible and incompatible Puccinia recondita f. sp. secalis (Prs) isolates. In total, 877 unique differentially expressed genes (DEGs) were identified at 20 and 36 h post-treatment (hpt). Most of the DEGs were up-regulated. Two lines (D39 and L318) had more up-regulated genes than down-regulated genes, whereas the opposite trend was observed for line D33. The functional classification of the DEGs helped identify the largest gene groups regulated by LR. Notably, these groups included several DEGs encoding cytochrome P450, receptor-like kinases, methylesterases, pathogenesis-related protein-1, xyloglucan endotransglucosylases/hydrolases, and peroxidases. The metabolomic response was highly conserved among the genotypes, with line D33 displaying the most genotype-specific changes in secondary metabolites. The effect of pathogen compatibility on metabolomic changes was less than the effects of the time-points and genotypes. Accordingly, the secondary metabolome of rye is altered by the recognition of the pathogen rather than by a successful infection. The results of the enrichment analysis of the DEGs and differentially accumulated metabolites (DAMs) reflected the involvement of phenylpropanoid and diterpenoid biosynthesis as well as thiamine metabolism in the rye immune response. CONCLUSION Our work provides novel insights into the genetic and metabolic responses of rye to LR. Numerous immune response-related DEGs and DAMs were identified, thereby clarifying the mechanisms underlying the rye response to compatible and incompatible Prs isolates during the early stages of LR development. The integration of transcriptomic and metabolomic analyses elucidated the contributions of phenylpropanoid biosynthesis and flavonoid pathways to the rye immune response to Prs. This combined analysis of omics data provides valuable insights relevant for future research conducted to enhance rye resistance to LR.
Collapse
Affiliation(s)
- T Krępski
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - A Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, 61-704, Poland
| | - M Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - M Kańczurzewska
- Institute of Mathematics, Poznan University of Technology, Poznań, 60-965, Poland
| | - A Sawikowska
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, 60-637, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, 61-704, Poland
| | - M Dmochowska-Boguta
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, Blonie, 05-870, Poland
| | - M Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - M Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
4
|
Wang Y, Brown LH, Adams TM, Cheung YW, Li J, Young V, Todd DT, Armstrong MR, Neugebauer K, Kaur A, Harrower B, Oome S, Wang X, Bayer M, Hein I. SMRT-AgRenSeq-d in potato ( Solanum tuberosum) as a method to identify candidates for the nematode resistance Gpa5. HORTICULTURE RESEARCH 2023; 10:uhad211. [PMID: 38023472 PMCID: PMC10681002 DOI: 10.1093/hr/uhad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
Potato is the third most important food crop in the world. Diverse pathogens threaten sustainable crop production but can be controlled, in many cases, through the deployment of disease resistance genes belonging to the family of nucleotide-binding, leucine-rich-repeat (NLR) genes. To identify effective disease resistance genes in established varieties, we have successfully established SMRT-AgRenSeq in tetraploid potatoes and have further enhanced the methodology by including dRenSeq in an approach that we term SMR-AgRenSeq-d. The inclusion of dRenSeq enables the filtering of candidates after the association analysis by establishing a presence/absence matrix across resistant and susceptible varieties that is translated into an F1 score. Using a SMRT-RenSeq-based sequence representation of the NLRome from the cultivar Innovator, SMRT-AgRenSeq-d analyses reliably identified the late blight resistance benchmark genes Rpi-R1, Rpi-R2-like, Rpi-R3a, and Rpi-R3b in a panel of 117 varieties with variable phenotype penetrations. All benchmark genes were identified with an F1 score of 1, which indicates absolute linkage in the panel. This method also identified nine strong candidates for Gpa5 that controls the potato cyst nematode (PCN) species Globodera pallida (pathotypes Pa2/3). Assuming that NLRs are involved in controlling many types of resistances, SMRT-AgRenSeq-d can readily be applied to diverse crops and pathogen systems.
Collapse
Affiliation(s)
- Yuhan Wang
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Lynn H Brown
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Thomas M Adams
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Yuk Woon Cheung
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Jie Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100083, China
| | - Vanessa Young
- James Hutton Limited, The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Drummond T Todd
- James Hutton Limited, The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Miles R Armstrong
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Konrad Neugebauer
- Biomathematics and Statistics Scotland, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Amanpreet Kaur
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
- Crop Research Centre, Teagasc, Oak Park, Carlow R93 XE12, Ireland
| | - Brian Harrower
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Stan Oome
- HZPC Research B.V. HZPC, Edisonweg 5, 8501 XG Joure, Netherlands
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100083, China
| | - Micha Bayer
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Ingo Hein
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100083, China
| |
Collapse
|
5
|
Krępski T, Olechowski M, Samborska-Skutnik I, Święcicka M, Grądzielewska A, Rakoczy-Trojanowska M. Identification and characteristics of wheat Lr orthologs in three rye inbred lines. PLoS One 2023; 18:e0288520. [PMID: 37440539 DOI: 10.1371/journal.pone.0288520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The genetic background of the immune response of rye to leaf rust (LR), although extensively studied, is still not well understood. The recent publication of the genome of rye line Lo7 and the development of efficient transcriptomic methods has aided the search for genes that confer resistance to this disease. In this study, we investigated the potential role of rye orthologs of wheat Lr genes (Lr1, Lr10, Lr21, Lr22a, and RGA2/T10rga2-1A) in the LR seedling-stage resistance of inbred rye lines D33, D39, and L318. Bioinformatics analysis uncovered numerous Lr orthologs in the Lo7 genome, namely, 14 ScLr1, 15 ScRga2, and 2 ScLr21 paralogs, and 1 each of ScLr10 and ScLr22a genes. The paralogs of ScLr1, ScRga2, and ScLr21 were structurally different from one another and their wheat counterparts. According to an RNA sequencing analysis, only four wheat Lr gene orthologs identified in the Lo7 genome (ScLr1_3, ScLr1_4, ScLr1_8, and ScRga2_6) were differentially expressed; all four were downregulated after infection with compatible or incompatible isolates of Puccinia recondita f. sp. secalis (Prs). Using a more precise tool, RT-qPCR, we found that two genes were upregulated at 20 h post-infection, namely, ScLr1_4 and ScLr1_8 in lines D33 and D39, respectively, both of which have been found to be resistant to LR under field conditions and after treatment with a semi-compatible Prs strain. We were unable to discern any universal pattern of gene expression after Prs infection; on the contrary, all detected relationships were plant genotype-, Prs isolate-, or time-specific. Nevertheless, at least some Lr orthologs in rye (namely, ScLr1_3 ScLr1_4, ScLr1_8, and ScRga2_6), even though mainly downregulated, may play an important role in the response of rye to LR.
Collapse
Affiliation(s)
- Tomasz Krępski
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Olechowski
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Izabela Samborska-Skutnik
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Święcicka
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Adams TM, Smith M, Wang Y, Brown LH, Bayer MM, Hein I. HISS: Snakemake-based workflows for performing SMRT-RenSeq assembly, AgRenSeq and dRenSeq for the discovery of novel plant disease resistance genes. BMC Bioinformatics 2023; 24:204. [PMID: 37198529 DOI: 10.1186/s12859-023-05335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND In the ten years since the initial publication of the RenSeq protocol, the method has proved to be a powerful tool for studying disease resistance in plants and providing target genes for breeding programmes. Since the initial publication of the methodology, it has continued to be developed as new technologies have become available and the increased availability of computing power has made new bioinformatic approaches possible. Most recently, this has included the development of a k-mer based association genetics approach, the use of PacBio HiFi data, and graphical genotyping with diagnostic RenSeq. However, there is not yet a unified workflow available and researchers must instead configure approaches from various sources themselves. This makes reproducibility and version control a challenge and limits the ability to perform these analyses to those with bioinformatics expertise. RESULTS Here we present HISS, consisting of three workflows which take a user from raw RenSeq reads to the identification of candidates for disease resistance genes. These workflows conduct the assembly of enriched HiFi reads from an accession with the resistance phenotype of interest. A panel of accessions both possessing and lacking the resistance are then used in an association genetics approach (AgRenSeq) to identify contigs positively associated with the resistance phenotype. Candidate genes are then identified on these contigs and assessed for their presence or absence in the panel with a graphical genotyping approach that uses dRenSeq. These workflows are implemented via Snakemake, a python-based workflow manager. Software dependencies are either shipped with the release or handled with conda. All code is freely available and is distributed under the GNU GPL-3.0 license. CONCLUSIONS HISS provides a user-friendly, portable, and easily customised approach for identifying novel disease resistance genes in plants. It is easily installed with all dependencies handled internally or shipped with the release and represents a significant improvement in the ease of use of these bioinformatics analyses.
Collapse
Affiliation(s)
- Thomas M Adams
- Department of Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, DD2 5DA, UK.
| | - Moray Smith
- Department of Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, DD2 5DA, UK
- School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Yuhan Wang
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Lynn H Brown
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Micha M Bayer
- Department of Information and Computational Sciences, The James Hutton Institute, Invergowrie, DD2 5DA, UK
| | - Ingo Hein
- Department of Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, DD2 5DA, UK.
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
7
|
Tirnaz S, Zandberg J, Thomas WJW, Marsh J, Edwards D, Batley J. Application of crop wild relatives in modern breeding: An overview of resources, experimental and computational methodologies. FRONTIERS IN PLANT SCIENCE 2022; 13:1008904. [PMID: 36466237 PMCID: PMC9712971 DOI: 10.3389/fpls.2022.1008904] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 06/01/2023]
Abstract
Global agricultural industries are under pressure to meet the future food demand; however, the existing crop genetic diversity might not be sufficient to meet this expectation. Advances in genome sequencing technologies and availability of reference genomes for over 300 plant species reveals the hidden genetic diversity in crop wild relatives (CWRs), which could have significant impacts in crop improvement. There are many ex-situ and in-situ resources around the world holding rare and valuable wild species, of which many carry agronomically important traits and it is crucial for users to be aware of their availability. Here we aim to explore the available ex-/in- situ resources such as genebanks, botanical gardens, national parks, conservation hotspots and inventories holding CWR accessions. In addition we highlight the advances in availability and use of CWR genomic resources, such as their contribution in pangenome construction and introducing novel genes into crops. We also discuss the potential and challenges of modern breeding experimental approaches (e.g. de novo domestication, genome editing and speed breeding) used in CWRs and the use of computational (e.g. machine learning) approaches that could speed up utilization of CWR species in breeding programs towards crop adaptability and yield improvement.
Collapse
|
8
|
Gruner P, Witzke A, Flath K, Eifler J, Schmiedchen B, Schmidt M, Gordillo A, Siekmann D, Fromme FJ, Koch S, Piepho HP, Miedaner T. Studying Stem Rust and Leaf Rust Resistances of Self-Fertile Rye Breeding Populations. Int J Mol Sci 2022; 23:ijms232213674. [PMID: 36430155 PMCID: PMC9692268 DOI: 10.3390/ijms232213674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Stem rust (SR) and leaf rust (LR) are currently the two most important rust diseases of cultivated rye in Central Europe and resistant cultivars promise to prevent yield losses caused by those pathogens. To secure long-lasting resistance, ideally pyramided monogenic resistances and race-nonspecific resistances are applied. To find respective genes, we screened six breeding populations and one testcross population for resistance to artificially inoculated SR and naturally occurring LR in multi-environmental field trials. Five populations were genotyped with a 10K SNP marker chip and one with DArTseqTM. In total, ten SR-QTLs were found that caused a reduction of 5-17 percentage points in stem coverage with urediniospores. Four QTLs thereof were mapped to positions of already known SR QTLs. An additional gene at the distal end of chromosome 2R, Pgs3.1, that caused a reduction of 40 percentage points SR infection, was validated. One SR-QTL on chromosome 3R, QTL-SR4, was found in three populations linked with the same marker. Further QTLs at similar positions, but from different populations, were also found on chromosomes 1R, 4R, and 6R. For SR, additionally seedling tests were used to separate between adult-plant and all-stage resistances and a statistical method accounting for the ordinal-scaled seedling test data was used to map seedling resistances. However, only Pgs3.1 could be detected based on seedling test data, even though genetic variance was observed in another population, too. For LR, in three of the populations, two new large-effect loci (Pr7 and Pr8) on chromosomes 1R and 2R were mapped that caused 34 and 21 percentage points reduction in leaf area covered with urediniospores and one new QTL on chromosome 1R causing 9 percentage points reduction.
Collapse
Affiliation(s)
- Paul Gruner
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany
| | - Anne Witzke
- Julius Kuehn-Institute, Institute for Plant Protection in Field Crops and Grassland, 14532 Kleinmachnow, Germany
| | - Kerstin Flath
- Julius Kuehn-Institute, Institute for Plant Protection in Field Crops and Grassland, 14532 Kleinmachnow, Germany
| | | | | | | | | | | | | | - Silvia Koch
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, 70593 Stuttgart, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany
- Correspondence:
| |
Collapse
|
9
|
Bu L, Zhong D, Lu L, Loker ES, Yan G, Zhang SM. Compatibility between snails and schistosomes: insights from new genetic resources, comparative genomics, and genetic mapping. Commun Biol 2022; 5:940. [PMID: 36085314 PMCID: PMC9463173 DOI: 10.1038/s42003-022-03844-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/15/2022] [Indexed: 11/09/2022] Open
Abstract
The freshwater snail Biomphalaria glabrata is an important intermediate host of the parasite Schistosoma mansoni that causes human intestinal schistosomiasis. To better understand vector snail biology and help advance innovative snail control strategies, we have developed a new snail model consisting of two homozygous B. glabrata lines (iM line and iBS90) with sharply contrasting schistosome-resistance phenotypes. We produced and compared high-quality genome sequences for iM line and iBS90 which were assembled from 255 (N50 = 22.7 Mb) and 346 (N50 = 19.4 Mb) scaffolds, respectively. Using F2 offspring bred from the two lines and the newly generated iM line genome, we constructed 18 linkage groups (representing the 18 haploid chromosomes) covering 96% of the genome and identified three new QTLs (quantitative trait loci), two involved in snail resistance/susceptibility and one relating to body pigmentation. This study provides excellent genomic resources for unveiling complex vector snail biology, reveals genomic difference between resistant and susceptible lines, and offers novel insights into genetic mechanism of the compatibility between snail and schistosome.
Collapse
Affiliation(s)
- Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Lijun Lu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|