1
|
Ding F, Ma Y, Fan W, Xu J, Pan G. Tailor-made molecular imprints for biological event intervention. Trends Biotechnol 2024; 42:1097-1111. [PMID: 38604879 DOI: 10.1016/j.tibtech.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
Molecular imprints, which are crosslinked architectures containing specific molecular recognition cavities for targeting compounds, have recently transitioned from in vitro diagnosis to in vivo treatment. In current application scenarios, it has become an important topic to create new biomolecular recognition pathways through molecular imprinting, thereby inhibiting the pathogenesis and regulating the development of diseases. This review starts with a pathological analysis, mainly focusing on the corresponding artificial enzymes, enzyme inhibitors and antibody mimics with enhanced functions that are created by molecular imprinting strategies. Recent advances are highlighted in the use of molecular imprints as tailor-made nanomedicines for the prevention of three major diseases: metabolic syndrome, cancer, and bacterial/viral infections.
Collapse
Affiliation(s)
- Fan Ding
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Wensi Fan
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jingjing Xu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|
3
|
Araújo MC, Soczek SHS, Pontes JP, Pinto BAS, França LM, Soley BDS, Santos GS, Saminez WFDS, Fernandes FKM, Lima JLDC, Maria-Ferreira D, Rodrigues JFS, Quintão NLM, Monteiro-Neto V, Paes AMA, Fernandes ES. Analysis of the Effect of the TRPC4/TRPC5 Blocker, ML204, in Sucrose-Induced Metabolic Imbalance. Pharmaceuticals (Basel) 2023; 16:1100. [PMID: 37631015 PMCID: PMC10459798 DOI: 10.3390/ph16081100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Sugar-induced metabolic imbalances are a major health problem since an excessive consumption of saccharides has been linked to greater obesity rates at a global level. Sucrose, a disaccharide composed of 50% glucose and 50% fructose, is commonly used in the food industry and found in a range of fast, restaurant, and processed foods. Herein, we investigated the effects of a TRPC4/TRPC5 blocker, ML204, in the metabolic imbalances triggered by early exposure to sucrose-enriched diet in mice. TRPC4 and TRPC5 belong to the family of non-selective Ca+2 channels known as transient receptor potential channels. High-sucrose (HS)-fed animals with hyperglycaemia and dyslipidaemia, were accompanied by increased body mass index. mesenteric adipose tissue accumulation with larger diameter cells and hepatic steatosis in comparison to those fed normal diet. HS mice also exhibited enhanced adipose, liver, and pancreas TNFα and VEGF levels. ML204 exacerbated hyperglycaemia, dyslipidaemia, fat tissue deposition, hepatic steatosis, and adipose tissue and liver TNFα in HS-fed mice. Normal mice treated with the blocker had greater hepatic steatosis and adipose tissue cell numbers/diameter than those receiving vehicle, but showed no significant changes in tissue inflammation, glucose, and lipid levels. The results indicate that TRPC4/TRPC5 protect against the metabolic imbalances caused by HS ingestion.
Collapse
Affiliation(s)
- Mizael C. Araújo
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.); (W.F.d.S.S.); (F.K.M.F.); (J.F.S.R.)
| | - Suzany H. S. Soczek
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil; (S.H.S.S.); (D.M.-F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Jaqueline P. Pontes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil; (J.P.P.); (L.M.F.); (J.L.d.C.L.); (V.M.-N.); (A.M.A.P.)
| | - Bruno A. S. Pinto
- Departamento de Ciências Fisiológicas, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil;
| | - Lucas M. França
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil; (J.P.P.); (L.M.F.); (J.L.d.C.L.); (V.M.-N.); (A.M.A.P.)
| | - Bruna da Silva Soley
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil;
| | - Gabriela S. Santos
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.); (W.F.d.S.S.); (F.K.M.F.); (J.F.S.R.)
| | - Warlison F. de Silva Saminez
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.); (W.F.d.S.S.); (F.K.M.F.); (J.F.S.R.)
| | - Fernanda K. M. Fernandes
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.); (W.F.d.S.S.); (F.K.M.F.); (J.F.S.R.)
| | - João L. do Carmo Lima
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil; (J.P.P.); (L.M.F.); (J.L.d.C.L.); (V.M.-N.); (A.M.A.P.)
| | - Daniele Maria-Ferreira
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil; (S.H.S.S.); (D.M.-F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - João F. S. Rodrigues
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.); (W.F.d.S.S.); (F.K.M.F.); (J.F.S.R.)
| | - Nara L. M. Quintão
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajai, Itajaí 88302-901, SC, Brazil;
| | - Valério Monteiro-Neto
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil; (J.P.P.); (L.M.F.); (J.L.d.C.L.); (V.M.-N.); (A.M.A.P.)
| | - Antônio M. A. Paes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil; (J.P.P.); (L.M.F.); (J.L.d.C.L.); (V.M.-N.); (A.M.A.P.)
| | - Elizabeth S. Fernandes
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil; (S.H.S.S.); (D.M.-F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| |
Collapse
|
4
|
Gambino G, Giglia G, Allegra M, Di Liberto V, Zummo FP, Rappa F, Restivo I, Vetrano F, Saiano F, Palazzolo E, Avellone G, Ferraro G, Sardo P, Di Majo D. "Golden" Tomato Consumption Ameliorates Metabolic Syndrome: A Focus on the Redox Balance in the High-Fat-Diet-Fed Rat. Antioxidants (Basel) 2023; 12:antiox12051121. [PMID: 37237987 DOI: 10.3390/antiox12051121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Tomato fruits defined as "golden" refer to a food product harvested at an incomplete ripening stage with respect to red tomatoes at full maturation. The aim of this study is to explore the putative influence of "golden tomato" (GT) on Metabolic Syndrome (MetS), especially focusing on the effects on redox homeostasis. Firstly, the differential chemical properties of the GT food matrix were characterized in terms of phytonutrient composition and antioxidant capacities with respect to red tomato (RT). Later, we assessed the biochemical, nutraceutical and eventually disease-modifying potential of GT in vivo in the high-fat-diet rat model of MetS. Our data revealed that GT oral supplementation is able to counterbalance MetS-induced biometric and metabolic modifications. Noteworthy is that this nutritional supplementation proved to reduce plasma oxidant status and improve the endogenous antioxidant barriers, assessed by strong systemic biomarkers. Furthermore, consistently with the reduction of hepatic reactive oxygen and nitrogen species (RONS) levels, treatment with GT markedly reduced the HFD-induced increase in hepatic lipid peroxidation and hepatic steatosis. This research elucidates the importance of food supplementation with GT in the prevention and management of MetS.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Mario Allegra
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Paolo Zummo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Filippo Vetrano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze Ed.4, 90128 Palermo, Italy
| | - Filippo Saiano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze Ed.4, 90128 Palermo, Italy
| | - Eristanna Palazzolo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze Ed.4, 90128 Palermo, Italy
| | - Giuseppe Avellone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
- ATeN (Advanced Technologies Network) Center, Viale delle Scienze, 90128 Palermo, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
| | - Danila Di Majo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
| |
Collapse
|
5
|
Jiang LH, Yao X, Çiğ B. TRP Channels in Oxidative Stress Signalling. Cells 2023; 12:cells12091251. [PMID: 37174651 PMCID: PMC10177542 DOI: 10.3390/cells12091251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
It is well established that the accumulation of high levels of reactive oxygen species (ROS), due to excessive generation of ROS and/or impaired antioxidant capacity of cells, can result in oxidative stress and cause oxidative damage to cells and their functions [...].
Collapse
Affiliation(s)
- Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bilal Çiğ
- Department of Physiology, Medicine Faculty, Kirsehir Ahi Evran University, Kirsehir 40100, Turkey
| |
Collapse
|
6
|
Permatasari HK, Nurkolis F, Gunawan WB, Yusuf VM, Yusuf M, Kusuma RJ, Sabrina N, Muharram FR, Taslim NA, Mayulu N, Batubara SC, Samtiya M, Hardinsyah H, Tsopmo A. Modulation of gut microbiota and markers of metabolic syndrome in mice on cholesterol and fat enriched diet by butterfly pea flower kombucha. Curr Res Food Sci 2022; 5:1251-1265. [PMID: 36046779 PMCID: PMC9421331 DOI: 10.1016/j.crfs.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 01/15/2023] Open
Abstract
Clitoria ternatea, with an alternative name, Butterfly pea, is increasingly being explored for medical purposes and the development of a wide range of processed products. This study aimed to incorporate Butterfly pea into an innovative probiotic drink through a symbiotic culture of bacteria and yeast (SCOBY) fermentation and to evaluate the biological activity. The benefits of the drink, referred to as butterfly pea flower kombucha (KBPF) was determined in vitro and in metabolically disorder mice that receive a diet rich in cholesterol and fat (CFED). Forty white male were categorized into four groups, i.e., A = Control/Normal Diet; B = CFED alone; C = CFED + KBPF 65 mg/kg BW (Body Weight); D = CFED + KBPF 130 mg/kg BW, and then sacrificed after 6 weeks of intervention. Seventy-nine secondary metabolite compounds were successfully identified in KBPF using LC-HRMS. In vitro studies showed the potential activity of KBPF in inhibiting not only ABTS, but also lipid (lipase) and carbohydrate (α-amylase, α-glucosidase) hydrolyzing enzymes to levels similar to acarbose control at 50–250 μg/mL. In the in vivo study, the administration of KBPF (130 mg/kg BW) significantly alleviated metabolic disorders caused by high-fat diet. Specifically, lipid profile (HDL, LDL, TC, TG), blood glucose, markers of oxidative stress (SOD liver), metabolic enzymes (lipase, amylase), and markers of inflammation (PGC-1α, TNF-α, and IL-10) were in most cases restored to normal values. Additionally, the gut microbiota community analysis showed that KBPF has a positive effect (p = 0.01) on both the Bacteroidetes phylum and the Firmicutes phylum. The new KBPF drink is a promising therapeutic functional food for preventing metabolic diseases. Clitoria ternatea or Butterfly pea flower processed or innovated into a functional probiotic drink, namely KBPF. A total of 79 Secondary metabolite compounds of KBPF were successfully identified. In vitro studies showed the potential activity of KBPF in inhibiting ABTS, lipase, α-glucosidase, and α-amylase. Administering a dose of 130 mg/kg BW KBPF was significantly promising in the alleviation of biomarker metabolic disorders with immunomodulatory effects. By modulating the diversity of the gut microbiome, KBPF can be a promising nutraceutical in preventing metabolic syndrome with inflammatory diseases.
Collapse
Affiliation(s)
- Happy Kurnia Permatasari
- Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, 65145, Indonesia
- Corresponding author.
| | - Fahrul Nurkolis
- Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Yogyakarta, 55281, Indonesia
| | - William Ben Gunawan
- Nutrition Science Department, Faculty of Medicine, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | | | - Muhammad Yusuf
- Medical Programme, Faculty of Medicine Universitas Brawijaya, Malang, 65145, Indonesia
| | - Rio Jati Kusuma
- Department of Nutrition and Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55223, Indonesia
| | - Nindy Sabrina
- Department of Nutrition, Dietetics, and Food, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Wellington Rd, Clayton VIC 3800, Australia
| | - Farizal Rizky Muharram
- Medical Faculty of Airlangga University, Jl. Mayjen. Prof. Dr. Moestopo 47, Surabaya, Jawa Timur 60132, Indonesia
| | - Nurpudji Astuti Taslim
- Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Nelly Mayulu
- Nutrition and Food, Faculty of Medicine, Sam Ratulangi University, Manado, 95115, Indonesia
| | | | - Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, 123029, India
| | - Hardinsyah Hardinsyah
- Applied Nutrition, Faculty of Human Ecology, IPB University, Bogor, West Java, 16680, Indonesia
| | - Apollinaire Tsopmo
- Department of Chemistry, Carleton University, 1125 Colonel by Drive, Ottawa, K1S5B6, Canada
| |
Collapse
|