1
|
Liu X, Zhang X, Ma L, Qiang N, Wang J, Huang Y, Yuan X, Lu C, Cao Y, Xu J. 1,25-Dihydroxyvitamin D 3 protects against placental inflammation by suppressing NLRP3-mediated IL-1β production via Nrf2 signaling pathway in preeclampsia. Metabolism 2025; 162:156058. [PMID: 39488297 DOI: 10.1016/j.metabol.2024.156058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Maternal vitamin D deficiency is associated with an increased risk of preeclampsia, a potentially life-threatening multi-system disorder specific to human pregnancy. Placental trophoblast dysfunction is a key factor in the development of preeclampsia, and the activation of NOD-like receptor protein 3 (NLRP3) inflammasome may play a crucial role in this process. Previous studies have suggested that vitamin D can exert beneficial effects by suppressing inflammasome activation, but the underlying mechanism has not been fully elucidated. This study aims to explore the protective effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on the placenta and to investigate the mechanisms by which 1,25(OH)2D3 attenuates NLRP3 inflammasome activation in a rat model of preeclampsia and hypoxia-cultured placental trophoblast cells. RESULTS Our findings demonstrated that supplementation of rats with 1,25(OH)2D3 mitigated placental inflammation and prevented multi-organ dysfunction associated with preeclampsia. Treatment with 1,25(OH)2D3 inhibited inflammasome-mediated inflammation in trophoblast cells via its receptor VDR by reducing the expression of NLRP3, caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), decreasing IL-1β production, reducing mitochondrial reactive oxygen species generation, and enhancing the expression and enzymatic activity of Cu/Zn-superoxide dismutase (SOD). Mechanistically, 1,25(OH)2D3 upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, subsequently suppressing NLRP3-mediated IL-1β overproduction in trophoblast cells. CONCLUSIONS Our study indicates that 1,25(OH)2D3 inhibits NLRP3-mediated inflammation in trophoblast cells during preeclampsia by stimulating the Nrf2 signaling pathway and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Xueqing Liu
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Xinyu Zhang
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Linlin Ma
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Na Qiang
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Jiao Wang
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Yujia Huang
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Xiaolei Yuan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, P.R. China
| | - Chunmei Lu
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China
| | - Yang Cao
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China.
| | - Jie Xu
- Department of Physiology, Harbin Medical University, Harbin 150081, P.R. China.
| |
Collapse
|
2
|
Dai Y, Xu X, Huo X, Schuitemaker JHN, Faas MM. Differential effect of lead and cadmium on mitochondrial function and NLRP3 inflammasome activation in human trophoblast. J Physiol 2024. [PMID: 39197088 DOI: 10.1113/jp286755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 08/30/2024] Open
Abstract
Heavy metals disrupt mitochondrial function and activate the NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome. We investigated the effect of lead (Pb)/cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast under normoxic, hypoxic and pro-inflammatory conditions. JEG-3, BeWo and HTR-8/SVneo cells were exposed to Pb or Cd for 24 h in the absence or presence of hypoxia or pro-inflammatory lipopolysaccharide (LPS) or poly(I:C). Then, we evaluated cell viability, apoptosis, mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨ), NLRP3 inflammasome proteins and interleukin (IL)-1β secretion. Although our data showed that Pb, Cd, hypoxia, poly(I:C) and LPS decreased mtDNAcn in the three cell lines, the effects of these treatments on other biomarkers were different in the different cell lines. We found that hypoxia decreased ΔΨ and promoted apoptosis in JEG-3 cells, increased ΔΨ and prevented apoptosis in BeWo cells, and did not change ΔΨ and apoptosis in HTR-8/SVneo cells. Moreover, Pb under hypoxic conditions reduced ΔΨ and promoted apoptosis of BeWo cells. Exposure of BeWo and HTR-8/SVneo cells to hypoxia, Pb or Cd alone upregulated the expression of NLRP3 and pro-caspase 1 but did not activate the NLRP3 inflammasome since cleaved-caspase 1 and IL-1β were not increased. To conclude, Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines, but in a cell line-specific way. KEY POINTS: The objective of this work was an understanding of the effect of lead (Pb) and cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast cell lines under normoxic, hypoxic and pro-inflammatory conditions. Apoptosis of JEG-3 cells was increased by hypoxia, while in BeWo cells, apoptosis was decreased by hypoxia, and in HTR-8/SVneo, apoptosis was not affected by hypoxic treatment. Exposure to either Pb or Cd decreased mtDNAcn in three human placental trophoblast cell lines. However, Pb under hypoxia induced a decrease of ΔΨ and promoted apoptosis of BeWo cells, but Cd did not induce a reduction in ΔΨ in the three trophoblast cell lines under any conditions. Exposure to hypoxia, Pb or Cd increased NLRP3 and pro-caspase 1 in BeWo and HTR-8/SVneo cells. Our findings highlight that Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines but in a cell line-specific way.
Collapse
Affiliation(s)
- Yifeng Dai
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Joost H N Schuitemaker
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- Research & Development, IQProducts, Groningen, The Netherlands
| | - Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Lestari B, Fukushima T, Utomo RY, Wahyuningsih MSH. Apoptotic and non-apoptotic roles of caspases in placenta physiology and pathology. Placenta 2024; 151:37-47. [PMID: 38703713 DOI: 10.1016/j.placenta.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 05/06/2024]
Abstract
Caspases, a family of cysteine proteases, are pivotal regulators of apoptosis, the tightly controlled cell death process crucial for eliminating excessive or unnecessary cells during development, including placental development. Collecting research has unveiled the multifaceted roles of caspases in the placenta, extending beyond apoptosis. Apart from their involvement in placental tissue remodeling via apoptosis, caspases actively participate in essential regulatory processes, such as trophoblast fusion and differentiation, significantly influencing placental growth and functionality. In addition, growing evidence indicates an elevation in caspase activity under pathological conditions like pre-eclampsia (PE) and intrauterine growth restriction (IUGR), leading to excessive cell death as well as inflammation. Drawing from advancements in caspase research and placental development under both normal and abnormal conditions, we examine the significance of caspases in both cell death (apoptosis) and non-cell death-related processes within the placenta. We also discuss potential therapeutics targeting caspase-related pathways for placenta disorders.
Collapse
Affiliation(s)
- Beni Lestari
- Department Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Cancer Chemoprevention Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Toshiaki Fukushima
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan.
| | - Rohmad Yudi Utomo
- Cancer Chemoprevention Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Department Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
4
|
Zhang X, Wang Q, Wang Y, Ma C, Zhao Q, Yin H, Li L, Wang D, Huang Y, Zhao Y, Shi X, Li X, Huang C. Interleukin-6 promotes visceral adipose tissue accumulation during aging via inhibiting fat lipolysis. Int Immunopharmacol 2024; 132:111906. [PMID: 38593501 DOI: 10.1016/j.intimp.2024.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Age-related visceral obesity could contribute to the development of cardiometabolic complications. The pathogenesis of visceral fat mass accumulation during the aging process remains complex and largely unknown. Interleukin-6 (IL-6) has emerged as one of the prominent inflammaging markers which are elevated in circulation during aging. However, the precise role of IL-6 in regulating age-related visceral adipose tissue accumulation remains uncertain. RESULTS A cross-sectional study including 77 older adults (≥65 years of age) was initially conducted. There was a significant positive association between serum IL-6 levels and visceral fat mass. We subsequently validated a modest but significant elevation in serum IL-6 levels in aged mice. Furthermore, we demonstrated that compared to wildtype control, IL-6 deficiency (IL-6 KO) significantly attenuated the accumulation of visceral adipose tissue during aging. Further metabolic characterization suggested that IL-6 deficiency resulted in improved lipid metabolism parameters and energy expenditure in aged mice. Moreover, histological examinations of adipose depots revealed that the absence of IL-6 ameliorated adipocyte hypertrophy in visceral adipose tissue of aged mice. Mechanically, the ablation of IL-6 could promote the PKA-mediated lipolysis and consequently mitigate lipid accumulation in adipose tissue in aged mice. CONCLUSION Our findings identify a detrimental role of IL-6 during the aging process by promoting visceral adipose tissue accumulation through inhibition of lipolysis. Therefore, strategies aimed at preventing or reducing IL-6 levels may potentially ameliorate age-related obesity and improve metabolism during aging.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Qingxuan Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yaru Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Chen Ma
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Qing Zhao
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Hongyan Yin
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Long Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Dongmei Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China; Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
| | - Yinxiang Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yan Zhao
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Xiulin Shi
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Xuejun Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| | - Caoxin Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| |
Collapse
|
5
|
Nüsken E, Appel S, Saschin L, Kuiper-Makris C, Oberholz L, Schömig C, Tauscher A, Dötsch J, Kribs A, Alejandre Alcazar MA, Nüsken KD. Intrauterine Growth Restriction: Need to Improve Diagnostic Accuracy and Evidence for a Key Role of Oxidative Stress in Neonatal and Long-Term Sequelae. Cells 2024; 13:501. [PMID: 38534344 PMCID: PMC10969486 DOI: 10.3390/cells13060501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Intrauterine growth restriction (IUGR) and being small for gestational age (SGA) are two distinct conditions with different implications for short- and long-term child development. SGA is present if the estimated fetal or birth weight is below the tenth percentile. IUGR can be identified by additional abnormalities (pathological Doppler sonography, oligohydramnion, lack of growth in the interval, estimated weight below the third percentile) and can also be present in fetuses and neonates with weights above the tenth percentile. There is a need to differentiate between IUGR and SGA whenever possible, as IUGR in particular is associated with greater perinatal morbidity, prematurity and mortality, as well as an increased risk for diseases in later life. Recognizing fetuses and newborns being "at risk" in order to monitor them accordingly and deliver them in good time, as well as to provide adequate follow up care to ameliorate adverse sequelae is still challenging. This review article discusses approaches to differentiate IUGR from SGA and further increase diagnostic accuracy. Since adverse prenatal influences increase but individually optimized further child development decreases the risk of later diseases, we also discuss the need for interdisciplinary follow-up strategies during childhood. Moreover, we present current concepts of pathophysiology, with a focus on oxidative stress and consecutive inflammatory and metabolic changes as key molecular mechanisms of adverse sequelae, and look at future scientific opportunities and challenges. Most importantly, awareness needs to be raised that pre- and postnatal care of IUGR neonates should be regarded as a continuum.
Collapse
Affiliation(s)
- Eva Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Sarah Appel
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Leon Saschin
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Celien Kuiper-Makris
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Laura Oberholz
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Charlotte Schömig
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Anne Tauscher
- Department of Obstetrics and Gynecology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Jörg Dötsch
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Angela Kribs
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Miguel A. Alejandre Alcazar
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
- Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center (UGMLC) and Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Kai-Dietrich Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| |
Collapse
|
6
|
Joseph TT, Schuch V, Hossack DJ, Chakraborty R, Johnson EL. Melatonin: the placental antioxidant and anti-inflammatory. Front Immunol 2024; 15:1339304. [PMID: 38361952 PMCID: PMC10867115 DOI: 10.3389/fimmu.2024.1339304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine hormone with many physiological and biological roles. Melatonin is an antioxidant, anti-inflammatory, free radical scavenger, circadian rhythm regulator, and sleep hormone. However, its most popular role is the ability to regulate sleep through the circadian rhythm. Interestingly, recent studies have shown that melatonin is an important and essential hormone during pregnancy, specifically in the placenta. This is primarily due to the placenta's ability to synthesize its own melatonin rather than depending on the pineal gland. During pregnancy, melatonin acts as an antioxidant and anti-inflammatory, which is necessary to ensure a stable environment for both the mother and the fetus. It is an essential antioxidant in the placenta because it reduces oxidative stress by constantly scavenging for free radicals, i.e., maintain the placenta's integrity. In a healthy pregnancy, the maternal immune system is constantly altered to accommodate the needs of the growing fetus, and melatonin acts as a key anti-inflammatory by regulating immune homeostasis during early and late gestation. This literature review aims to identify and summarize melatonin's role as a powerful antioxidant and anti-inflammatory that reduces oxidative stress and inflammation to maintain a favorable homeostatic environment in the placenta throughout gestation.
Collapse
Affiliation(s)
- Tyana T. Joseph
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Viviane Schuch
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Daniel J. Hossack
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Rana Chakraborty
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Erica L. Johnson
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
7
|
Hua Q, Li Z, Zhou Y, Wang Y, Yu Y, Sun L, Ye J, Li L. Single-cell RNA sequencing reveals association of aberrant placental trophoblasts and FN1 reduction in late-onset fetal growth restriction. Placenta 2024; 146:30-41. [PMID: 38160601 DOI: 10.1016/j.placenta.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Fetal growth restriction (FGR) can lead to fetal mental development abnormalities, malformations, and even intrauterine death. Defects in the trophoblasts at the maternal-fetal interface may contribute to FGR. However, the impact of trophoblasts on FGR is still not well understood. Therefore, the objective of this study is to characterize the heterogeneity of placental cells at the single-cell level and investigate the role of trophoblast subtypes in the pathogenesis of FGR at the cellular and molecular levels. METHODS Single-cell RNA sequencing was performed on the maternal side of placentas from two normal pregnant women and two pregnant women with FGR. Lentivirus transfection was used to establish a FN1 knockout model in trophoblast HTR-8-Svneo cells. The effect of FN1 knockout on cell migration and invasion of HTR-8-Svneo cells was assessed through wound healing and transwell assays. RESULTS Nine cell types were annotated in 39,161 cells derived from single-cell RNA sequencing. The FGR group exhibited a decrease in the percentage of trophoblasts, especially in subtype of extravillous trophoblasts (EVTs). The expression of FN1 was reduced in trophoblasts and EVTs. Furthermore, the protein expression levels of FN1 in the placentas of FGR patients were significantly lower than those of normal pregnant women. The cell migration and invasion ability of HTR-8-Svneo cells were inhibited after the knockdown of FN1. DISCUSSION The dysregulation of the trophoblast subtype-EVTs is involved in placental dysplasia related to FGR. The association between aberrant placental trophoblasts and reduced FN1 expression may contribute to insufficient remodeling of spiral arteries and the formation of FGR.
Collapse
Affiliation(s)
- Qing Hua
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Zhe Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Yadan Zhou
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Yali Wang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Yangyang Yu
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Lei Sun
- Stem Cell Regenerative Medicine Transformation Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, PR China; Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou, 450007, Henan, PR China.
| | - Li Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China.
| |
Collapse
|
8
|
Sánchez-Gil MA, Fraile-Martinez O, García-Montero C, Toledo MDV, Guijarro LG, De León-Luis JA, Bravo C, Díaz-Pedrero R, López-Gonzalez L, Saez MA, Álvarez-Mon M, García-Honduvilla N, Ortega MA. Histopathological Clues of Enhanced Inflammation in the Placental Tissue of Women with Chronic Venous Disease in Lower Limbs during Pregnancy. J Pers Med 2024; 14:87. [PMID: 38248788 PMCID: PMC10821220 DOI: 10.3390/jpm14010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
It is estimated that approximately one in three women develop chronic venous disease (CVD) during pregnancy, a broad spectrum of morphofunctional disorders affecting the venous system in different regions of the body, including the lower limbs. A growing body of evidence supports the diverse maternofetal consequences derived from this condition, with the placenta being an organ particularly affected. Among other consequences, having CVD during pregnancy has been associated with systemic inflammation and altered cytokines and chemokine profiles in the maternal and fetal serum related to this condition. In the present work, we aimed to analyze if these inflammatory changes also occurred in the placental tissue of women with CVD, exploring by immunohistochemistry and real-time PCR (RT-qPCR) gene and protein expression of critical inflammatory markers like allograft inflammatory factor 1 (AIF-1), interleukin 10 (IL-10), IL-12A, and IL-18. Our results demonstrate an enhanced tissue expression of AIF-1, IL-12A, and IL-18, accompanied by a decrease in IL-10 in the placentas of women who had undergone CVD during pregnancy. Overall, our results suggest a possible pathophysiological role of inflammation in the placental tissue of women with CVD during pregnancy, although the precise consequences of this feature remain to be deeply analyzed.
Collapse
Affiliation(s)
- María Asunción Sánchez-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.S.-G.); (C.G.-M.); (M.A.S.); (M.Á.-M.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (M.D.V.T.); (L.G.G.); (R.D.-P.); (L.L.-G.)
- University Defense Center of Madrid (CUD), 28047 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.S.-G.); (C.G.-M.); (M.A.S.); (M.Á.-M.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (M.D.V.T.); (L.G.G.); (R.D.-P.); (L.L.-G.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.S.-G.); (C.G.-M.); (M.A.S.); (M.Á.-M.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (M.D.V.T.); (L.G.G.); (R.D.-P.); (L.L.-G.)
| | - María Del Val Toledo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (M.D.V.T.); (L.G.G.); (R.D.-P.); (L.L.-G.)
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (M.D.V.T.); (L.G.G.); (R.D.-P.); (L.L.-G.)
- Department of Systems Biology, Faculty of Medicine and Health Sciences (Networking Research Center on for Liver and Digestive Diseases (CIBEREHD)), University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Raúl Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (M.D.V.T.); (L.G.G.); (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Laura López-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (M.D.V.T.); (L.G.G.); (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.S.-G.); (C.G.-M.); (M.A.S.); (M.Á.-M.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (M.D.V.T.); (L.G.G.); (R.D.-P.); (L.L.-G.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcalá de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.S.-G.); (C.G.-M.); (M.A.S.); (M.Á.-M.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (M.D.V.T.); (L.G.G.); (R.D.-P.); (L.L.-G.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.S.-G.); (C.G.-M.); (M.A.S.); (M.Á.-M.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (M.D.V.T.); (L.G.G.); (R.D.-P.); (L.L.-G.)
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.S.-G.); (C.G.-M.); (M.A.S.); (M.Á.-M.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (M.D.V.T.); (L.G.G.); (R.D.-P.); (L.L.-G.)
| |
Collapse
|
9
|
Garcia-Puente LM, Fraile-Martinez O, García-Montero C, Bujan J, De León-Luis JA, Bravo C, Rodríguez-Benitez P, Pintado P, Ruiz-Labarta FJ, Álvarez-Mon M, García-Honduvilla N, Cancelo MJ, Saez MA, Ortega MA. Placentas from Women with Late-Onset Preeclampsia Exhibit Increased Expression of the NLRP3 Inflammasome Machinery. Biomolecules 2023; 13:1644. [PMID: 38002326 PMCID: PMC10669618 DOI: 10.3390/biom13111644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Pre-eclampsia is a harmful and potentially lethal medical condition during pregnancy clinically diagnosed by hypertension and commonly accompanied by proteinuria and multiorgan affections. According to the time of diagnosis, it is differentiated between early-onset (EO-PE) and late-onset preeclampsia (LO-PE). Despite being less dangerous and presenting distinct pathophysiological signatures, LO-PE has a greater prevalence than EO-PE, both having significant consequences on the placenta. Previous works have evidenced that exacerbated inflammation in this organ might play a potential pathogenic role in the development of pre-eclampsia, and there is some preliminary evidence that the hyperactivation of inflammasomes can be related to the altered immunoinflammatory responses observed in the placentas of these patients. However, the precise role of inflammasomes in the placentas of women with LO-PE remains to be fully understood. In this work, we have studied the gene and protein expression of the main components related to the canonical and non-canonical pathways of the inflammasome NLRP3 (NLRP3, ASC, caspase 1, caspase 5, caspase 8, interleukin 1β, and interleukin 18) in the placental tissue of women with LO-PE. Our results show a marked increase in all these components in the placentas of women who have undergone LO-PE, suggesting that NLRP3 inflammasome plays a potentially pathophysiological role in the development of this entity. Future works should aim to evaluate possible translational approaches to this dysregulation in these patients.
Collapse
Affiliation(s)
- Luis M Garcia-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Juan A De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Patrocinio Rodríguez-Benitez
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- Department of Nephrology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
| | - Pilar Pintado
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Francisco Javier Ruiz-Labarta
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - María J Cancelo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of Obstetrics and Gynecology, University Hospital of Guadalajara, 19002 Guadalajara, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcalá de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
10
|
Mu F, Huo H, Wang M, Wang F. Omega-3 fatty acid supplements and recurrent miscarriage: A perspective on potential mechanisms and clinical evidence. Food Sci Nutr 2023; 11:4460-4471. [PMID: 37576058 PMCID: PMC10420786 DOI: 10.1002/fsn3.3464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 08/15/2023] Open
Abstract
Recurrent miscarriage (RM) affects approximately 1%-5% of couples worldwide. Due to its complicated etiologies, the treatments for RM also vary greatly, including surgery for anatomic factors such as septate uterus and uterine adhesions, thyroid modulation drugs for hyperthyroidism and hypothyroidism, and aspirin and low molecular weight heparin for antiphospholipid syndrome. However, these treatment modalities are still insufficient to solve RM. Omega-3 fatty acids are reported to modulate the dysregulation of immune cells, oxidative stress, endocrine disorders, inflammation, etc., which are closely associated with the pathogenesis of RM. However, there is a lack of a systematic description of the involvement of omega-3 fatty acids in treating RM, and the underlying mechanisms are also not clear. In this review, we sought to determine the potential mechanisms that are highly associated with the pathogenesis of RM and the regulation of omega-3 fatty acids on these mechanisms. In addition, we also highlighted the direct and indirect clinical evidence of omega-3 fatty acid supplements to treat RM, which might encourage the application of omega-3 fatty acids to treat RM, thus improving pregnancy outcomes.
Collapse
Affiliation(s)
- Fangxiang Mu
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| | - Huyan Huo
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| | - Mei Wang
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| | - Fang Wang
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
11
|
Yang J, Liu Y, Dong M. Integrated Bioinformatics Analysis to Screen Hub Gene Signatures for Fetal Growth Restriction. Genet Res (Camb) 2023; 2023:3367406. [PMID: 37033160 PMCID: PMC10079385 DOI: 10.1155/2023/3367406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Background. Fetal growth restriction (FGR) is the impairment of the biological growth potential of the fetus and often leads to adverse pregnancy outcomes. The molecular mechanisms for the development of FGR, however, are still unclear. The purpose of this study is to identify critical genes associated with FGR through an integrated bioinformatics approach and explore the potential pathogenesis of FGR. Methods. We downloaded FGR-related gene microarray data, used weighted gene co-expression network analysis (WGCNA), differentially expressed genes (DEGs), and protein-protein interaction (PPI) networks to screen hub genes. The GSE24129 gene set was used for validation of critical gene expression levels and diagnostic capabilities. Results. A weighted gene co-expression network was constructed, and 5000 genes were divided into 12 modules. Of these modules, the blue module showed the closest relationship with FGR. Taking the intersection of the DEGs and genes in the blue module as pivotal genes, 277 genes were identified, and 20 crucial genes were screened from the PPI network. The GSE24129 gene set verified the expression of 20 genes, and CXCL9, CXCR3, and ITGAX genes were identified as actual pivotal genes. The expression levels of CXCL9, CXCR3, and ITGAX were increased in both the training and validation sets, and ROC curve validation revealed that these three pivotal genes had a significant diagnostic ability for FGR. Single-gene GSEA results showed that all three core genes activated “hematopoietic cell lineage” and “cell adhesion molecules” and inhibited the “cGMP-PKG signaling pathway” in the development of FGR. CXCL9, CXCR3, and ITGAX may therefore be closely associated with the development of FGR and may serve as potential biomarkers for the diagnosis and treatment of FGR.
Collapse
|
12
|
Reynaud D, Alfaidy N, Collet C, Lemaitre N, Sergent F, Miege C, Soleilhac E, Assi AA, Murthi P, Courtois G, Fauvarque MO, Slim R, Benharouga M, Abi Nahed R. NLRP7 Enhances Choriocarcinoma Cell Survival and Camouflage in an Inflammasome Independent Pathway. Cells 2023; 12:cells12060857. [PMID: 36980199 PMCID: PMC10099745 DOI: 10.3390/cells12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Background: Gestational choriocarcinoma (GC) is a highly malignant trophoblastic tumor that often develops from a complete hydatidiform mole (HM). NLRP7 is the major gene responsible for recurrent HM and is involved in the innate immune response, inflammation and apoptosis. NLRP7 can function in an inflammasome-dependent or -independent pathway. Recently, we have demonstrated that NLRP7 is highly expressed in GC tumor cells and contributes to their tumorigenesis. However, the underlying mechanisms are still unknown. Here, we investigated the mechanism by which NLRP7 controls these processes in malignant (JEG-3) and non-tumor (HTR8/SVneo) trophoblastic cells. Cell survival, dedifferentiation, camouflage, and aggressiveness were compared between normal JEG-3 cells or knockdown for NLRP7, JEG-3 Sh NLRP7. In addition, HTR8/SVneo cells overexpressing NLRP7 were used to determine the impact of NLRP7 overexpression on non-tumor cells. NLRP7 involvement in tumor cell growth and tolerance was further characterized in vivo using the metastatic mouse model of GC. Results: We demonstrate that NLRP7 (i) functions in an inflammasome-dependent and -independent manners in HTR8/SVneo and JEG-3 cells, respectively; (ii) differentially regulates the activity of NF-κB in tumor and non-tumor cells; (iii) increases malignant cell survival, dedifferentiation, and camouflage; and (iv) facilitates tumor cells colonization of the lungs in the preclinical model of GC. Conclusions: This study demonstrates for the first time the mechanism by which NLRP7, independently of its inflammasome machinery, contributes to GC growth and tumorigenesis. The clinical relevance of NLRP7 in this rare cancer highlights its potential therapeutic promise as a molecular target to treat resistant GC patients.
Collapse
Affiliation(s)
- Déborah Reynaud
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
- Correspondence: (N.A.); (R.A.N.); Tel.: +33-6-3207-3234 (N.A.); +33-7-702-7-1704 (R.A.N.)
| | - Constance Collet
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Frederic Sergent
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Céline Miege
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | | | - Alaa Al Assi
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Univeristy Grenoble Alpes, Inserm, 38000 Grenoble, France
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne VIC 3800, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women’s Hospital, Parkville, VIC 3502, Australia
| | - Gilles Courtois
- University Grenoble Alpes, Inserm, CEA, UA13 BGE, 38000 Grenoble, France
| | | | - Rima Slim
- Departments of Human Genetics and Obstetrics and Gynecology, McGill University Health Centre Research Institute, Montréal, QC H4A 3J1, Canada
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Univeristy Grenoble Alpes, Inserm, 38000 Grenoble, France
- Correspondence: (N.A.); (R.A.N.); Tel.: +33-6-3207-3234 (N.A.); +33-7-702-7-1704 (R.A.N.)
| |
Collapse
|